Skip to main content
Log in

Resting-State Functional Connectivity Changes Between Dentate Nucleus and Cortical Social Brain Regions in Autism Spectrum Disorders

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Autism spectrum disorders (ASDs) are known to be characterized by restricted and repetitive behaviors and interests and by impairments in social communication and interactions mainly including “theory of mind” (ToM) processes. The cerebellum has emerged as one of the brain regions affected by ASDs. As the cerebellum is known to influence cerebral cortex activity via cerebello-thalamo-cortical (CTC) circuits, it has been proposed that cerebello-cortical “disconnection” could in part underlie autistic symptoms. We used resting-state (RS) functional magnetic resonance imaging (fMRI) to investigate the potential RS connectivity changes between the cerebellar dentate nucleus (DN) and the CTC circuit targets, that may contribute to ASD pathophysiology. When comparing ASD patients to controls, we found decreased connectivity between the left DN and cerebral regions known to be components of the ToM network and the default mode network, implicated in specific aspects of mentalizing, social cognition processing, and higher order emotional processes. Further, a pattern of overconnectivity was also detected between the left DN and the supramodal cerebellar lobules associated with the default mode network. The presented RS-fMRI data provide evidence that functional connectivity (FC) between the dentate nucleus and the cerebral cortex is altered in ASD patients. This suggests that the dysfunction reported within the cerebral cortical network, typically related to social features of ASDs, may be at least partially related to an impaired interaction between cerebellum and key cortical social brain regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. American Psychiatry Association Diagnostic and statistical manual of mental disorder (5th ed.). Washington, DC; London, England: American Psychiatric Publishing; 2013.

  2. Baron-Cohen S. Mindblindness: an essay on autism and theory of mind. lgg5. Cambridge: MIT Press; 1995.

    Google Scholar 

  3. Hill EL, Frith U. Understanding autism: insights from mind and brain. Philos Trans R Soc Lond B Biol Sci. 2003;358:281–9.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Frith U, Happé F. Why specific developmental disorders are not specific: online and developmental effects in autism and dislexya. Dev Sci. 1998;1:267–72. Blackwell Publishers Ltd.

    Article  Google Scholar 

  5. Coricelli G. Two-levels of mental states attribution: from automaticity to voluntariness. Neuropsychologia. 2005;43:294–300.

    Article  PubMed  Google Scholar 

  6. Minshew NJ, Williams DL. The new neurobiology of autism: cortex, connectivity and neuronal organization. Arch Neurol. 2007;6:945–50.

    Article  Google Scholar 

  7. Bauman ML, Kemper TL. Histoanatomic observations of the brain in early infantile autism. Neurology. 1985;35:866–74.

    Article  CAS  PubMed  Google Scholar 

  8. Ritvo ER, Freeman BJ, Scheibel AB, Duong T, Robinson H, Guthrie D, et al. Lower purkinje cell counts in the cerebella of four autistic subjects: Initial findings of the UCLA-NSAC autopsy research report. Am J Psychiatry. 1986;143:862–6.

    Article  CAS  PubMed  Google Scholar 

  9. Courchesne E, Yeung-Courchesne R, Press GA, Hesselink JR, Jernigan TL. Hypoplasia of cerebellar vermal lobules VI and VII in autism. N Engl J Med. 1988;318:1349–54.

    Article  CAS  PubMed  Google Scholar 

  10. Bailey A, Palferman S, Heavey L. Autism: the phenotype in relatives. J Autism Dev Disord. 1998;28:369–91.

    Article  CAS  PubMed  Google Scholar 

  11. Amaral DG, Schumann Mills C, Wu Nordahl C. Neuroanatomy of autism. Trends Neurosci. 2008;31:137–45.

    Article  CAS  PubMed  Google Scholar 

  12. Ecker C, Rocha-Rego V, Johnston P, Mourao-Miranda J, Marquand A, Daly EM, et al. Investigating the predictive value of whole-brain structural MR scans in autism: a pattern classification approach. Neuroimage. 2010;49:44–56.

    Article  PubMed  Google Scholar 

  13. Cauda F, Geda E, Sacco K, D’Agata F, Duca S, Geminiani G, et al. Grey matter abnormality in autism spectrum disorder: an activation likelihood estimation meta-analysis study. J Neurol Neurosurg Psychiatry. 2011;82:1304–13.

