Skip to main content
Log in

Central nervous system involvement in the autonomic responses to psychological distress

  • Special Article
  • Published:
Netherlands Heart Journal Aims and scope Submit manuscript

Abstract

Psychological distress can trigger acute coronary syndromes and sudden cardiac death in vulnerable patients. The primary pathophysiological mechanism that plays a role in stress-induced cardiac events involves the autonomic nervous system, particularly disproportional sympathetic activation and parasympathetic withdrawal. This article describes the relation between psychological distress and autonomic nervous system function, with a focus on subsequent adverse cardiovascular outcomes. The role of the central nervous system in these associations is addressed, and a systematic review is presented of studies examining the association between stress-induced central nervous system responses measured by neuroimaging techniques and autonomic nervous system activation. Results of the systematic review indicate that the primary brain areas involved in the autonomic component of the brain-heart association are the insula, medial prefrontal cortex, and cerebellum (based on 121 participants across three studies that fitted the inclusion criteria). Other areas involved in stress-induced autonomic modulation are the (anterior) cingulate cortex, parietal cortex, somatomotor cortex/precentral gyrus, and temporal cortex. The interaction between central and autonomic nervous system responses may have implications for further investigations of the brain-heart associations and mechanisms by which acute and chronic psychological distress increase the risk of myocardial infarction, cardiac arrhythmias, and sudden cardiac death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Samuels MA. The brain-heart connection. Circulation. 2007;116(1):77–84.

    Article  PubMed  Google Scholar 

  2. Mittleman MA, Maclure M, Sherwood JB, et al. Triggering of acute myocardial infarction onset by episodes of anger. Determinants of Myocardial Infarction Onset Study Investigators. Circulation. 1995;92(7):1720–5.

    Article  PubMed  CAS  Google Scholar 

  3. Kop WJ. Chronic and acute psychological risk factors for clinical manifestations of coronary artery disease. Psychosom Med. 1999;61(4):476–87.

    PubMed  CAS  Google Scholar 

  4. Suls J, Bunde J. Anger, anxiety, and depression as risk factors for cardiovascular disease: The problems and implications of overlapping affective dispositions. Psychol Bull. 2005;131(2):260–300.

    Article  PubMed  Google Scholar 

  5. Krantz DS, Kop WJ, Santiago HT, Gottdiener JS. Mental stress as a trigger of myocardial ischemia and infarction. Cardiol Clin. 1996;14(2):271–87.

    Article  PubMed  CAS  Google Scholar 

  6. Lane RD, Laukes C, Marcus FI, et al. Psychological stress preceding idiopathic ventricular fibrillation. Psychosom Med. 2005;67(3):359–65.

    Article  PubMed  Google Scholar 

  7. Kop WJ, Krantz DS, Nearing BD, et al. Effects of acute mental stress and exercise on T-wave alternans in patients with implantable cardioverter defibrillators and controls. Circulation. 2004;109(15):1864–9.

    Article  PubMed  Google Scholar 

  8. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Eur Heart J. 1996;17(3):354–81.

    Article  Google Scholar 

  9. Berntson GG, Bigger Jr JT, Eckberg DL, et al. Heart rate variability: Origins, methods, and interpretive caveats. Psychophysiology. 1997;34(6):623–48.

    Article  PubMed  CAS  Google Scholar 

  10. Grossman P, Taylor EW. Toward understanding respiratory sinus arrhythmia: Relations to cardiac vagal tone, evolution and biobehavioral functions. Biol Psychol. 2007;74(2):263–85.

    Article  PubMed  Google Scholar 

  11. McCraty R, Atkinson M, Tiller WA, Rein G, Watkins AD. The effects of emotions on short-term power spectrum analysis of heart rate variability. Am J Cardiol. 1995;76(14):1089–93.

    Article  PubMed  CAS  Google Scholar 

  12. Kop WJ, Synowski SJ, Newell ME, Schmidt LA, Waldstein SR, Fox NA. Autonomic nervous system reactivity to positive and negative mood induction: The role of acute psychological responses and frontal electrocortical activity. Biol Psychol. 2011;86(3):230–8.

    Article  PubMed  Google Scholar 

  13. Kop WJ, Verdino RJ, Gottdiener JS, O’Leary ST, Bairey Merz CN, Krantz DS. Changes in heart rate and heart rate variability before ambulatory ischemic events. J Am Coll Cardiol. 2001;38(3):742–9.

