Skip to main content
Top
Gepubliceerd in: Netherlands Heart Journal 2/2013

01-02-2013 | Special Article

The heart-brain connection: mechanistic insights and models

Auteurs: K. Ritz, M. A. van Buchem, M. J. Daemen

Gepubliceerd in: Netherlands Heart Journal | Uitgave 2/2013

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

While both cardiac dysfunction and progressive loss of cognitive function are prominent features of an ageing population, surprisingly few studies have addressed the link between the function of the heart and brain. Recent literature indicates that autoregulation of cerebral flow is not able to protect the brain from hypoperfusion when cardiac output is reduced or atherosclerosis is prominent. This suggests a close link between cardiac function and large vessel atherosclerosis on the one hand and brain perfusion and cognitive functioning on the other. Mechanistically, the presence of vascular pathology leads to chronic cerebral hypoperfusion, blood brain barrier breakdown and inflammation that most likely precede neuronal death and neurodegeneration. Animal models to study the effects of chronic cerebral hypoperfusion are available, but they have not yet been combined with cardiovascular models.
Literatuur
1.
go back to reference Iadecola C, Nedergaard M. Glial regulation of the cerebral microvasculature. Nat Neurosci. 2007;10:1369–76.PubMedCrossRef Iadecola C, Nedergaard M. Glial regulation of the cerebral microvasculature. Nat Neurosci. 2007;10:1369–76.PubMedCrossRef
2.
go back to reference Paulson OB, Hasselbalch SG, Rostrup E, et al. Cerebral blood flow response to functional activation. J Cereb Blood Flow Metab. 2010;30:2–14.PubMedCrossRef Paulson OB, Hasselbalch SG, Rostrup E, et al. Cerebral blood flow response to functional activation. J Cereb Blood Flow Metab. 2010;30:2–14.PubMedCrossRef
3.
go back to reference van Beek AH, Claassen JA, Rikkert MG, et al. Cerebral autoregulation: an overview of current concepts and methodology with special focus on the elderly. J Cereb Blood Flow Metab. 2008;28:1071–85.PubMedCrossRef van Beek AH, Claassen JA, Rikkert MG, et al. Cerebral autoregulation: an overview of current concepts and methodology with special focus on the elderly. J Cereb Blood Flow Metab. 2008;28:1071–85.PubMedCrossRef
4.
go back to reference Moskowitz MA, Lo EH, Iadecola C. The science of stroke: mechanisms in search of treatments. Neuron. 2010;67:181–98.PubMedCrossRef Moskowitz MA, Lo EH, Iadecola C. The science of stroke: mechanisms in search of treatments. Neuron. 2010;67:181–98.PubMedCrossRef
5.
go back to reference Gorelick PB, Scuteri A, Black SE, et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the american heart association/american stroke association. Stroke. 2011;42:2672–713.PubMedCrossRef Gorelick PB, Scuteri A, Black SE, et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the american heart association/american stroke association. Stroke. 2011;42:2672–713.PubMedCrossRef
6.
go back to reference Paulson OB, Jarden JO, Godtfredsen J, et al. Cerebral blood-flow in patients with congestive heart-failure treated with captopril. Am J Med. 1984;76:91–5.PubMedCrossRef Paulson OB, Jarden JO, Godtfredsen J, et al. Cerebral blood-flow in patients with congestive heart-failure treated with captopril. Am J Med. 1984;76:91–5.PubMedCrossRef
7.
go back to reference Choi BR, Kim JS, Yang YJ, et al. Factors associated with decreased cerebral blood flow in congestive heart failure secondary to idiopathic dilated cardiomyopathy. Am J Cardiol. 2006;97:1365–9.PubMedCrossRef Choi BR, Kim JS, Yang YJ, et al. Factors associated with decreased cerebral blood flow in congestive heart failure secondary to idiopathic dilated cardiomyopathy. Am J Cardiol. 2006;97:1365–9.PubMedCrossRef
8.
go back to reference Jefferson AL, Himali JJ, Au R, et al. Relation of left ventricular ejection fraction to cognitive aging (from the Framingham heart study). Am J Cardiol. 2011;108:1346–51.PubMedCrossRef Jefferson AL, Himali JJ, Au R, et al. Relation of left ventricular ejection fraction to cognitive aging (from the Framingham heart study). Am J Cardiol. 2011;108:1346–51.PubMedCrossRef
9.
