Skip to main content
Log in

Cerebellar Damage Affects Contextual Priors for Action Prediction in Patients with Childhood Brain Tumor

  • Original Article
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Predictive coding accounts of action perception sustain that kinematics information is compared with contextual top-down predictions (i.e., priors) to understand actions in conditions of perceptual ambiguity. It has been previously shown that the cerebellum contributes to motor simulation of observed actions. Here, we tested the hypothesis that a specific contribution of the cerebellum to action perception is to provide contextual priors that guide the sampling of perceptual kinematic information. To this aim, we compared the performance of 42 patients with childhood brain tumor affecting infratentorial (ITT) or supratentorial (STT) areas with that of peers with typical development in an action prediction task. First, participants were exposed to videos depicting a child performing different reaching-to-grasp actions, which were associated with contextual cues in a probabilistic fashion. Then, they were presented with shortened versions of the same videos and asked to infer the action outcome; since kinematics was ambiguous, we expected their responses would be biased toward the previously learned contextual priors. We found that patients with brain tumor were impaired in predicting actions when compared to healthy controls. However, STT patients presented a reliable probabilistic effect, while ITT patients, who had cerebellar damage, did not rely on contextual priors in predicting actions. Furthermore, we found an association between the use of contextual priors and the ability to infer others’ mental states as assessed by a standardized test. These results suggest that the cerebellum provides contextual priors to understand others’ actions and this predictive function might underlie complex social cognition abilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The anonymized datasets generated for this study are available on request to the corresponding author.

References

  1. Van Overwalle F, D’aes T, Mariën P. Social cognition and the cerebellum: a meta-analytic connectivity analysis. Hum Brain Mapp. 2015;36:5137–54.

    PubMed  PubMed Central  Google Scholar 

  2. Hoche F, Guell X, Sherman JC et al. Cerebellar Contribution to Social Cognition. Cerebellum. 2016;15:732–743. https://doi.org/10.1007/s12311-015-0746-9.

  3. Molenberghs P, Cunnington R, Mattingley JB. Brain regions with mirror properties: a meta-analysis of 125 human fMRI studies. Neurosci Biobehav Rev Elsevier Ltd. 2012;36:341–9.

    PubMed  Google Scholar 

  4. Gazzola V, Keysers C. The observation and execution of actions share motor and somatosensory voxels in all tested subjects: single-subject analyses of unsmoothed fMRI data. Cereb Cortex. 2009;19:1239–55.

    PubMed  Google Scholar 

  5. Urgesi C, Candidi M, Avenanti A. Neuroanatomical substrates of action perception and understanding: an anatomic likelihood estimation meta-analysis of lesion-symptom mapping studies in brain injured patients. Front Hum Neurosci. 2014;8:344. https://doi.org/10.3389/fnhum.2014.00344.

  6. Cattaneo L, Fasanelli M, Andreatta O, Bonifati DM, Barchiesi G, Caruana F. Your actions in my cerebellum: subclinical deficits in action observation in patients with unilateral chronic cerebellar stroke. Cerebellum. 2012;11:264–71.

    PubMed  Google Scholar 

  7. Abdelgabar AR, Suttrup J, Broersen R, Bhandari R, Picard S, Keysers C, et al. Action perception recruits the cerebellum and is impaired in spinocerebellar ataxia patients. Brain. 2019;142:3791–3805. https://doi.org/10.1093/brain/awz337.

  8. Schmahmann JD, Weilburg JB, Sherman JC. The neuropsychiatry of the cerebellum—insights from the clinic. Cerebellum. 2007.6:254–267. https://doi.org/10.1080/14734220701490995.

  9. Sokolov AA. The cerebellum in social cognition. Front Cell Neurosci. 2018;12. Available from:. https://doi.org/10.3389/fncel.2018.00145/full.

  10. Levisohn L, Cronin-Golomb A, Schmahmann JD. Neuropsychological consequences of cerebellar tumour resection in children. Cerebellar cognitive affective syndrome in a paediatric population. Brain. 2000.5:1041–1050. https://doi.org/10.1093/brain/123.5.1041.

  11. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998.4:561–579. https://doi.org/10.1093/brain/121.4.561.

  12. Knill DC, Pouget A. The Bayesian brain: the role of uncertainty in neural coding and computation. Trends Neurosci. 2004.12:712–719. https://doi.org/10.1016/j.tins.2004.10.007.

