Skip to main content

Advertisement

Log in

Cognition in Friedreich Ataxia

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Friedreich ataxia (FRDA) is the most frequent of the inherited ataxias. However, very few studies have examined the cognitive status of patients with genetically defined FRDA. Our aim was to study cognitive performance of FRDA patients taking into account the motor problems characteristic of this clinical population. Thirty-six FRDA patients were administered a comprehensive neuropsychological battery measuring multiple domains: processing speed, attention, working memory, executive functions, verbal and visual memory, visuoperceptive and visuospatial skills, visuoconstructive functions, and language. Thirty-one gender, age, years of education, and estimated IQ-matched healthy participants served as control subjects. All participants were native Spanish speakers. Patients showed decreased motor and mental speed, problems in conceptual thinking, a diminished verbal fluency, deficits in acquisition of verbal information and use of semantic strategies in retrieval, visuoperceptive and visuoconstructive problems, and poor action naming. Scores on the depression inventory were significantly higher in patients than controls, but depression did not account for group differences in cognitive performance. The observed pattern of neuropsychological impairment is indicative of executive problems and parieto-temporal dysfunction. Neuropathological and neuroimaging studies with FRDA patients have reported only mild anomalies in cerebral hemispheres. Thus, cognitive impairment in FRDA is probably caused by the interruption of the cerebro-cerebellar circuits that have been proposed as the anatomical substrate of the cerebellar involvement in cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Schmahmann JD. An emerging concept: the cerebellar contribution to higher function. Arch Neurol. 1991;48(11):1178–87.

    Article  PubMed  CAS  Google Scholar 

  2. Leiner HC, Leiner AL, Dow RS. Cognitive and language functions of the human cerebellum. Trends Neurosci. 1993;16(11):444–7.

    Article  PubMed  CAS  Google Scholar 

  3. Wollmann T, Barroso J, Monton FI, Nieto A. Neuropsychological test performance of patients with Friedreich’s ataxia. J Clin Exp Neuropsychol. 2002;24(5):677–86.

    Article  PubMed  Google Scholar 

  4. Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Ann Rev Neurosci. 2009;32:413–34.

    Article  PubMed  CAS  Google Scholar 

  5. Timmann D, Daum I. Cerebellar contributions to cognitive functions: a progress report after two decades of research. Cerebellum. 2007;6(3):159–62.

    Article  PubMed  Google Scholar 

  6. Bellebaum C, Daum I. Cerebellar involvement in executive control. Cerebellum. 2007;6(3):184–92.

    Article  PubMed  Google Scholar 

  7. Pandolfo M. Friedreich ataxia: detection of GAA repeat expansions and frataxin point mutations. Methods Mol Med. 2006;126:197–216.

    PubMed  CAS  Google Scholar 

  8. Dürr A, Cossee M, Agid Y, Campuzano V, Mignard C, Penet C, et al. Clinical and genetic abnormalities in patients with Friedreich’s ataxia. N Engl J Med. 1996;335(16):1169–75.

    Article  PubMed  Google Scholar 

  9. Pandolfo M. Frataxin deficiency and mitochondrial dysfunction. Mitochondrion. 2002;2(1–2):87–93.

    Article  PubMed  CAS  Google Scholar 

  10. Waldvogel D, Van Gelderen P, Hallett M. Increased iron in the dentate nucleus of patients with Friedreich’s ataxia. Ann Neurol. 1999;46(1):123–5.

    Article  PubMed  CAS  Google Scholar 

  11. Bidichandani SI, Ashizawa T, Patel PI. The GAA triplet-repeat expansion in Friedreich ataxia interferes with transcription and may be associated with an unusual DNA structure. Am J Hum Genet. 1998;62(1):111–21.

    Article  PubMed  CAS  Google Scholar 

  12. Campuzano V, Montermini L, Molto MD, Pianese L, Cossee M, Cavalcanti F, et al. Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science. 1996;271(5254):1423–7.

    Article  PubMed  CAS  Google Scholar 

  13. Berciano J, Infante J, Mateo I. Ataxias y paraplejías hereditarias: revisión clinicogenética. Neurologia. 2002;17(1):40–51.