    Article  PubMed  Google Scholar 

  14. Yu KK, Cheung C, Chua SE, McAlonan GM. Can Asperger syndrome be distinguished from autism? An anatomic likelihood meta-analysis of MRI studies. J Psychiatry Neurosci. 2011;36:412–21.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Duerden EG, Mak-Fan KM, Taylor MJ, Roberts SW. Regional differences in grey and white matter in children and adults with autism spectrum disorders: an activation likelihood estimate (ALE) meta-analysis. Autism Res. 2012;5:49–66.

    Article  PubMed  Google Scholar 

  16. Nickl-Jockschat T, Habel U, Michel TM, Manning J, Laird AR, Fox PT, et al. Brain structure anomalies in autism spectrum disorder—a meta-analysis of VBM studies using anatomic likelihood estimation. Hum Brain Mapp. 2012;33:1470–89.

    Article  PubMed  Google Scholar 

  17. Catani M, Jones D, Daly E, Embiricos N, Deeley Q, Pugliese L, et al. Altered cerebellar feedback projections in Asperger syndrome. Neuroimage. 2008;41:1184–91.

    Article  PubMed  Google Scholar 

  18. Sivaswamy L, Kumar A, Rajan D, Behen M, Muzik O, Chugani D, et al. A diffusion tensor imaging study of the cerebellar pathways in children with autism spectrum disorder. J Child Neurol. 2010;25:1223–31.

    Article  PubMed  Google Scholar 

  19. Groen WB, Buitelaar JK, van der Gaag RJ, Zwiers MP. Pervasive microstructural abnormalities in autism: a DTI study. J Psychiatry Neurosci. 2011;36:32–40.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Just MA, Cherkassky VL, Keller TA, Minshew NJ. Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity. Brain. 2004;127:1811–21.

    Article  PubMed  Google Scholar 

  21. Courchesne E. Mapping early brain development in autism. Neuron. 2007;56:399–413.

    Article  CAS  PubMed  Google Scholar 

  22. Kleinhans NM, Richards T, Sterling L, Stegbauer KC, Mahurin R, Johnson LC, et al. Abnormal functional connectivity in autism spectrum disorders during face processing. Brain. 2008;131:1000–12.

    Article  PubMed  Google Scholar 

  23. Weng SJ, Wiggins JL, Peltier SJ, Carrasco M, Risi S, Lord C, et al. Alterations of resting state functional connectivity in the default network in adolescents with autism spectrum disorders. Brain Res. 2010;1313:202–14.

    Article  CAS  PubMed  Google Scholar 

  24. Kana RK, Libero LE, Moore MS. Disrupted cortical connectivity theory as an explanatory model for autism spectrum disorders. Phys Life Rev. 2011;8:410–37.

    Article  PubMed  Google Scholar 

  25. Minshew NJ, Goldstein G, Siegel DJ. Neuropsychologic functioning in autism: profile of a complex information processing disorders. J Int Neuropsychol Soc. 1997;3:303–16.

    CAS  PubMed  Google Scholar 

  26. Friston KJ, Frith CD, Liddle PF, Frackowiak RS. Functional connectivity: the principal-component analysis of large (PET) data sets. J Cereb Blood Flow Metab. 1993;13:5–14.

    Article  CAS  PubMed  Google Scholar 

  27. van de Ven VG, Formisano E, Prvulovic D, Roeder CH, Linden DE. Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest. Hum Brain Mapp. 2004;22:165–78.

    Article  PubMed  Google Scholar 

  28. Broyd SJ, Demanuele C, Debener S, Helps SK, James CJ, Sonuga Barke EJ. Default-mode brain dysfunction in mental disorders: a systematic review. Neurosci Biobehav Rev. 2009;33:279–96.

    Article  PubMed  Google Scholar 

  29. Biswal BB, Van Kylen J, Hyde JS. Simultaneous assessment of flow and BOLD signals in resting-state functional connectivity maps. NMR Biomed. 1997;10:165–70.

    Article  CAS  PubMed  Google Scholar 

  30. Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, et al. Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A. 2006;103:13848–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Middleton FA, Strick PL. Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Brain Res Rev. 2000;31:236–50.

    Article  CAS  PubMed  Google Scholar 

  32. Allen G, McColl R, Bernard H, Ringe WK, Fleckenstein J, Cullum CM. Magnetic Resonance Imaging of cerebellar-prefrontal and cerebellar parietal functional connectivity. Neuroimage. 2005;28:39–48.

    Article  PubMed  Google Scholar 

  33. Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, et al. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29:8586–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bernard JA, Seidler RD, Hassevoort KM, Benson BL, Welsh RC, Wiggins JL, et al. Resting state functional connectivity networks: a comparison of anatomical and self-organizing map approaches. Front Neuroanat. 2012;10:6–31.

