Skip to main content

Advertisement

Log in

Delayed VEGF Treatment Enhances Angiogenesis and Recovery After Neonatal Focal Rodent Stroke

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Neonatal stroke occurs in one in 4,000 live births and leads to significant morbidity and mortality. Approximately two thirds of the survivors have long-term sequelae including seizures and neurological deficits. However, the pathophysiological mechanisms of recovery after neonatal stroke are not clearly understood, and preventive measures and treatments are nonexistent in the clinical setting. In this study, we investigated the effect of vascular endothelial growth factor (VEGF) treatment on histological recovery and angiogenic response to the developing brain after an ischemic insult. Ten-day-old Sprague–Dawley rats underwent right middle cerebral arterial occlusion (MCAO) for 1.5 h. Diffusion-weighted MRI during occlusion confirmed focal ischemia that was then followed by reperfusion. On group of animals received 5-bromo-2-deoxyuridine and sacrificed at postnatal day (P)18 or P25. A second group of animals was treated with VEGF (1.5 μg/kg, icv) or phosphate-buffered saline (PBS) at P18 and perfusion fixed at P25. Based on Nissl and iron staining, a single VEGF injection reduced the injury score, compared to the animals that underwent MCAO and PBS injection. Furthermore, neurodegeneration represented by neuronal nuclei staining was markedly diminished. In addition, animals treated with VEGF revealed a positive trend in endothelial proliferation and a significant increase in total vessel volume in the peri-infarct region of the caudate. The number of Iba1-positive microglial cells was significantly reduced after a single VEGF injection, and myelin basic protein expression was enhanced in the caudate after ischemia without an effect of VEGF treatment. In conclusion, delayed treatment with VEGF ameliorates injury, promotes endothelial cell proliferation, and increases total vascular volume following neonatal stroke. These results suggest that VEGF has a neuroprotective effect, in part by enhancing endogenous angiogenesis. These data contribute to a better understanding of neonatal stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nelson KB. Perinatal ischemic stroke. Stroke. 2007;38:742–5.

    Article  PubMed  Google Scholar 

  2. Sreenan C, Bhargava R, Robertson CMT. Cerebral infarction in the term newborn: clinical presentation and long-term outcome. J Pediatr. 2000;137:351–5.

    Article  PubMed  CAS  Google Scholar 

  3. Ferriero DM. Neonatal brain injury. NEJM. 2004;351:1985–95.

    Article  PubMed  CAS  Google Scholar 

  4. Arai K, Jin G, Navaratna D, Lo EH. Brain angiogenesis in developmental and pathological processes: neurovascular injury and angiogenic recovery after stroke. FEBS J. 2009;276:4644–52.

    Article  PubMed  CAS  Google Scholar 

  5. Ohab JJ, Fleming S, Blesch A, Carmichael ST. A neurovascular niche for neurogenesis after stroke. J Neurosci. 2006;26:13007–16.

    Article  PubMed  CAS  Google Scholar 

  6. Madri J. Modeling the neurovascular niche: implications for recovery from CNS injury. J Physiol Pharmacol. 2009;60:94–104.

    Google Scholar 

  7. Hayashi T, Iwai M, Ikeda T, Jin G, Deguchi K, Nagotani S, et al. Neural precursor cells division and migration in neonatal rat brain after ischemic/hypoxic injury. Brain Res. 2005;1038:41–9.

    Article  PubMed  CAS  Google Scholar 

  8. Spadafora R, Gonzalez FF, Derugin N, Wendland M, Ferriero D, McQuillen P. Altered fate of subventricular zone progenitor cells and reduced neurogenesis following neonatal stroke. Dev Neurosci. 2010;32:101–13.

    Article  PubMed  CAS  Google Scholar 

  9. Zhang ZG. VEGF enhances angiogenesis and promotes blood–brain barrier leakage in the ischemic brain. J Clin Invest. 2000;106:829–38.

    Article  PubMed  CAS  Google Scholar 

  10. Derugin N, Wendland M, Muramatsu K, Roberts TPL, Gregory G, Ferriero DM, et al. Evolution of brain injury after transient middle cerebral artery occlusion in neonatal rats editorial comment. Stroke. 2000;31:1752–61.

    Article  PubMed  CAS  Google Scholar 

  11. Mu D. Regulation of hypoxia-inducible factor 1alpha and induction of vascular endothelial growth factor in a rat neonatal stroke model. Neurobiol Dis. 2003;14:524–34.

