Skip to main content
Log in

Cerebellar Contribution to Social Cognition

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Emotion attribution (EA) from faces is key to social cognition, and deficits in perception of emotions from faces underlie neuropsychiatric disorders in which cerebellar pathology is reported. Here, we test the hypothesis that the cerebellum contributes to social cognition through EA from faces. We examined 57 patients with cerebellar disorders and 57 healthy controls. Thirty-one patients had complex cerebrocerebellar disease (complex cerebrocerebellar disease group (CD)); 26 had disease isolated to cerebellum (isolated cerebellar disease group (ID)). EA was measured with the Reading the Mind in the Eyes test (RMET), and informants were administered a novel questionnaire, the Cerebellar Neuropsychiatric Rating Scale (CNRS). EA was impaired in all patients (CD p < 0.001, ID p < 0.001). When analyzed for valence categories, both CD and ID missed more positive and negative stimuli. Positive targets produced the highest deficit (CD p < 0.001, ID p = 0.004). EA impairments correlated with CNRS measures of deficient social skills (p < 0.05) and autism spectrum behaviors (p < 0.005). Patients had difficulties with emotion regulation (CD p < 0.001, ID p < 0.001), autism spectrum behaviors (CD p < 0.049, ID p < 0.001), and psychosis spectrum symptoms (CD p < 0.021, ID p < 0.002). ID informants endorsed deficient social skills (CD p < 0.746, ID p < 0.003) and impaired attention regulation (CD p < 0.144, ID p < 0.001). Within the psychosis spectrum domain, CD patients were worse than controls for lack of empathy (CD p = 0.05; ID p = 0.49). Thus, patients with cerebellar damage were impaired on an EA task associated with deficient social skills and autism spectrum behaviors and experienced psychosocial difficulties on the CNRS. This has relevance for ataxias, the cerebellar cognitive affective/Schmahmann syndrome, and neuropsychiatric disorders with cerebellar pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

CCAS:

Cerebellar cognitive affective syndrome

CD:

Complex cerebrocerebellar disease group

CNRS:

Cerebellar Neuropsychiatric Rating Scale

EA:

Emotion attribution

ID:

Isolated cerebellar disease group

RMET:

Reading the Mind in the Eyes test

SD:

Standard deviation

UCT:

Universal cerebellar transform

References

  1. Beer JS, Ochsner KN. Social cognition: a multi level analysis. Brain Res. 2006;1079:98–105.

    Article  CAS  PubMed  Google Scholar 

  2. Fiske ST, Taylor SE. Social cognition. New York: McGraw-Hill; 1991.

    Google Scholar 

  3. Baron-Cohen S, Leslie AM, Frith U. Does the autistic child have a “theory of mind”? Cognition. 1985;21:37–46.

    Article  CAS  PubMed  Google Scholar 

  4. Phillips ML, Drevets WC, Rauch SL, Lane R. Neurobiology of emotion perception I: the neural basis of normal emotion perception. Biol Psychiatry. 2003;54:504–14.

    Article  PubMed  Google Scholar 

  5. Brüne M. Social cognition and psychopathology in an evolutionary perspective. Current status and proposals for research. Psychopathology. 2001;34:85–94.

    Article  PubMed  Google Scholar 

  6. Frith CD, Friston KJ, Liddle PF, Frackowiak RS. PET imaging and cognition in schizophrenia. J R Soc Med. 1992;85:222–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Amodio DM, Frith CD. Meeting of minds: the medial frontal cortex and social cognition. Nat Rev Neurosci. 2006;7:268–77.

    Article  CAS  PubMed  Google Scholar 

  8. Beer JS, Mitchell JP, Ochsner KN. Special issue: multiple perspectives on the psychological and neural bases of social cognition. Brain Res. 2006;1079:1–3.

    Article  CAS  PubMed  Google Scholar 

  9. Rizzolatti G, Fogassi L, Gallese V. Mirrors of the mind. Sci Am. 2006;295:54–61.

    Article  PubMed  Google Scholar 

  10. Calder AJ, Lawrence AD, Young AW. Neuropsychology of fear and loathing. Nat Rev Neurosci. 2001;2:352–63.

    Article  CAS  PubMed  Google Scholar 

  11. Kipps CM, Duggins AJ, McCusker EA, Calder AJ. Disgust and happiness recognition correlate with anteroventral insula and amygdala volume respectively in preclinical Huntington’s disease. J Cogn Neurosci. 2007;19:1206–17.