go back to reference Roman DD, Kubo SH, Ormaza S, et al. Memory improvement following cardiac transplantation. J Clin Exp Neuropsychol. 1997;19:692–7.PubMedCrossRef Roman DD, Kubo SH, Ormaza S, et al. Memory improvement following cardiac transplantation. J Clin Exp Neuropsychol. 1997;19:692–7.PubMedCrossRef
10.
go back to reference Dixit NK, Vazquez LD, Cross NJ, et al. Cardiac resynchronization therapy: a pilot study examining cognitive change in patients before and after treatment. Clin Cardiol. 2010;33:84–8.PubMedCrossRef Dixit NK, Vazquez LD, Cross NJ, et al. Cardiac resynchronization therapy: a pilot study examining cognitive change in patients before and after treatment. Clin Cardiol. 2010;33:84–8.PubMedCrossRef
11.
go back to reference Petrucci RJ, Rogers JG, Blue L, et al. Neurocognitive function in destination therapy patients receiving continuous-flow vs pulsatile-flow left ventricular assist device support. J Heart Lung Transplant. 2012;31:27–36.PubMedCrossRef Petrucci RJ, Rogers JG, Blue L, et al. Neurocognitive function in destination therapy patients receiving continuous-flow vs pulsatile-flow left ventricular assist device support. J Heart Lung Transplant. 2012;31:27–36.PubMedCrossRef
12.
go back to reference Tranmer BI, Keller TS, Kindt GW, et al. Loss of cerebral regulation during cardiac output variations in focal cerebral ischemia. J Neurosurg. 1992;77:253–9.PubMedCrossRef Tranmer BI, Keller TS, Kindt GW, et al. Loss of cerebral regulation during cardiac output variations in focal cerebral ischemia. J Neurosurg. 1992;77:253–9.PubMedCrossRef
13.
go back to reference Bakker FC, Klijn CJ, Jennekens-Schinkel A, et al. Cognitive impairment in patients with carotid artery occlusion and ipsilateral transient ischemic attacks. J Neurol. 2003;250:1340–7.PubMedCrossRef Bakker FC, Klijn CJ, Jennekens-Schinkel A, et al. Cognitive impairment in patients with carotid artery occlusion and ipsilateral transient ischemic attacks. J Neurol. 2003;250:1340–7.PubMedCrossRef
14.
go back to reference Bakker FC, Klijn CJ, van der Grond J, et al. Cognition and quality of life in patients with carotid artery occlusion: a follow-up study. Neurology. 2004;62:2230–5.PubMedCrossRef Bakker FC, Klijn CJ, van der Grond J, et al. Cognition and quality of life in patients with carotid artery occlusion: a follow-up study. Neurology. 2004;62:2230–5.PubMedCrossRef
15.
go back to reference Bakker FC, Klijn CJ, Jennekens-Schinkel A, et al. Cognitive impairment is related to cerebral lactate in patients with carotid artery occlusion and ipsilateral transient ischemic attacks. Stroke. 2003;34:1419–24.PubMedCrossRef Bakker FC, Klijn CJ, Jennekens-Schinkel A, et al. Cognitive impairment is related to cerebral lactate in patients with carotid artery occlusion and ipsilateral transient ischemic attacks. Stroke. 2003;34:1419–24.PubMedCrossRef
16.
go back to reference Goto T, Baba T, Honma K, et al. Magnetic resonance imaging findings and postoperative neurologic dysfunction in elderly patients undergoing coronary artery bypass grafting. Ann Thorac Surg. 2001;72:137–42.PubMedCrossRef Goto T, Baba T, Honma K, et al. Magnetic resonance imaging findings and postoperative neurologic dysfunction in elderly patients undergoing coronary artery bypass grafting. Ann Thorac Surg. 2001;72:137–42.PubMedCrossRef
17.
go back to reference Selnes OA, Gottesman RF, Grega MA, et al. Cognitive and neurologic outcomes after coronary-artery bypass surgery. New Engl J Med. 2012;366:250–7.PubMedCrossRef Selnes OA, Gottesman RF, Grega MA, et al. Cognitive and neurologic outcomes after coronary-artery bypass surgery. New Engl J Med. 2012;366:250–7.PubMedCrossRef
18.
go back to reference Bos D, van der Rijk MJM, Geeraedts TEA, et al. Intracranial carotid artery atherosclerosis prevalence and risk factors in the general population. Stroke. 2012;43:1878–84.PubMedCrossRef Bos D, van der Rijk MJM, Geeraedts TEA, et al. Intracranial carotid artery atherosclerosis prevalence and risk factors in the general population. Stroke. 2012;43:1878–84.PubMedCrossRef
19.
go back to reference Bos D, Ikram MA, Elias-Smale SE, et al. Calcification in major vessel beds relates to vascular brain disease. Arterioscler Thromb Vasc Biol. 2011;31:2331–7.PubMedCrossRef Bos D, Ikram MA, Elias-Smale SE, et al. Calcification in major vessel beds relates to vascular brain disease. Arterioscler Thromb Vasc Biol. 2011;31:2331–7.PubMedCrossRef