  13. Friston K. The history of the future of the Bayesian brain. Neuroimage. Elsevier Inc.; 2012;62:1230–3. Available from: https://doi.org/10.1016/j.neuroimage.2011.10.004

  14. Seth AK, Friston KJ. Active interoceptive inference and the emotional brain. Philos Trans R Soc B Biol Sci. 2016;371:20160007. Available from:. https://doi.org/10.1098/rstb.2016.0007.

    Article  Google Scholar 

  15. Friston K, Kiebel S. Cortical circuits for perceptual inference. Neural Netw. 2009;22:1093–104.

    PubMed  PubMed Central  Google Scholar 

  16. Kiebel SJ, Von Kriegstein K, Daunizeau J, Friston KJ. Recognizing sequences of sequences. PLoS Comput Biol. 2009;5:e1000464.

    PubMed  PubMed Central  Google Scholar 

  17. Miall RC, Wolpert DM. Forward models for physiological motor control. Neural Netw. 1996;8:1265–79. https://doi.org/10.1016/S0893-6080(96)00035-4.

  18. Körding KP, Wolpert DM. Bayesian integration in sensorimotor learning. Nature. 2004;427:244–7.

    PubMed  Google Scholar 

  19. Brown EC, Brüne M. The role of prediction in social neuroscience. Front Hum Neurosci. 2012;6:1–19. Available from:. https://doi.org/10.3389/fnhum.2012.00147/abstract.

    Article  Google Scholar 

  20. Koster-Hale J, Saxe R. Theory of mind: a neural prediction problem. Neuron. Elsevier Inc.; 2013;79:836–48. Available from: https://doi.org/10.1016/j.neuron.2013.08.020

  21. Sebanz N, Knoblich G. Prediction in joint action: what, when, and where. Top Cogn Sci. 2009;1:353–67.

    PubMed  Google Scholar 

  22. Wolpert DM, Doya K, Kawato M. A unifying computational framework for motor control and social interaction. Philos Trans R Soc Lond Ser B Biol Sci. 2003;358:593–602. https://doi.org/10.1098/rstb.2002.1238.

  23. Ansuini C, Cavallo A, Bertone C, Becchio C. The visible face of intention: why kinematics matters. Front Psychol. 2014;5. https://doi.org/10.3389/fpsyg.2014.00815.

  24. Catmur C. Understanding intentions from actions: direct perception, inference, and the roles of mirror and mentalizing systems. Conscious Cogn. 2015;36:426–33.

    PubMed  Google Scholar 

  25. Brass M, Schmitt RM, Spengler S, Gergely G. Investigating action understanding: inferential processes versus action simulation. Curr Biol. 2007;17:2117–21.

    CAS  PubMed  Google Scholar 

  26. Friston K, Mattout J, Kilner J. Action understanding and active inference. Biol Cybern. 2011;104:137–60.

    PubMed  PubMed Central  Google Scholar 

  27. Jacquet PO, Roy AC, Chambon V, Borghi AM, Salemme R, Farnè A, et al. Changing ideas about others’ intentions: updating prior expectations tunes activity in the human motor system. Sci Rep. 2016;6. https://doi.org/10.1038/srep26995.

  28. Kilner JM, Friston KJ, Frith CD. Predictive coding: an account of the mirror neuron system. Cogn Process. 2007;8:159–66.

    PubMed  PubMed Central  Google Scholar 

  29. Neal A, Kilner JM. What is simulated in the action observation network when we observe actions? Eur J Neurosci. 2010;32(10):1765–1770. https://doi.org/10.1111/j.1460-9568.2010.07435.x.

  30. Gardner T, Goulden N, Cross ES. Dynamic modulation of the action observation network by movement familiarity. J Neurosci. 2015;35:1561–72. Available from:. https://doi.org/10.1523/JNEUROSCI.2942-14.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Aglioti SM, Cesari P, Romani M, Urgesi C. Action anticipation and motor resonance in elite basketball players. Nat Neurosci. 2008;11:1109–16.

    CAS  PubMed  Google Scholar 

  32. Makris S, Urgesi C. Neural underpinnings of superior action prediction abilities in soccer players. Soc Cogn Affect Neurosci. 2013;10:342–51.

    Google Scholar 

  33. Urgesi C, Savonitto MM, Fabbro F, Aglioti SM. Long- and short-term plastic modeling of action prediction abilities in volleyball. Psychol Res. 2012;76:542–60.

    PubMed  Google Scholar 

  34. Calvo-Merino B, Grèzes J, Glaser DE, Passingham RE, Haggard P. Seeing or doing? Influence of visual and motor familiarity in action observation. Curr Biol. 2006;16:1905–10.