    Article  CAS  PubMed  Google Scholar 

  12. Sprengelmeyer R, Rausch M, Eysel UT, Przuntek H. Neural structures associated with recognition of facial expressions of basic emotions. Proc Biol Sci. 1998;265:1927–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Johnstone T, van Reekum CM, Oakes TR, Davidson RJ. The voice of emotion: an FMRI study of neural responses to angry and happy vocal expressions. Soc Cogn Affect Neurosci. 2006;1:242–9.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Adolphs R. Processings of emotional and social information by the human amygdala. In: Gazzaniga MS, editor. The new cognitive neurosciences III. 3rd ed. Massachusetts: MIT Press; 2004. p. 1005–16.

    Google Scholar 

  15. Schmahmann JD. From movement to thought: anatomic substrates of the cerebellar contribution to cognitive processing. Hum Brain Mapp. 1996;4:174–98.

    Article  CAS  PubMed  Google Scholar 

  16. Schmahmann JD, Pandya DN. Anatomical investigation of projections to the basis pontis from posterior parietal association cortices in rhesus monkey. J Comp Neurol. 1989;289:53–73.

    Article  CAS  PubMed  Google Scholar 

  17. Schmahmann JD, Pandya DN. Anatomic organization of the basilar pontine projections from prefrontal cortices in rhesus monkey. J Neurosci. 1997;17:438–58.

    CAS  PubMed  Google Scholar 

  18. Schmahmann JD, Pandya DN (1997) The cerebrocerebellar system. In: Schmahmann JD, editor. The cerebellum and cognition. Int Rev Neurobiol 41:31–60

  19. Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32:413–34.

    Article  CAS  PubMed  Google Scholar 

  20. Schmahmann JD. The role of the cerebellum in affect and psychosis. J Neurolinguist. 2000;13:189–214.

    Article  Google Scholar 

  21. Schmahmann JD, Weilburg JB, Sherman JC. The neuropsychiatry of the cerebellum —insights from the clinic. Cerebellum. 2007;6:254–67.

    Article  PubMed  Google Scholar 

  22. Heath RG, Harper JW. Ascending projections of the cerebellar fastigial nucleus to the hippocampus, amygdala, and other temporal lobe sites: evoked potential and histological studies in monkeys and cats. Exp Neurol. 1974;45:268–87.

    Article  CAS  PubMed  Google Scholar 

  23. Snider RS, Maiti A, Snider SR. Cerebellar pathways to ventral midbrain and nigra. Exp Neurol. 1976;53:714–28.

    Article  CAS  PubMed  Google Scholar 

  24. Zanchetti A, Zoccolini A. Autonomic hypothalamic outbursts elicited by cerebellar stimulation. J Neurophysiol. 1954;17:475–83.

    CAS  PubMed  Google Scholar 

  25. Bobée S, Mariette E, Tremblay-Leveau H, Caston J. Effects of early midline cerebellar lesion on cognitive and emotional functions in the rat. Behav Brain Res. 2000;112:107–17.

    Article  PubMed  Google Scholar 

  26. Schmahmann JD. An emerging concept. The cerebellar contribution to higher function. Arch Neurol. 1991;48:1178–87.

    Article  CAS  PubMed  Google Scholar 

  27. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121:561–79.

    Article  PubMed  Google Scholar 

  28. Manto M, Mariën P. Schmahmann’s syndrome—identification of the third cornerstone of clinical ataxiology. Cerebellum. 2015;2:2.

    Article  Google Scholar 

  29. Levisohn L, Cronin-Golomb A, Schmahmann J. Neuropsychological consequences of cerebellar tumour resection in children: cerebellar cognitive affective syndrome in a paediatric population. Brain. 2000;123:1041–50.

    Article  PubMed  Google Scholar 

  30. Pollack IF. Posterior fossa syndrome. Int Rev Neurobiol. 1997;41:411–32.

    Article  CAS  PubMed  Google Scholar 

  31. Tavano A, Grasso R, Gagliardi C, Triulzi F, Bresolin N, Fabbro F, et al. Disorders of cognitive and affective development in cerebellar malformations. Brain. 2007;130:2646–60.