20.
go back to reference Bos D, Vernooij MW, Elias-Smale SE, et al. Atherosclerotic calcification relates to cognitive function and to brain changes on magnetic resonance imaging. Alzheimers Dement. 2012. Bos D, Vernooij MW, Elias-Smale SE, et al. Atherosclerotic calcification relates to cognitive function and to brain changes on magnetic resonance imaging. Alzheimers Dement. 2012.
21.
go back to reference Shibata M, Ohtani R, Ihara M, et al. White matter lesions and glial activation in a novel mouse model of chronic cerebral hypoperfusion. Stroke. 2004;35:2598–603.PubMedCrossRef Shibata M, Ohtani R, Ihara M, et al. White matter lesions and glial activation in a novel mouse model of chronic cerebral hypoperfusion. Stroke. 2004;35:2598–603.PubMedCrossRef
22.
go back to reference Shibata M, Yamasaki N, Miyakawa T, et al. Selective impairment of working memory in a mouse model of chronic cerebral hypoperfusion. Stroke. 2007;38:2826–32.PubMedCrossRef Shibata M, Yamasaki N, Miyakawa T, et al. Selective impairment of working memory in a mouse model of chronic cerebral hypoperfusion. Stroke. 2007;38:2826–32.PubMedCrossRef
23.
go back to reference Fujita Y, Ihara M, Ushiki T, et al. Early protective effect of bone marrow mononuclear cells against ischemic white matter damage through augmentation of cerebral blood flow. Stroke. 2010;41:2938–43.PubMedCrossRef Fujita Y, Ihara M, Ushiki T, et al. Early protective effect of bone marrow mononuclear cells against ischemic white matter damage through augmentation of cerebral blood flow. Stroke. 2010;41:2938–43.PubMedCrossRef
24.
go back to reference Nishio K, Ihara M, Yamasaki N, et al. A mouse model characterizing features of vascular dementia with hippocampal atrophy. Stroke. 2010;41:1278–84.PubMedCrossRef Nishio K, Ihara M, Yamasaki N, et al. A mouse model characterizing features of vascular dementia with hippocampal atrophy. Stroke. 2010;41:1278–84.PubMedCrossRef
25.
go back to reference Coltman R, Spain A, Tsenkina Y, et al. Selective white matter pathology induces a specific impairment in spatial working memory. Neurobiol Aging. 2011;32. Coltman R, Spain A, Tsenkina Y, et al. Selective white matter pathology induces a specific impairment in spatial working memory. Neurobiol Aging. 2011;32.
26.
go back to reference Nakamura A, Rokosh DG, Paccanaro M, et al. LV systolic performance improves with development of hypertrophy after transverse aortic constriction in mice. Am J Physiol Heart Circ Physiol. 2001;281:H1104–12.PubMed Nakamura A, Rokosh DG, Paccanaro M, et al. LV systolic performance improves with development of hypertrophy after transverse aortic constriction in mice. Am J Physiol Heart Circ Physiol. 2001;281:H1104–12.PubMed
27.
go back to reference Chintalgattu V, Ai D, Langley RR, et al. Cardiomyocyte PDGFR-beta signaling is an essential component of the mouse cardiac response to load-induced stress. J Clin Invest. 2010;120:472–84.PubMedCrossRef Chintalgattu V, Ai D, Langley RR, et al. Cardiomyocyte PDGFR-beta signaling is an essential component of the mouse cardiac response to load-induced stress. J Clin Invest. 2010;120:472–84.PubMedCrossRef
28.
go back to reference Poulet R, Gentile MT, Vecchione C, et al. Acute hypertension induces oxidative stress in brain tissues. J Cerebral Blood Flow Metab. 2006;26:253–62.CrossRef Poulet R, Gentile MT, Vecchione C, et al. Acute hypertension induces oxidative stress in brain tissues. J Cerebral Blood Flow Metab. 2006;26:253–62.CrossRef
29.
go back to reference Carnevale D, Mascio G, Ajmone-Cat MA, et al. Role of neuroinflammation in hypertension-induced brain amyloid pathology. Neurobiol Aging. 2012;33. Carnevale D, Mascio G, Ajmone-Cat MA, et al. Role of neuroinflammation in hypertension-induced brain amyloid pathology. Neurobiol Aging. 2012;33.
30.
go back to reference Gentile MT, Poulet R, Di Pardo A, et al. Beta-amyloid deposition in brain is enhanced in mouse models of arterial hypertension. Neurobiol Aging. 2009;30:222–8.PubMedCrossRef Gentile MT, Poulet R, Di Pardo A, et al. Beta-amyloid deposition in brain is enhanced in mouse models of arterial hypertension. Neurobiol Aging. 2009;30:222–8.PubMedCrossRef
31.