    CAS  PubMed  Google Scholar 

  35. Kirsch LP, Cross ES. Additive routes to action learning: layering experience shapes engagement of the action observation network. Cereb Cortex. 2015;25:4799–811.

    PubMed  PubMed Central  Google Scholar 

  36. Calvo-Merino B, Glaser DE, Grèzes J, Passingham RE, Haggard P. Action observation and acquired motor skills: an fMRI study with expert dancers. Cereb Cortex. 2005;15:1243–9.

    CAS  PubMed  Google Scholar 

  37. Amoruso L, Urgesi C. Contextual modulation of motor resonance during the observation of everyday actions. Neuroimage. Elsevier Inc.; 2016;134:74–84. Available from: https://doi.org/10.1016/j.neuroimage.2016.03.060

  38. Amoruso L, Finisguerra A, Urgesi C. Tracking the time course of top-down contextual effects on motor responses during action comprehension. J Neurosci. 2016;36:11590–600.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kilner JM. More than one pathway to action understanding. Trends Cogn Sci. 2011;15:352–7.

    PubMed  PubMed Central  Google Scholar 

  40. Amoruso L, Finisguerra A, Urgesi C. NeuroImage contextualizing action observation in the predictive brain : causal contributions of prefrontal and middle temporal areas. Neuroimage. Elsevier Ltd; 2018;177:68–78. Available from: https://doi.org/10.1016/j.neuroimage.2018.05.020.

  41. Koziol LF, Budding D, Andreasen N, D’Arrigo S, Bulgheroni S, Imamizu H, et al. Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum. 2014;13:151–77.

    PubMed  PubMed Central  Google Scholar 

  42. Jeremy D. Schmahmann. From movement to thought: Anatomic substrates of the cerebellar contribution to cognitive processing. Hum Brain Mapp. 1996;4(3):174–198. https://doi.org/10.1002/(SICI)1097-0193(1996)4:3<174::AID-HBM3>3.0.CO;2-0.

  43. Schmahmann JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci. 2004;16:367–78. Available from:. https://doi.org/10.1176/jnp.16.3.367.

    Article  PubMed  Google Scholar 

  44. D’Angelo E, Casali S. Seeking a unified framework for cerebellar function and dysfunction: from circuit operations to cognition. Front Neural Circuits. 2013;6:1–23. Available from:. https://doi.org/10.3389/fncir.2012.00116/abstract.

    Article  Google Scholar 

  45. Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. Elsevier Srl; 2010;46:831–44. Available from: https://doi.org/10.1016/j.cortex.2009.11.008.

  46. Mariën P, Manto M. Cerebellum as a master-piece for linguistic predictability. Cerebellum. 2018;17:101–3.

    PubMed  Google Scholar 

  47. Sokolov AA, Miall RC, Ivry RB. The cerebellum: adaptive prediction for movement and cognition. Trends Cogn Sci. Elsevier Ltd; 2017;21:313–32. Available from: https://doi.org/10.1016/j.tics.2017.02.005.

  48. Leggio M, Molinari M. Cerebellar sequencing: a trick for predicting the future. Cerebellum. 2015;14:35–8.

    CAS  PubMed  Google Scholar 

  49. Argyropoulos GPD. The cerebellum, internal models and prediction in ‘non-motor’ aspects of language: a critical review. Brain Lang. 2016;161:4–17.

    PubMed  Google Scholar 

  50. Tavano A, Grasso R, Gagliardi C, Triulzi F, Bresolin N, Fabbro F, et al. Disorders of cognitive and affective development in cerebellar malformations. Brain. 2007;130:2646–60.

    PubMed  Google Scholar 

  51. Tavano A, Borgatti R. Evidence for a link among cognition, language and emotion in cerebellar malformations. Cortex. Elsevier Srl; 2010;46:907–18. Available from: https://doi.org/10.1016/j.cortex.2009.07.017.

  52. Amoruso L, Narzisi A, Pinzino M, Finisguerra A, Billeci L, Calderoni S, et al. Contextual priors do not modulate action prediction in children with autism. Proc R Soc B Biol Sci. 2019;286:20191319. Available from:. https://doi.org/10.1098/rspb.2019.1319.

    Article  Google Scholar 

  53. Corti C, Poggi G, Massimino M, Bardoni A, Borgatti R, Urgesi C. Visual perception and spatial transformation of the body in children and adolescents with brain tumor. Neuropsychologia. 2018;120:124–36.