    PubMed  CAS  Google Scholar 

  14. Wollmann T, Nieto-Barco A, Monton-Alvarez F, Barroso-Ribal J. Friedreich’s ataxia: analysis of magnetic resonance imaging parameters and their correlates with cognitive and motor slowing. Rev Neurol. 2004;38(3):217–22.

    PubMed  CAS  Google Scholar 

  15. Habas C. Functional imaging of the deep cerebellar nuclei: a review. Cerebellum. 2010;9(1):22–8.

    Article  PubMed  Google Scholar 

  16. Fehrenbach R, Wallesch C. Neuropsychological findings in Friedreich’s ataxia. Arch Neurol. 1984;41:306–8.

    Article  PubMed  CAS  Google Scholar 

  17. Hart R, Kwentus J, Leshner R. Information processing speed in Friedreich’s ataxia. Ann Neurol. 1985;17(6):612–4.

    Article  PubMed  CAS  Google Scholar 

  18. Botez-Marquard T, Botez MI. Cognitive behavior in heredodegenerative ataxias. Eur Neurol. 1993;33(5):351–7.

    Article  PubMed  CAS  Google Scholar 

  19. White M, Lalonde R, Botez-Marquard T. Neuropsychologic and neuropsychiatric characteristics of patients with Freidreich’s ataxia. Acta Neurol Scand. 2000;102(4):222–6.

    Article  PubMed  CAS  Google Scholar 

  20. De Nobrega ER, Nieto A, Barroso JE, Monton F. Differential impairment in semantic, phonemic, and action fluency performance in Friedreich’s ataxia: possible evidence of prefrontal dysfunction. J Int Neuropsychol Soc. 2007;13(06):944–52.

    PubMed  Google Scholar 

  21. Corben LA, Delatycki MB, Bradshaw JL, Horne MK, Fahey MC, Churchyard AJ, et al. Impairment in motor reprogramming in Friedreich ataxia reflecting possible cerebellar dysfunction. J Neurol. 2010;257(5):782–91.

    Article  PubMed  Google Scholar 

  22. Klopper F, Delatycki MB, Corben LA, Bradshaw JL, Rance G, Georgiou-Karistianis N. The test of everyday attention reveals significant sustained volitional attention and working memory deficits in friedreich ataxia. J Int Neuropsychol Soc. 2011;17(1):196–200.

    Article  PubMed  Google Scholar 

  23. Robertson IH, Ward A, Ridgeway V, Nimmo-Smith I. The test of everyday attention: TEA. Bury St Edmunds: Thames Valley Test Co.; 1994.

    Google Scholar 

  24. Mantovan M, Martinuzzi A, Squarzanti F, Bolla A, Silvestri I, Liessi G, et al. Exploring mental status in Friedreich’s ataxia: a combined neuropsychological, behavioral and neuroimaging study. Eur J Neurol. 2006;13(8):827–35.

    Article  PubMed  CAS  Google Scholar 

  25. Harding A. Friedreich’s ataxia: a clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intrafamilial clustering of clinical features. Brain. 1981;104(3):589–620.

    Article  PubMed  CAS  Google Scholar 

  26. Van Swieten J, Koudstaal P, Visser M, Schouten H, Van Gijn J. Interobserver agreement for the assessment of handicap in stroke patients. Stroke. 1988;19(5):604–7.

    Article  PubMed  Google Scholar 

  27. Nobile–Orazio E, Baldini L, Barbieri S. Treatment of patients with neuropathy and anti–MAG IgM M–proteins. Ann Neurol. 1988;24(1):93–7.

    Article  PubMed  Google Scholar 

  28. Appollonio I, Grafman J, Schwartz V. Memory in patients with cerebellar degeneration. 1993;43:1536–44.

    CAS  Google Scholar 

  29. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98.

    Article  PubMed  CAS  Google Scholar 

  30. Wechsler D. Wechsler adult intelligence scale-administration and scoring manual. 3rd ed. San Antonio: Psychological Corporation; 1997.

    Google Scholar 

  31. Beck A, Ward C, Mendelson M, et al. An inventory for measuring depression. Arch Gen Psychiatry. 1961;4:561–71.

    Article  PubMed  CAS  Google Scholar 

  32. Schuhfried G. Vienna reaction unit. Manual. Vienna: Schuhfried Ges.m.b.H; 1992.

    Google Scholar 

  33. Erlenmeyer-Kimling L, Cornblatt BA. A summary of attentional findings in the New York high-risk project. J Psychiatr Res. 1992;26(4):405–26.