    Article  PubMed  Google Scholar 

  32. Heath RG, Dempesy CW, Fontana CJ, Myers WA. Cerebellar stimulation: effects on septal region, hippocampus, and amygdala of cats and rats. Biol Psychiatry. 1978;13:501–29.

    CAS  PubMed  Google Scholar 

  33. Van Overwalle F, Baetens K. Understanding others’ actions and goals by mirror and mentalizing systems: a meta-analysis. Neuroimage. 2009;48(3):564–84.

    Article  PubMed  Google Scholar 

  34. Van Overwalle F, Baetens K, Mariën P, Vandekerckhove M. Social cognition and the cerebellum: a meta-analysis of over 350 fMRI studies. Neuroimage. 2014;86:554–72.

    Article  PubMed  Google Scholar 

  35. Van Overwalle F, Baetens K, Mariën P, Vandekerckhove M. Cerebellar areas dedicated to social cognition? A comparison of meta-analytic and connectivity results. Soc Neurosci. 2015;10(4):337–44.

    PubMed  Google Scholar 

  36. Van Overwalle F, D’aes T, Mariën P (2015) Social cognition and the cerebellum: a meta-analytic connectivity analysis. Human Brain Mapping. Hum Brain Mapp [Epub ahead of print].

  37. Van Overwalle F, Mariën P. Functional connectivity between the cerebrum and cerebellum in social cognition: a multi-study analysis. Neuroimage. 2015;124:248–55.

    Article  PubMed  Google Scholar 

  38. Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106(5):2322–45.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Baribeau DA, Doyle-Thomas KA, Dupuis A, Iaboni A, Crosbie J, McGinn H, et al. Examining and comparing social perception abilities across childhood-onset neurodevelopmental disorders. J Am Acad Child Adolesc Psychiatry. 2015;54:479–86.

    Article  PubMed  Google Scholar 

  40. Baron-Cohen S, Wheelwright S, Hill J, Raste Y, Plumb I. The “Reading the Mind in the Eyes” Test revised version: a study with normal adults, and adults with Asperger syndrome or high-functioning autism. J Child Psychol Psychiatry. 2001;42:241–51.

    Article  CAS  PubMed  Google Scholar 

  41. Fatemi SH, Aldinger KA, Ashwood P, Bauman ML, Blaha CD, Blatt GJ. Consensus paper: pathological role of the cerebellum in autism. Cerebellum. 2012;11:777–807.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kohler CG, Turner TH, Bilker WB, Brensinger CM, Siegel SJ, Kanes SJ. Facial emotion recognition in schizophrenia: intensity effects and error pattern. Am J Psychiatr. 2003;160:1768–74.

    Article  PubMed  Google Scholar 

  43. Seidman LJ, Valera EM, Makris N. Structural brain imaging of attention-deficit/hyperactivity disorder. Biol Psychiatry. 2005;57:1263.

    Article  PubMed  Google Scholar 

  44. Tobe RH, Bansal R, Xu D, Hao X, Liu J, Sanchez J, et al. Cerebellar morphology in Tourette syndrome and obsessive-compulsive disorder. Ann Neurol. 2010;67:479–87.

    Article  PubMed  PubMed Central  Google Scholar 

  45. van den Heuvel OA, Remijnse PL, Mataix-Cols D, Vrenken H, Groenewegen HJ, Uylings HB. The major symptom dimensions of obsessive-compulsive disorder are mediated by partially distinct neural systems. Brain. 2009;4:853–68.

    Google Scholar 

  46. Nabeyama M, Nakagawa A, Yoshiura T, Nakao T, Nakatani E, Togao O, et al. Functional MRI study of brain activation alterations in patients with obsessive-compulsive disorder after symptom improvement. Psychiatry Res Neuroimaging. 2008;163:236–47.

    Article  PubMed  Google Scholar 

  47. Tolin DF, Kiehl KA, Worhunsky P, Book GA, Maltby N. An exploratory study of the neural mechanisms of decision making in compulsive hoarding. Psychol Med. 2009;39:325–36.

    Article  CAS  PubMed  Google Scholar 

  48. Kim JJ, Lee MC, Kim J, Kim IY, Kim SI, Han MH, et al. Grey matter abnormalities in obsessive-compulsive disorder—statistical parametric mapping of segmented magnetic resonance images. Br J Psychiatry. 2001;179:330–4.