    PubMed  Google Scholar 

  54. Pollack IF, Jakacki RI. Childhood brain tumors: epidemiology, current management and future directions. Nat Rev Neurol. 2011;7:495–506. https://doi.org/10.1038/nrneurol.2011.110

  55. Korkman M, Kirk U, Kemp S. Design and purpose of the NEPSY-II. San Antonio: The NEPSY; 2007. pp. 1–18.

  56. Urgesi C, Campanella F, Fabbro F. NEPSY-II, Contributo alla Taratura Italiana. Firenze: Giunti OS; 2011.

    Google Scholar 

  57. Duncan D. Multiple range and multiple F tests. Biometrics. 1955;11:1–42.

    Google Scholar 

  58. Dunnett CW. Query: multiple comparison tests. Biometrics. 1970;26:139–41.

    Google Scholar 

  59. McHugh ML. Multiple comparison analysis testing in ANOVA. Biochem Med (Zagreb). 2011;21:203–9.

    CAS  Google Scholar 

  60. Cohen J. Statistical power analysis for the behavioral sciences 2nd Edition. New York: Routledge; 2013.

  61. Chambon V, Domenech P, Pacherie E, Koechlin E, Baraduc P, Farrer C. What are they up to? The role of sensory evidence and prior knowledge in action understanding. PLoS One. 2011;6(2):e17133. https://doi.org/10.1371/journal.pone.0017133.

  62. Ishikawa T, Tomatsu S, Izawa J, Kakei S. The cerebro-cerebellum: could it be loci of forward models? Neurosci Res. 2016;104:72–9.

    PubMed  Google Scholar 

  63. Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 2008;9:304–13.

    CAS  PubMed  Google Scholar 

  64. Blackwood N, Ffytche D, Simmons A, Bentall R, Murray R, Howard R. The cerebellum and decision making under uncertainty. Cogn Brain Res. 2004;20:46–53.

    Google Scholar 

  65. Ide JS, Li C s R. A cerebellar thalamic cortical circuit for error-related cognitive control. Neuroimage. 2011;54(1):455–464. https://doi.org/10.1016/j.neuroimage.2010.07.042.

  66. Cavallo A, Koul A, Ansuini C, Capozzi F, Becchio C. Decoding intentions from movement kinematics. Sci Rep. 2016;6. https://doi.org/10.1038/srep37036.

  67. Koul A, Cavallo A, Cauda F, Costa T, Diano M, Pontil M, et al. Action observation areas represent intentions from subtle kinematic features. Cereb Cortex. 2018;28(7):2647–2654. https://doi.org/10.1093/cercor/bhy098.

  68. Kobza S, Bellebaum C. Processing of action- but not stimulus-related prediction errors differs between active and observational feedback learning. Neuropsychologia. 2015;66:75–87.

    PubMed  Google Scholar 

  69. Bellebaum C, Daum I. Mechanisms of cerebellar involvement in associative learning. Cortex. 2011;47(1):128–136. https://doi.org/10.1016/j.cortex.2009.07.016.

  70. Lam JM, Wächter T, Globas C, Karnath HO, Luft AR. Predictive value and reward in implicit classification learning. Hum Brain Mapp. 2013;34:176–85.

    PubMed  Google Scholar 

  71. Balsters JH, Whelan CD, Robertson IH, Ramnani N. Cerebellum and cognition: evidence for the encoding of higher order rules. Cereb Cortex. 2013;23:1433–43.

    PubMed  Google Scholar 

  72. Pavlova MA. Biological motion processing as a hallmark of social cognition. Cereb Cortex. 2012;22:981–95.

    PubMed  Google Scholar 

  73. Van Overwalle F, Manto M, Leggio M, Delgado-García JM. The sequencing process generated by the cerebellum crucially contributes to social interactions. Med Hypotheses. 2019;128:33–42. https://doi.org/10.1016/j.mehy.2019.05.014.

  74. Clausi S, Olivito G, Lupo M, Siciliano L, Bozzali M, Leggio M. The cerebellar predictions for social interactions: theory of mind abilities in patients with degenerative cerebellar atrophy. Front Cell Neurosci. 2019;12. https://doi.org/10.3389/fncel.2018.00510.

  75. Sokolov AA, Erb M, Gharabaghi A, Grodd W, Tatagiba MS, Pavlova MA. Biological motion processing: the left cerebellum communicates with the right superior temporal sulcus. Neuroimage. Elsevier Inc.; 2012;59:2824–30. Available from: https://doi.org/10.1016/j.neuroimage.2011.08.039.