    Google Scholar 

  35. Dum RP, Strick PL. An unfolded map of the cerebellar dentate nucleus and its projections to cerebral cortex. J Neurophysiol. 2003;89:634–9.

    Article  PubMed  Google Scholar 

  36. Jeong JW, Chugani DC, Behen ME, Tiwari VN, Chugani HT. Altered white matter structure of the dentantorubrothalamic pathway in children with Autistic Spectrum Disorders. Cerebellum. 2012;11:957–71.

    Article  PubMed  Google Scholar 

  37. D’Mello AM, Crocetti D, Mostofsky SH, Stoodley CJ. Cerebellar gray matter and lobular volumes correlate with core autism symptoms. Neuroimage: Clin. 2015;7:631–9.

    Article  Google Scholar 

  38. Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106:2322–45.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32:413–34.

    Article  CAS  PubMed  Google Scholar 

  40. Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci. 2003;23:8432–44.

    CAS  PubMed  Google Scholar 

  41. Lord C, Rutter M, Goode S, Heemsbergen J, Jordan H, Mawhood L, et al. Autism Diagnostic Observation Schedule: a standardized observation of communicative and social behavior. J Autism Dev Disord. 1989;19:185–212.

    Article  CAS  PubMed  Google Scholar 

  42. Baron-Cohen S, Wheelwright S, Skinner R, Martin J, Clubley E. The Autism Spectrum Quotient (AQ). Evidence from Asperger syndrome/high functioning autism, males and females, scientists and mathematicians. J Autism Dev Disord. 2001;31:5–17.

    Article  CAS  PubMed  Google Scholar 

  43. Orsini A, Laicardi C, WAIS-R. Contributo alla taratura italiana. Firenze: Organizzazioni Speciali; 1997.

    Google Scholar 

  44. Norris DG. Reduced power multislice MDEFT imaging. J Magn Reson Imaging. 2000;11:445–51.

    Article  CAS  PubMed  Google Scholar 

  45. Diedrichsen J, Balsters JH, Flavell J, Cussans E, Ramnani N. A probabilistic atlas of the human cerebellum. Neuroimage. 2009;46:39–46.

    Article  PubMed  Google Scholar 

  46. Just MA, Keller TA, Malave VL, Kana RK, Varma S. Autism as a neural system disorder: a theory of frontal-posterior underconnectivity. Neurosci Biobehav Rev. 2012;36:1292–313.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Andreasen NC, Pierson R. The role of the cerebellum in schizophrenia. Biol Psychiatry. 2008;64:81–8.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Baillieux H, De Smet HJ, Paquier PF, De Deyn PP, Mariën P. Cerebellar neurocognition: insights into the bottom of the brain. Clin Neurol Neurosurg. 2008;110:763–73.

    Article  PubMed  Google Scholar 

  49. Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46:831–44.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Van Overwalle F, Baetens K, Mariën P, Vandekerckhove M. Social cognition and the cerebellum: a meta-analysis of over 350 fMRI studies. Neuroimage. 2014;86:554–72.

    Article  PubMed  Google Scholar 

  51. Clower DM, West RA, Lynch J, Strick PL. The inferior parietal lobule is the target of output from the superior colliculus, hippocampus and cerebellum. J Neurosci. 2001;21:6283–91.

    CAS  PubMed  Google Scholar 

  52. Middleton FA, Strick PL. Cerebellar projections to the prefrontal cortex of the primate. J Neurosci. 2001;21:700–12.

    CAS  PubMed  Google Scholar 

  53. Castelli F, Frith C, Happe F, Frith U. Autism, Asperger syndrome and brain mechanisms for the attribution of mental states to animated shapes. Brain. 2002;125:1839–49.

    Article  PubMed  Google Scholar 

  54. Raichle EM, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci U S A. 2001;98:676–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schilbach L, Eickhoff SB, Rotarska-Jagiela A, Fink GR, Vogeley K. Minds at rest? Social cognition as the default mode of cognizing and its putative relationship to the default system of the brain. Conscious Cogn. 2008;17:457–67.

    Article  PubMed  Google Scholar 

  56. Laird AR, Fox PM, Eickhoff SB, Turner JA, Ray KL, McKay DR, et al. Behavioral interpretations of intrinsic connectivity networks. J Cogn Neurosci. 2011;23:4022–37.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Krienen FM, Buckner RL. Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb Cortex. 2009;19:2485–97.