    Article  CAS  PubMed  Google Scholar 

  49. Pujol J, Soriano-Mas C, Alonso P, Cardoner N, Menchon JM, Deus J, et al. Mapping structural brain alterations in obsessive-compulsive disorder. Arch Gen Psychiatry. 2004;61:720–30.

    Article  PubMed  Google Scholar 

  50. Blair J, Cipolotti L. Impaired social response reversal. A case of ‘acquired sociopathy’. Brain. 2000;123:1122–41.

    Article  PubMed  Google Scholar 

  51. Sokolovsky N, Cook A, Hunt H, Giunti P, Cipolotti L. A preliminary characterisation of cognition and social cognition in spinocerebellar ataxia types 2, 1, and 7. Behav Neurol. 2010;23:17–29.

    Article  CAS  PubMed  Google Scholar 

  52. Van Harskamp NJ, Rudge P, Cipolotti L. Cognitive and social impairments in patients with superficial siderosis. Brain. 2005;128:1082–92.

    Article  PubMed  Google Scholar 

  53. Garrard P, Martin NH, Giunti P, Cipolotti L. Cognitive and social cognitive functioning in spinocerebellar ataxia: a preliminary characterization. J Neurol. 2008;255:398–405.

    Article  CAS  PubMed  Google Scholar 

  54. Adamaszek M, D’Agata F, Kirkby KC, Trenner MU, Sehm B, Steele CJ, et al. Impairment of emotional facial expression and prosody discrimination due to ischemic cerebellar lesions. Cerebellum. 2014;13:338–45.

    Article  CAS  PubMed  Google Scholar 

  55. Bowers D, Blonder LX, Heiman KM. The role of the right hemisphere in emotional communication. Brain. 1991;114:1115–27.

    Article  PubMed  Google Scholar 

  56. D’Agata F, Caroppo P, Baudino B, Caglio M, Croce M, Bergui M, et al. The recognition of facial emotions in spinocerebellar ataxia patients. Cerebellum. 2011;10:600–10.

    Article  PubMed  Google Scholar 

  57. Tamietto M, Adenzato M, Geminiani G, de Gelder B. Fast recognition of social emotions takes the whole brain: interhemispheric cooperation in the absence of cerebral asymmetry. Neuropsychologia. 2007;45(4):836–43.

    Article  PubMed  Google Scholar 

  58. Golan O, Sinai-Gavrilov Y, Baron-Cohen S. The Cambridge Mindreading Face-Voice Battery for Children (CAM-C): complex emotion recognition in children with and without autism spectrum conditions. Mol Autism. 2015;6:22.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Baron-Cohen S. The extreme male brain theory of autism. Trends Cogn Sci. 2002;6:248–54.

    Article  PubMed  Google Scholar 

  60. Boraston Z, Blakemore SJ, Skuse D. Impaired sadness recognition is linked to social interaction deficit in autism. Neuropsychologia. 2007;45:1501.

    Article  PubMed  Google Scholar 

  61. Dapretto M, Davies MS, Pfeifer JH, Scott AA, Sigman M, Bookheimer SY, et al. Understanding emotions in others: mirror neuron dysfunction in children with autism spectrum disorders. Nat Neurosci. 2006;9:28–30.

    Article  CAS  PubMed  Google Scholar 

  62. Decety J, Jackson PL. The functional architecture of human empathy. Behav Cogn Neurosci Rev. 2004;3:71.

    Article  PubMed  Google Scholar 

  63. Klin A, Jones W, Schultz R, Volkmar F, Cohen D. Visual fixation patterns during viewing of naturalistic social situations as predictors of social competence in individuals with autism. Arch Gen Psychiatry. 2002;59:809–16.

    Article  PubMed  Google Scholar 

  64. Koeppen AH. Neuropathology of the inherited ataxias. In: Manto MU, Pandolfo M, editors. The cerebellum and its disorders. Cambridge: Cambridge University Press; 2002. p. 387–4.

  65. Manto M, Gruol DL, Schmahmann JD, Koibuchi N, Rossi F, editors. Handbook of the cerebellum and cerebellar disorders. New York: Springer; 2013.

    Google Scholar 

  66. Lin DJ, Hermann KL, Schmahmann JD. Multiple system atrophy of the cerebellar type: clinical state of the art. Mov Disord. 2014;29:294–304.