    Article  PubMed  CAS  Google Scholar 

  12. Dobbing J, Sands J. Comparative aspects of the brain growth spurt. Early Hum Dev. 1979;3:79–83.

    Article  PubMed  CAS  Google Scholar 

  13. Derugin N, Ferriero DM, Vexler ZS. Neonatal reversible focal cerebral ischemia: a new model. Neurosci Res. 1998;32:349–53.

    Article  PubMed  CAS  Google Scholar 

  14. Derugin N, Dingman A, Wendland MF, Fox C, Bollen A, Vexler ZS. Magnetic resonance imaging as a surrogate measure for histological sub-chronic endpoint in a neonatal rat stroke model. Brain Res. 2005;1066:49–56.

    Article  PubMed  CAS  Google Scholar 

  15. Shimotake J, Derugin N, Wendland M, Vexler ZS, Ferriero DM. Vascular endothelial growth factor receptor-2 inhibition promotes cell death and limits endothelial cell proliferation in a neonatal rodent model of stroke. Stroke. 2010;41:343–9.

    Article  PubMed  CAS  Google Scholar 

  16. Paxinos G. The rat brain in stereotaxic coordinates. 4th ed. San Diego: Academic; 1998.

    Google Scholar 

  17. Faustino JV, Wang X, Johnson CE, Klibanov A, Derugin N, Wendland MF, et al. Microglial cells contribute to endogenous brain defenses after acute neonatal focal stroke. J Neurosci. 2011;31:12992–3001.

    Article  PubMed  CAS  Google Scholar 

  18. Greenberg DA, Jin K. From angiogenesis to neuropathology. Nature. 2005;438:954–9.

    Article  PubMed  CAS  Google Scholar 

  19. Kaya D, Gürsoy-Özdemir Y, Yemisci M, Tuncer N, Aktan S, Dalkara T. VEGF protects brain against focal ischemia without increasing blood–brain permeability when administered intracerebroventricularly. J Cereb Blood Flow Metab. 2005;25:1111–8.

    Article  PubMed  CAS  Google Scholar 

  20. Sun Y. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest. 2003;111:1843–51.

    PubMed  CAS  Google Scholar 

  21. Wang Y, Galvan V, Gorostiza O, Ataie M, Jin K, Greenberg DA. Vascular endothelial growth factor improves recovery of sensorimotor and cognitive deficits after focal cerebral ischemia in the rat. Brain Res. 2006;1115:186–93.

    Article  PubMed  CAS  Google Scholar 

  22. Wang Y-Q, Cui H-R, Yang S-Z, Sun H-P, Qiu M-H, Feng X-Y, et al. VEGF enhance cortical newborn neurons and their neurite development in adult rat brain after cerebral ischemia. Neurochem Int. 2009;55:629–36.

    Article  PubMed  CAS  Google Scholar 

  23. Chen J, Chopp M. Neurorestorative treatment of stroke: cell and pharmacological approaches. J Am Soc Exp NeuroTher. 2011;3:466–73.

    Article  Google Scholar 

  24. Chopp M, Li Y, Zhang J. Plasticity and remodeling of brain. J Neurol Sci. 2008;265:97–101.

    Article  PubMed  CAS  Google Scholar 

  25. Krupinski J, Stroemer P, Slevin M, Marti E, Kumar P, Rubio F. Three-dimensional structure and survival of newly formed blood vessels after focal cerebral ischemia. NeuroReport. 2003;14:1171–6.

    Article  PubMed  Google Scholar 

  26. Ma Y, Zechariah A, Qu Y, Hermann DM. Effects of vascular endothelial growth factor in ischemic stroke. J Neurosci Res. 2012. doi:10.1002/jnr.23088.

  27. Hermann DM, Zechariah A. Implications of vascular endothelial growth factor for postischemic neurovascular remodeling. J Cereb Blood Flow Metab. 2009;29:1620–43.

    Article  PubMed  CAS  Google Scholar 

  28. Sc C, Chopp M. Recovery recapitulates ontogeny. Trends Neurosci. 2000;23:265–71.

    Article  Google Scholar 

  29. Dellian M, Witwer BP, Salehi HA, Yuan F, Jain RK. Quantitation and physiological characterization of angiogenic vessels in mice. Am J Pathol. 1996;149:59–71.

    PubMed  CAS  Google Scholar 

  30. Zhang ZG, Chopp M. Vascular endothelial growth factor and angiopoietins in focal cerebral ischemia. Trends Cardiovasc Med. 2002;12:62–6.