    Article  PubMed  CAS  Google Scholar 

  14. Bigger JT, Fleiss JL, Rolnitzky LM, Steinman RC. The ability of several short-term measures of RR variability to predict mortality after myocardial infarction. Circulation. 1993;88(3):927–34.

    Article  PubMed  CAS  Google Scholar 

  15. La Rovere MT, Pinna GD, Maestri R, et al. Short-term heart rate variability strongly predicts sudden cardiac death in chronic heart failure patients. Circulation. 2003;107(4):565–70.

    Article  PubMed  Google Scholar 

  16. Poulsen SH, Jensen SE, Moller JE, Egstrup K. Prognostic value of left ventricular diastolic function and association with heart rate variability after a first acute myocardial infarction. Heart. 2001;86(4):376–80.

    Article  PubMed  CAS  Google Scholar 

  17. Bigger Jr JT, Fleiss JL, Rolnitzky LM, Steinman RC, Schneider WJ. Time course of recovery of heart period variability after myocardial infarction. J Am Coll Cardiol. 1991;18(7):1643–9.

    Article  PubMed  Google Scholar 

  18. Benarroch EE. Central autonomic network: Functional organization and clinical correlations. Armonk, NY: Futura Publishing Company, Inc; 1997.

    Google Scholar 

  19. Benarroch EE. The central autonomic network: Functional organization, dysfunction, and perspective. Mayo Clin Proc. 1993;68(10):988–1001.

    Article  PubMed  CAS  Google Scholar 

  20. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009;6(7):e1000097.

    Article  PubMed  Google Scholar 

  21. Higgins J, Green S, editors. Cochrane handbook for systematic reviews of interventions: The Cochrane Collaboration; 2011.

  22. Napadow V, Dhond R, Conti G, Makris N, Brown EN, Barbieri R. Brain correlates of autonomic modulation: Combining heart rate variability with fMRI. NeuroImage. 2008;42(1):169–77.

    Article  PubMed  Google Scholar 

  23. Matthews SC, Paulus MP, Simmons AN, Nelesen RA, Dimsdale JE. Functional subdivisions within anterior cingulate cortex and their relationship to autonomic nervous system function. NeuroImage. 2004;22(3):1151–6.

    Article  PubMed  Google Scholar 

  24. Lane RD, McRae K, Reiman EM, Chen K, Ahern GL, Thayer JF. Neural correlates of heart rate variability during emotion. NeuroImage. 2009;44(1):213–22.

    Article  PubMed  Google Scholar 

  25. Gianaros PJ, Sheu LK. A review of neuroimaging studies of stressor-evoked blood pressure reactivity: Emerging evidence for a brain-body pathway to coronary heart disease risk. NeuroImage. 2009;47(3):922–36.

    Article  PubMed  Google Scholar 

  26. Iacovella V, Hasson U. The relationship between BOLD signal and autonomic nervous system functions: Implications for processing of “physiological noise”. Magn Reson Imaging. 2011;29(10):1338–45.

    Article  PubMed  Google Scholar 

  27. Critchley HD, Mathias CJ, Josephs O, et al. Human cingulate cortex and autonomic control: Converging neuroimaging and clinical evidence. Brain. 2003;126(Pt 10):2139–52.

    Article  PubMed  Google Scholar 

  28. Gianaros PJ, Van Der Veen FM, Jennings JR. Regional cerebral blood flow correlates with heart period and high-frequency heart period variability during working-memory tasks: Implications for the cortical and subcortical regulation of cardiac autonomic activity. Psychophysiology. 2004;41(4):521–30.

    Article  PubMed  Google Scholar 

  29. Nugent AC, Bain EE, Thayer JF, Sollers JJ, Drevets WC. Sex differences in the neural correlates of autonomic arousal: A pilot PET study. Int J Psychophysiol. 2011;80(3):182–91.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Professor M.M. Sitskoorn for her comments on an earlier version of this manuscript. This work was supported in part by the Center of Research on Psychology in Somatic diseases (CoRPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. de Morree.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Morree, H.M., Szabó, B.M., Rutten, GJ. et al. Central nervous system involvement in the autonomic responses to psychological distress. Neth Heart J 21, 64–69 (2013). https://doi.org/10.1007/s12471-012-0351-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12471-012-0351-1

Keywords

Navigation