  76. Van Overwalle F, Mariën P. Functional connectivity between the cerebrum and cerebellum in social cognition: a multi-study analysis. Neuroimage. 2016;124:248–255. https://doi.org/10.1016/j.neuroimage.2015.09.001.

  77. Cattaneo L, Fabbri-Destro M, Boria S, Pieraccini C, Monti A, Cossu G, et al. Impairment of actions chains in autism and its possible role in intention understanding. Proc Natl Acad Sci. 2007;104(45):17825–17830. https://doi.org/10.1073/pnas.0706273104.

  78. Gomot M, Wicker B. A challenging, unpredictable world for people with autism spectrum disorder. Int J Psychophysiol. 2012;83(2):240–247. https://doi.org/10.1016/j.ijpsycho.2011.09.017.

  79. Sinha P, Kjelgaard MM, Gandhi TK, Tsourides K, Cardinaux AL, Pantazis D, et al. Autism as a disorder of prediction. Proc Natl Acad Sci. 2014;111(42):15220–15225. https://doi.org/10.1073/pnas.1416797111.

  80. Pellicano E, Burr D. When the world becomes “too real”: a Bayesian explanation of autistic perception. Trends Cogn Sci. 2012;16(10):504–510. https://doi.org/10.1016/j.tics.2012.08.009.

  81. Lawson RP, Rees G, Friston KJ. An aberrant precision account of autism. Front Hum Neurosci. 2014;8. https://doi.org/10.3389/fnhum.2014.00302.

  82. Schuwerk T, Sodian B, Paulus M. Cognitive mechanisms underlying action prediction in children and adults with autism spectrum condition. J Autism Dev Disord. 2016;46:3623–39.

    PubMed  Google Scholar 

  83. Chambon V, Farrer C, Pacherie E, Jacquet PO, Leboyer M, Zalla T. Reduced sensitivity to social priors during action prediction in adults with autism spectrum disorders. Cognition. 2017;160:17–26.

    PubMed  Google Scholar 

  84. Amoruso L, Finisguerra A, Urgesi C. Autistic traits predict poor integration between top-down contextual expectations and movement kinematics during action observation. Sci Rep. 2018;8. https://doi.org/10.1038/s41598-018-33827-8.

  85. Catani M, Jones DK, Daly E, Embiricos N, Deeley Q, Pugliese L, et al. Altered cerebellar feedback projections in Asperger syndrome. Neuroimage. 2008;41:1184–91.

    PubMed  Google Scholar 

  86. Jack A, Morris JP. Neocerebellar contributions to social perception in adolescents with autism spectrum disorder. Dev Cogn Neurosci. 2014;10:77–92.

    PubMed  PubMed Central  Google Scholar 

  87. Igelstrom KM, Webb TW, Graziano MS. Functional connectivity between the temporoparietal cortex and cerebellum in autism spectrum disorder. Cereb Cortex. 2016;27(4):2617–2627. https://doi.org/10.1093/cercor/bhw079.

  88. Olivito G, Clausi S, Laghi F, Tedesco AM, Baiocco R, Mastropasqua C, et al. Resting-state functional connectivity changes between dentate nucleus and cortical social brain regions in autism spectrum disorders. Cerebellum. 2017;16:283–92.

    PubMed  Google Scholar 

  89. Kim DJ, Kent JS, Bolbecker AR, Sporns O, Cheng H, Newman SD, et al. Disrupted modular architecture of cerebellum in schizophrenia: a graph theoretic analysis. Schizophr Bull. 2014;40:1216–26.

    PubMed  PubMed Central  Google Scholar 

  90. Laidi C, d’Albis MA, Wessa M, Linke J, Phillips ML, Delavest M, et al. Cerebellar volume in schizophrenia and bipolar I disorder with and without psychotic features. Acta Psychiatr Scand. 2015;131:223–33.

    CAS  PubMed  Google Scholar 

  91. Shinn AK, Baker JT, Lewandowski KE, Öngür D, Cohen BM. Aberrant cerebellar connectivity in motor and association networks in schizophrenia. Front Hum Neurosci. 2015;9. https://doi.org/10.3389/fnhum.2015.00134.

  92. Zhuo C, Wang C, Wang L, Guo X, Xu Q, Liu Y, et al. Altered resting-state functional connectivity of the cerebellum in schizophrenia. Brain Imaging Behav. 2018;12:383–9.