    Article  PubMed  PubMed Central  Google Scholar 

  58. O’Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex. 2010;20:953–65.

    Article  PubMed  Google Scholar 

  59. Halko MA, Farzan F, Eldaief MC, Schmahmann JD, Pascual-Leone A. Intermittent theta-burst stimulation of the lateral cerebellum increases functional connectivity of the default mode network. J Neurosci. 2014;34:12049–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cherkassky VL, Kana RK, Keller TA, Just MA. Functional connectivity in a baseline resting-state network in autism. Neuroreport. 2006;17:1687–90.

    Article  PubMed  Google Scholar 

  61. Kennedy DP, Redcay E, Courchesne E. Failing to deactivate: resting functional abnormalities in autism. Proc Natl Acad Sci U S A. 2006;103:8275–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Assaf M, Jagannathan K, Calhoun VD, Miller L, Stevens MC, Sahl R, et al. Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients. Neuroimage. 2010;53:247–56.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Monk CS, Weng SJ, Wiggins JL, Kurapati N, Louro HM, Carrasco M, et al. Neural circuitry of emotional face processing in autism spectrum disorders. J Psychiatry Neurosci. 2010;35:105–14.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Jung M, Kosaka H, Saito DN, Ishitobi M, Morita Y, Inohara K, et al. Default mode network in young male adults with autism spectrum disorder: relationship with autism spectrum traits. Mol Autism. 2014;5:35.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Brass M, Ruby P, Spengler S. Inhibition of imitative behaviour and social cognition. Philos Trans R Soc Lond B Biol Sci. 2009;364:2359–67.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Mar RA. The neural bases of social cognition and story comprehension. Annu Rev Psychol. 2011;62:103–34.

    Article  PubMed  Google Scholar 

  67. Mars RB, Sallet J, Schüffelgen U, Jbabdi S, Toni I, Rushworth MF. Connectivity-based subdivisions of the human right “temporoparietal junction area”: evidence for different areas participating in different cortical networks. Cereb Cortex. 2012;22:1894–903.

    Article  PubMed  Google Scholar 

  68. Bzdok D, Langner R, Schilbach L, Jakobs O, Roski C, Caspers S, et al. Characterization of the temporo-parietal junction by combining data-driven parcellation, complementary connectivity analyses, and functional decoding. Neuroimage. 2013;81:381–92.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Decety J, Lamm C. The role of the right temporoparietal junction in social interaction: how low-level computational processes contribute to meta-cognition. Neuroscientist. 2007;13:580–93.

    Article  PubMed  Google Scholar 

  70. Corbetta M, Patel G, Shulman GL. The reorienting system of the human brain: from environment to theory of mind. Neuron. 2008;58:306–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Perner J, Aichhorn M, Kronbichler M, Staffen W, Ladurner G. Thinking of mental and other representations: the roles of left and right temporo-parietal junction. Soc Neurosci. 2006;1:245–58.

    Article  PubMed  Google Scholar 

  72. Saxe R. Uniquely human social cognition. Curr Opin Neurobiol. 2006;16:235–9.

    Article  CAS  PubMed  Google Scholar 

  73. Saxe R, Powell JT. It’s the thought that counts: specific brain regions for one component of theory of mind. Psychol Sci. 2006;17:692–9.

    Article  PubMed  Google Scholar 

  74. Sommer M, Dohnel K, Sodian B, Meinhardt J, Thoermer C, Hajak G. Neural correlates of true and false belief reasoning. Neuroimage. 2007;35:1378–84.

    Article  PubMed  Google Scholar 

  75. Aichhorn M, Perner J, Weiss B, Kronbichler M, Staffen W, Ladurner G. Temporo-parietal junction activity in theory of mind tasks: falseness, beliefs, or attention. J Cogn Neurosci. 2009;21:1179–92.

    Article  PubMed  Google Scholar 

  76. Vogt BA. Pain and emotion interactions in subregions of the cingulate gyrus. Nat Rev Neurosci. 2005;6:533–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Craig AD. How do you feel--now? The anterior insula and human awareness. Nat Rev Neurosci. 2009;10:59–70.

    Article  CAS  PubMed  Google Scholar 

  78. Lamm C, Decety J, Singer T. Meta-analytic evidence for common and distinct neural networks associated with directly experienced pain and empathy for pain. Neuroimage. 2011;54:2492–502.

    Article  PubMed  Google Scholar 

  79. Atique B, Erb M, Gharabaghi A, Grodd W, Anders S. Task-specific activity and connectivity within the mentalizing network during emotion and intention mentalizing. Neuroimage. 2011;55:1899–911.

    Article  PubMed  Google Scholar 

  80. Wang SS, Ad K, Badura A. The cerebellum, sensitive period and autism. Neuron. 2014;83:518–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Stoodley CJ. Distinct regions of the cerebellum show gray matter decreases in autism, ADHD, and developmental dyslexia. Front Syst Neurosci. 2014;8:1–17.