    Article  PubMed  Google Scholar 

  67. Seidel K, Siswanto S, Brunt ER, den Dunnen W, Korf HW, Rüb U. Brain pathology of spinocerebellar ataxias. Acta Neuropathol. 2012;124:1–21.

    Article  CAS  PubMed  Google Scholar 

  68. Harkness K, Sabbagh M, Jacobson Jrey N, Chen T. Enhanced accuracy of mental state decoding in dysphoric college students. Cognit Emot. 2010;19:999–1025.

    Article  Google Scholar 

  69. Cohen J. Statistical power analysis for the behavioral sciences. Hillsdale: Lawrence Erlbaum Associates; 1988.

    Google Scholar 

  70. Dunlop WP, Cortina JM, Vaslow JB, Burke MJ. Meta-analysis of experiments with matched groups or repeated measures designs. Psychol Methods. 1996;1:170–7.

    Article  Google Scholar 

  71. R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria; 2014. URL: http://www.R-project.org/.

  72. Bates D, Maechler M, Bolker B and Walker S. _lme4: linear mixed-effects models using Eigen and S4_. R package version 2014; 1. 1–7, 2014. URL: http://CRAN.R-project.org/package=lme4.

  73. Kuznetsova A, Brockhoff P, Christensen HB. lmerTest: tests for random and fixed effects for linear mixed effect models. R package version 2014; 2.0-11. URL: http://CRAN.R-project.org/package=lmerTest.

  74. Hothorn T, Bretz F, Westfall P. Simultaneous inference in general parametric models. Biom J. 2008;50:346–63.

    Article  PubMed  Google Scholar 

  75. Moulton EA, Elman I, Pendse G, Schmahmann J, Becerra L, Borsook D. Aversion-related circuitry in the cerebellum: responses to noxious heat and unpleasant images. J Neurosci. 2011;31:3795–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Baumann O, Mattingley JB. Functional topography of primary emotion processing in the human cerebellum. Neuroimage. 2012;61:805–11.

    Article  PubMed  Google Scholar 

  77. Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage. 2009;44:489–501.

    Article  PubMed  Google Scholar 

  78. Smith ML, Cottrell GW, Gosselin F, Schyns PG. Transmitting and decoding facial expressions. Psychol Sci. 2005;16:184–9.

    Article  PubMed  Google Scholar 

  79. Evers K, Kerkhof I, Steyaert J, Noens I, Wagemans J. No differences in emotion recognition strategies in children with autism spectrum disorder: evidence from hybrid faces. Autism Res Treat. 2014; 2014:345878.

  80. Smith NV, Hermlein B, Tsimpli IM. Dissociation of social affect and theory of mind in a case of Asperger’s syndrome. UCL Work Pap Linguist. 2003;15:357–77.

    Google Scholar 

  81. Calder AJ, Ewbank M, Passamonti L. Personality influences the neural responses to viewing facial expressions of emotion. Philos Trans R Soc Lond B Biol Sci. 2011;366:1684–701.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Davis M, Whalen PJ. The amygdala: vigilance and emotion. Mol Psychiatry. 2001;6:13–34.

    Article  CAS  PubMed  Google Scholar 

  83. Kawashima R, Sugiura M, Kato T, Nakamura A, Hatano K, Ito K, et al. The human amygdala plays an important role in gaze monitoring. A PET study. Brain. 1999;4:779–83.

    Article  Google Scholar 

  84. Adolphs R, Tranel D, Damasio H, Damasio A. Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature. 1994;15:669–72.

    Article  Google Scholar 

  85. Brossard-Racine M, du Plessis AJ, Limperopoulos C. Developmental cerebellar cognitive affective syndrome in ex-preterm survivors following cerebellar injury. Cerebellum. 2015;14:151–64.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Hoche F, Frankenberg E, Rambow J, Theis M, Harding JA, Qirshi M, et al. Cognitive phenotype in ataxia-telangiectasia. Pediatr Neurol. 2014;51:297–310.

    Article  PubMed  Google Scholar 

  87. Lombardo MV, Barnes JL, Wheelwright SJ, Baron-Cohen S. Self-referential cognition and empathy in autism. PLoS One. 2007;2:e883.

  88. Holt RJ, Chura LR, Lai MC, Suckling J, von dem Hagen E, Calder AJ, et al. ‘Reading the Mind in the Eyes’: an fMRI study of adolescents with autism and their siblings. Psychol Med. 2014;44:3215–27.