    PubMed  Google Scholar 

  93. Fletcher PC, Frith CD. Perceiving is believing: a Bayesian approach to explaining the positive symptoms of schizophrenia. Nat Rev Neurosci. 2009;10:48–58. https://doi.org/10.1038/nrn2536.

  94. Ford JM, Mathalon DH. Anticipating the future: automatic prediction failures in schizophrenia. Int J Psychophysiol. 2012;83(2):232–239. https://doi.org/10.1016/j.ijpsycho.2011.09.004.

  95. Schutter DJLG. A cerebellar framework for predictive coding and homeostatic regulation in depressive disorder. Cerebellum. 2016;15:30–3.

    CAS  PubMed  Google Scholar 

  96. Chambon V, Pacherie E, Barbalat G, Jacquet P, Franck N, Farrer C. Mentalizing under influence: abnormal dependence on prior expectations in patients with schizophrenia. Brain. 2011;134(12):3728–3741. https://doi.org/10.1093/brain/awr306.

  97. Hoche F, Guell X, Vangel MG, Sherman JC, Schmahmann JD. The cerebellar cognitive affective/Schmahmann syndrome scale. Brain. 2018;141(1):248–270. https://doi.org/10.1093/brain/awx317.

  98. Argyropoulos GPD, van Dun K, Adamaszek M, Leggio M, Manto M, Masciullo M, et al. The cerebellar cognitive affective/Schmahmann syndrome: a task force paper. Cerebellum. 2020;19:102–25.

    CAS  PubMed  Google Scholar 

  99. Butti N, Biffi E, Genova C, Romaniello R, Redaelli DF, Reni G, et al. Virtual reality social prediction improvement and rehabilitation intensive training (VR-SPIRIT) for paediatric patients with congenital cerebellar diseases: study protocol of a randomised controlled trial. Trials. 2020;21:82.

    PubMed  PubMed Central  Google Scholar 

  100. Schweizer TA, Levine B, Rewilak D, O’Connor C, Turner G, Alexander MP, et al. Rehabilitation of executive functioning after focal damage to the cerebellum. Neurorehabil Neural Repair. 2008;22:72–7. Available from:. https://doi.org/10.1177/1545968307305303.

    Article  PubMed  Google Scholar 

  101. Bhanpuri NH, Okamura AM, Bastian AJ. Predicting and correcting ataxia using a model of cerebellar function. Brain. 2014;137(7):1931–1944. https://doi.org/10.1093/brain/awu115.

  102. Gragert MN, Douglas RM. Neuropsychological late effects and rehabilitation following pediatric brain tumor. J Pediatr Rehabil Med. 2011;4:47–58.

    PubMed  Google Scholar 

  103. Synofzik M, Lindner A, Thier P. The cerebellum updates predictions about the visual consequences of one’s behavior. Curr Biol. 2008;18:814–8.

    CAS  PubMed  Google Scholar 

  104. Herzfeld DJ, Kojima Y, Soetedjo R, Shadmehr R. Encoding of sensory prediction errors by the Purkinje cells of the cerebellum. Nature. 2015;526:439–442. https://doi.org/10.1038/nature15693.

Download references

Acknowledgments

We would thank all children and their parents for taking part into the study.

Funding

This study was funded by the Italian Ministry of Health (Ricerca Finalizzata 2013: NET-2013-02356160-4, to RB; Ricerca Finalizzata 2016: GR-2016-02363640 to CU; Ricerca Corrente 2020 to AF).

Author information

Authors and Affiliations

Authors

Contributions

Niccolò Butti, Cosimo Urgesi, and Renato Borgatti conceived the study design. Alessandra Finisguerra contributed to material preparation. Niccolò Butti, Claudia Corti, and Alessandra Finisguerra collected the data. Niccolò Butti, Claudia Corti, and Cosimo Urgesi wrote and revised the first draft. All authors critically read, improved, and approved the final manuscript.

Corresponding author

Correspondence to Niccolò Butti.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics Approval

The study was approved by the Ethics Committee of the Scientific Institute IRCCS E. Medea (Prot. N.34/18–CE) and procedures were in accordance with the 1975 Declaration of Helsinki.

Consent to Participate

Before starting the experiment, all participants and their parents were informed about aims and methods of the study and asked to sign informed consent.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butti, N., Corti, C., Finisguerra, A. et al. Cerebellar Damage Affects Contextual Priors for Action Prediction in Patients with Childhood Brain Tumor. Cerebellum 19, 799–811 (2020). https://doi.org/10.1007/s12311-020-01168-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-020-01168-w

Keywords

Navigation