    Article  Google Scholar 

  82. Palmen SJ, van Engeland H, Hof PR, Schmitz C. Neuropathological findings in autism. Brain. 2004;127:2572–83.

    Article  PubMed  Google Scholar 

  83. Rogers TD, McKimm E, Dickson PE, Goldowitz D, Blaha DA, Mittleman G. Is autism a disease of the cerebellum? An integration of clinical and pre-clinical research. Front Syst Neurosci. 2013;7:15.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Khan AJ, Nair A, Keown CL, Dakto MC, Lincoln AJ, Muller RA. Cerebro-cerebellar Resting state Functional Connectivity in Children and adolescents with Autism Spectrum Disorder. Biol Psychiatry. 2015;78:625–34.

    Article  PubMed  Google Scholar 

  85. Van Overwalle F, Mariën P. Functional connectivity between the cerebellum and cerebrum in social cognition: a multi-study analysis. Neuroimage. 2016;124:248–55.

    Article  PubMed  Google Scholar 

  86. Van Overwalle F, Baetens K, Mariën P, Vandekerckhove M. Cerebellar areas dedicated to social cognition? A comparison of meta-analytic and connectivity results. Soc Neurosci. 2015;10:337–44.

    PubMed  Google Scholar 

  87. Schmahmann JD, Pandya DN. The cerebrocerebellar system. Int Rev Neurobiol. 1997;41:31–60.

    Article  CAS  PubMed  Google Scholar 

  88. Strick PL. How do the basal ganglia and cerebellum gain access to the cortical motor areas? Behav Brain Res. 1985;18:107–23.

    Article  CAS  PubMed  Google Scholar 

  89. Satterhwaite TD, Wolf DH, Ruparel K, Erus G, Elliott MA, Eickhoff SB, et al. Heterogeneous impact of motion on fundamental patterns of developmental changes in functional connectivity during youth. Neuroimage. 2013;83:45–57.

    Article  Google Scholar 

  90. Griffanti L, Salimi-Khorshidi G, Beckman CF, Auerbach EJ, Douaud G, Sexton CE, et al. ICA-based artifact removal and accelerated fMRI acquisition for improved resting state network imaging. Neuroimage. 2014;95:232–47.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Fombonne E. Epidemiology of autistic disorder and other pervasive developmental disorders. J Clin Psychiatry. 2005;10:3–8.

    Google Scholar 

  92. Lai MC, Lombardo MV, Auyeung B, Chakrabarti B, Baron-Cohen S. Sex/gender differences and autism: setting the scene for future research. J Am Acad Child Adolesc Psychiatry. 2015;54:11–24.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Begeer S, Mandell D, Wijnker-Holmes B. Sex differences in the timing of identification among children and adults with autism spectrum disorders. J Autism Dev Disord. 2013;43:1151–6.

    Article  PubMed  Google Scholar 

  94. Giarelli E, Wiggins LD, Rice CE. Sex differences in the evaluation and diagnosis of autism spectrum disorders among children. Disabil Health J. 2010;3:107–16.

    Article  PubMed  Google Scholar 

  95. Lai MC, Lombardo MV, Pasco G, Ruigrok AN, Wheelwright SJ, Sadek SA, et al. A behavioral comparison of male and female adults with high functioning autism spectrum conditions. PLoS One. 2011;6(6):e20835. doi:10.1371/journal.pone.0020835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hofvander B, Delorme R, Chaste P. Psychiatric and psychosocial problems in adults with normal-intelligence autism spectrum disorders. BMC Psychiatry. 2009;9:35.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Lugnegård T, Hallerback MU, Gillberg C. Psychiatric comorbidity in young adults with a clinical diagnosis of Asperger syndrome. Res Dev Disabil. 2011;32:1910–7.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Special thanks to the subjects who were involved in this study. The authors also thank Gruppo Asperger onlus, Spazio Asperger onlus, CulturAutismo onlus, and Cooperativa Giuseppe Garibaldi for invaluable assistance, providing supports for subjects’ recruitment.

Funding

This work was supported by the Ministry of Education, Universities, and Research (MIUR) (Grant Number C26A1329AR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Leggio.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olivito, G., Clausi, S., Laghi, F. et al. Resting-State Functional Connectivity Changes Between Dentate Nucleus and Cortical Social Brain Regions in Autism Spectrum Disorders. Cerebellum 16, 283–292 (2017). https://doi.org/10.1007/s12311-016-0795-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-016-0795-8

Keywords

Navigation