go back to reference Carnevale D, Mascio G, D’Andrea I, et al. Hypertension induces brain beta-amyloid accumulation, cognitive impairment, and memory deterioration through activation of receptor for advanced glycation end products in brain vasculature. Hypertension. 2012;60:188–97.PubMedCrossRef Carnevale D, Mascio G, D’Andrea I, et al. Hypertension induces brain beta-amyloid accumulation, cognitive impairment, and memory deterioration through activation of receptor for advanced glycation end products in brain vasculature. Hypertension. 2012;60:188–97.PubMedCrossRef
32.
go back to reference Okamoto Y, Yamamoto T, Kalaria RN, et al. Cerebral hypoperfusion accelerates cerebral amyloid angiopathy and promotes cortical microinfarcts. Acta Neuropathol. 2012;123:381–94.PubMedCrossRef Okamoto Y, Yamamoto T, Kalaria RN, et al. Cerebral hypoperfusion accelerates cerebral amyloid angiopathy and promotes cortical microinfarcts. Acta Neuropathol. 2012;123:381–94.PubMedCrossRef
33.
go back to reference Zlokovic BV. The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron. 2008;57:178–201.PubMedCrossRef Zlokovic BV. The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron. 2008;57:178–201.PubMedCrossRef
34.
go back to reference Marchesi C, Paradis P, Schiffrin EL. Role of the renin-angiotensin system in vascular inflammation. Trends Pharmacol Sci. 2008;29:367–74.PubMedCrossRef Marchesi C, Paradis P, Schiffrin EL. Role of the renin-angiotensin system in vascular inflammation. Trends Pharmacol Sci. 2008;29:367–74.PubMedCrossRef
35.
go back to reference Gill R, Tsung A, Billiar T. Linking oxidative stress to inflammation: toll-like receptors. Free Radic Biol Med. 2010;48:1121–32.PubMedCrossRef Gill R, Tsung A, Billiar T. Linking oxidative stress to inflammation: toll-like receptors. Free Radic Biol Med. 2010;48:1121–32.PubMedCrossRef
36.
go back to reference Sim FJ, Zhao C, Penderis J, et al. The age-related decrease in CNS remyelination efficiency is attributable to an impairment of both oligodendrocyte progenitor recruitment and differentiation. J Neurosci. 2002;22:2451–9.PubMed Sim FJ, Zhao C, Penderis J, et al. The age-related decrease in CNS remyelination efficiency is attributable to an impairment of both oligodendrocyte progenitor recruitment and differentiation. J Neurosci. 2002;22:2451–9.PubMed
37.
go back to reference Simpson JE, Fernando MS, Clark L, et al. White matter lesions in an unselected cohort of the elderly: astrocytic, microglial and oligodendrocyte precursor cell responses. Neuropathol Appl Neurobiol. 2007;33:410–9.PubMedCrossRef Simpson JE, Fernando MS, Clark L, et al. White matter lesions in an unselected cohort of the elderly: astrocytic, microglial and oligodendrocyte precursor cell responses. Neuropathol Appl Neurobiol. 2007;33:410–9.PubMedCrossRef
38.
go back to reference Arai K, Lo EH. Astrocytes protect oligodendrocyte precursor cells via MEK/ERK and PI3K/Akt signaling. J Neurosci Res. 2010;88:758–63.PubMed Arai K, Lo EH. Astrocytes protect oligodendrocyte precursor cells via MEK/ERK and PI3K/Akt signaling. J Neurosci Res. 2010;88:758–63.PubMed
39.
go back to reference Savva GM, Wharton SB, Ince PG, et al. Age, neuropathology, and dementia. New Engl J Med. 2009;360:2302–9.PubMedCrossRef Savva GM, Wharton SB, Ince PG, et al. Age, neuropathology, and dementia. New Engl J Med. 2009;360:2302–9.PubMedCrossRef
40.
go back to reference Armulik A, Genove G, Mae M, et al. Pericytes regulate the blood–brain barrier. Nature. 2010;468:557–U231.PubMedCrossRef Armulik A, Genove G, Mae M, et al. Pericytes regulate the blood–brain barrier. Nature. 2010;468:557–U231.PubMedCrossRef
41.
go back to reference Bell RD, Winkler EA, Singh I, et al. Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature. 2012;485:512–6.PubMedCrossRef Bell RD, Winkler EA, Singh I, et al. Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature. 2012;485:512–6.PubMedCrossRef
Metagegevens
Titel
The heart-brain connection: mechanistic insights and models
Auteurs
K. Ritz
M. A. van Buchem
M. J. Daemen
Publicatiedatum
01-02-2013
Uitgeverij
Bohn Stafleu van Loghum
Gepubliceerd in
Netherlands Heart Journal / Uitgave 2/2013
Print ISSN: 1568-5888
Elektronisch ISSN: 1876-6250
DOI
https://doi.org/10.1007/s12471-012-0348-9

Andere artikelen Uitgave 2/2013

Netherlands Heart Journal 2/2013 Naar de uitgave