    Article  CAS  PubMed  Google Scholar 

  89. Loukusa S, Mäkinen L, Kuusikko-Gauffin S, Ebeling H, Moilanen I. Theory of mind and emotion recognition skills in children with specific language impairment, autism spectrum disorder and typical development: group differences and connection to knowledge of grammatical morphology, word-finding abilities and verbal working memory. Int J Lang Commun Disord. 2014;49:498–507.

    Article  PubMed  Google Scholar 

  90. Eddy CM, Sira Mahalingappa S, Rickards HE. Is Huntington’s disease associated with deficits in theory of mind? Acta Neurol Scand. 2012;126:376–83.

    Article  CAS  PubMed  Google Scholar 

  91. Marko MK, Crocetti D, Hulst T, Donchin O, Shadmehr R, Mostofsky SH. Behavioural and neural basis of anomalous motor learning in children with autism. Brain. 2015;138:784–97.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Hirjak D, Wolf RC, Kubera KM, Stieltjes B, Maier-Hein KH, Thomann PA. Neurological soft signs in recent-onset schizophrenia: focus on the cerebellum. Prog Neuropsychopharmacol Biol Psychiatry. 2015;60:18–25.

    Article  PubMed  Google Scholar 

  93. Rüb U, Hoche F, Brunt ER, Heinsen H, Seidel K, Del Turco D, et al. Degeneration of the cerebellum in Huntington’s disease (HD): possible relevance for the clinical picture and potential gateway to pathological mechanisms of the disease process. Brain Pathol. 2013;23:165–77.

    Article  PubMed  Google Scholar 

  94. Gur RC, Erwin RJ, Gur RE, Zwil AS, Heimberg C, Kraemer HC. Facial emotion discrimination: II. Behavioral findings in depression. Psychiatry Res. 1992;42:241–51.

    Article  CAS  PubMed  Google Scholar 

  95. Doyon J, Penhune V, Ungerleider LG. Distinct contribution of the cortico-striatal and cortico-cerebellar systems to motor skill learning. Neuropsychologia. 2003;41:252–62.

    Article  PubMed  Google Scholar 

  96. Knutson KM, Mah L, Manly CF, Grafman J. Neural correlates of automatic beliefs about gender and race. Hum Brain Mapp. 2007;28:915–30.

    Article  PubMed  Google Scholar 

  97. Schmahmann JD. The role of the cerebellum in cognition and emotion: personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychol Rev. 2010;20:236–60.

    Article  PubMed  Google Scholar 

  98. Byom LJ, Mutlu B. Theory of mind: mechanisms, methods, and new directions. Front Hum Neurosci. 2013;7:413.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Haxby JV, Hoffman EA, Gobbini MI. The distributed human neural system for face perception. Trends Cogn Sci. 2000;4:223–33.

    Article  PubMed  Google Scholar 

  100. Siegal M, Varley R. Neural systems involved in “theory of mind”. Nat Rev Neurosci. 2002;3:436–71.

    Google Scholar 

  101. Stoodley CJ, Desmond JE, Schmahmann JD. Functional topography of the human cerebellum revealed by functional neuroimaging studies. In: Manto M, Gruol DL, Schmahmann JD, Koibuchi N, Rossi F, editors. Handbook of the cerebellum and cerebellar disorders. New York: Springer; 2013. p. 735–65.

    Chapter  Google Scholar 

  102. Schmahmann JD. The cerebrocerebellar system: anatomic substrates of the cerebellar contribution to cognition and emotion. Int Rev Psychiatr. 2001;13:247–60.

    Article  Google Scholar 

Download references

Acknowledgments

The contributions to this project of Jessica A. Harding, Jason MacMore, and Bruna Olson Bressane are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Franziska Hoche or Jeremy D. Schmahmann.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interests.

Funding

This work was supported in part by the National Ataxia Foundation, the Cerebellar Research Consortium for the Spinocerebellar Ataxias (RC1 NS068897-02), and the Birmingham and MINDlink Foundations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoche, F., Guell, X., Sherman, J.C. et al. Cerebellar Contribution to Social Cognition. Cerebellum 15, 732–743 (2016). https://doi.org/10.1007/s12311-015-0746-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-015-0746-9

Keywords

Navigation