    Article  PubMed  CAS  Google Scholar 

  31. Denker SP, Ji S, Dingman A, Lee SY, Derugin N, Wendland MF, et al. Macrophages are comprised of resident brain microglia not infiltrating peripheral monocytes acutely after neonatal stroke. J Neurochem. 2007;100:893–904.

    Article  PubMed  CAS  Google Scholar 

  32. Acker T, Beck H, Plate KH. Cell type specific expression of vascular endothelial growth factor and angiopoietin-1 and −2 suggests an important role of astrocytes in cerebellar vascularization. Mech Dev. 2001;108:45–7.

    Article  PubMed  CAS  Google Scholar 

  33. Salhia B, Angelova L, Roncari L, Wu X, Shannon P, Guha A. Expression of vascular endothelial growth factor by reactive astrocytes and associated neoangiogenesis. Brain Res. 2000;883:1–11.

    Article  Google Scholar 

  34. Proescholdt M, Heiss J, Walbridge S, Mühlhauser J, Capogrossi M, Oldfield E, et al. Vascular endothelial growth factor (VEGF) modulates vascular permeability and inflammation in rat brain. J Neuropathol Exp Neurol. 1999;58:613–27.

    Article  PubMed  CAS  Google Scholar 

  35. Horie N, Pereira MP, Niizuma K, Sun G, Keren-Gill H, Encarnacion A, et al. Transplanted stem cell-secreted vascular endothelial growth factor effects poststroke recovery, inflammation, and vascular repair. Stem Cells. 2011;29:274–85.

    Article  PubMed  CAS  Google Scholar 

  36. Olivier AK, Gallup JM, Geelen AV, Ackermann MR. Exogenous administration of vascular endothelial growth factor prior to human respiratory syncytial virus a2 infection reduces pulmonary pathology in neonatal lambs and alters epithelial innate immune responses. Exp Lung Res. 2011;37:131–43.

    Article  PubMed  CAS  Google Scholar 

  37. Fernandez-Lopez D, Faustino J, Daneman R, Zhou L, Lee SY, Derugin N, et al. Blood–brain barrier permeability is increased after acute adult stroke but not neonatal stroke in the rat. J Neurosci. 2012;32:9588–600.

    Article  PubMed  CAS  Google Scholar 

  38. Li S, Overman JJ, Katsman D, Kozlov SV, Donnelly CJ, Twiss JL, et al. An age-related sprouting transcriptome provides molecular control of axonal sprouting after stroke. Nat Neurosci. 2010;13:1496–504.

    Article  PubMed  CAS  Google Scholar 

  39. Liu Z, Li Y, Zhang ZG, Cui X, Cui Y, Lu M, et al. Bone marrow stromal cells enhance inter- and intracortical axonal connections after ischemic stroke in adult rats. J Cereb Blood Flow Metab. 2010;30:1288–95.

    Article  PubMed  Google Scholar 

  40. Ueno Y, Chopp M, Zhang L, Buller B, Liu Z, Lehman NL, et al. Axonal outgrowth and dendritic plasticity in the cortical peri-infarct area after experimental stroke. Stroke. 2012. doi:10.1161/STROKEAHA.111.646224/-/DC1.

  41. Hayakawa K, Seo JH, Pham L-DD, Miyamoto N, Som AT, Guo S, et al. Cerebral endothelial derived vascular endothelial growth factor promotes the migration but not the proliferation of oligodendrocyte precursor cells in vitro. Neurosci Lett. 2012;513:42–6.

    Article  PubMed  CAS  Google Scholar 

  42. Hayakawa K, Pham LDD, Som AT, Lee BJ, Guo S, Lo EH, et al. Vascular endothelial growth factor regulates the migration of oligodendrocyte precursor cells. J Neurosci. 2011;31:10666–70.

    Article  PubMed  CAS  Google Scholar 

  43. Kaur C, Sivakumar V, Ang LS, Sundaresan A. Hypoxic damage to the periventricular white matter in neonatal brain: role of vascular endothelial growth factor, nitric oxide and excitotoxicity. J Neurochem. 2006;98:1200–16.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant NS35902 (DMF and ZSV) and was a recipient of PAS Travel Award 2012 (MD).

Conflict of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Ferriero.

Additional information

ZS Vexler and DM Ferriero are co-senior authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dzietko, M., Derugin, N., Wendland, M.F. et al. Delayed VEGF Treatment Enhances Angiogenesis and Recovery After Neonatal Focal Rodent Stroke. Transl. Stroke Res. 4, 189–200 (2013). https://doi.org/10.1007/s12975-012-0221-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-012-0221-6

Keywords

Navigation