    Article  PubMed  CAS  Google Scholar 

  34. Golden C. Stroop color and word test: a manual for clinical and experimental uses. Chicago: Stoelting Company; 1978.

    Google Scholar 

  35. Wechsler D. Wechsler memory scale—third edition. Technical manual. San Antonio: Psychological Corporation; 1997.

    Google Scholar 

  36. Heaton R. A manual for the Wisconsin card sorting test. Odessa: Psychological Assessment Resources; 1981.

    Google Scholar 

  37. Benton A, Hamsher K, Sivan A. Multilingual aphasia examination. 2nd ed. Iowa: University of Iowa; 1989.

    Google Scholar 

  38. Piatt AL, Fields JA, Paolo AM, Tröster AI. Action (verb naming) fluency as an executive function measure: convergent and divergent evidence of validity. Neuropsychologia. 1999;37(13):1499–503.

    Article  PubMed  CAS  Google Scholar 

  39. Delis D, Kramer J, Kaplan E, Ober B. California verbal learning test: adult version manual. San Antonio: Psychological Corporation; 1987.

    Google Scholar 

  40. Benedet MJ, Alejandre MA. TAVEC: test de Aprendizaje Verbal España-Complutense. Manual. Madrid: TEA ediciones; 1998.

    Google Scholar 

  41. Rao SM, Leo GJ, Bernardin L, Unverzagt F. Cognitive dysfunction in multiple sclerosis: I. Frequency, patterns, and prediction. Neurology. 1991;41(5):685–91.

    Article  PubMed  CAS  Google Scholar 

  42. Benton A, Hamsher S, Varney O, Spreen N. Contributions to neuropsychological assessment: a clinical manual. New York: Oxford University Press; 1983.

    Google Scholar 

  43. Quasha WH, Likert R. The revised Minnesota paper form board test. J Educ Psychol. 1937;28(3):197–204.

    Article  Google Scholar 

  44. Alameda J, Cuetos F. Diccionario de Frecuencia de las unidades lingüísticas del catellano (Vols. I y II). Oviedo: Servicio de Publicaciones de la Universidad de Oviedo; 1995.

    Google Scholar 

  45. Cuetos F, Alija M. Normative data and naming times for action pictures. Behav Res Methods Instrum Comput. 2003;35(1):168–77.

    Article  PubMed  Google Scholar 

  46. Cuetos F, Ellis A, Alvarez B. Naming times for the Snodgrass and Vanderwart pictures in Spanish. Behav Res Methods Instrum Comput. 1999;31(4):650–8.

    Article  PubMed  CAS  Google Scholar 

  47. IPNP. The International Picture Naming Project [internet]. 2011. Available at: http://crl.ucsd.edu/∼aszekely/ipnp/1database.html. Accessed 30 June 2011.

  48. Druks J, Masterson J. An object and action naming battery. Hove: Psychology Press; 1999.

    Google Scholar 

  49. Schneider W, Eschman A, Zuccolotto A. E-Prime user’s guide. Pittsburgh: Psychology Software Tools Inc.; 2002.

    Google Scholar 

  50. Camacho J. Análisis multivariado con spss/pc+. Barcelona: EUB; 1995.

    Google Scholar 

  51. Lezak M, Howieson D, Loring D. Neuropsychological assessment. 4th ed. New York: Oxford University Press; 2004.

    Google Scholar 

  52. Posner MI, Petersen SE. The attention system of the human brain. Ann Rev Neurosci. 1990;13:25–42.

    Article  PubMed  CAS  Google Scholar 

  53. Chan RCK, Lai M, Robertson IH. Latent structure of the Test of Everyday Attention in a non-clinical Chinese sample. Arch Clin Neuropsychol. 2006;21(5):477–85.

    Article  PubMed  Google Scholar 

  54. Bate AJ, Mathias JL, Crawford JR. Performance on the Test of Everyday Attention and standard tests of attention following severe traumatic brain injury. Clin Neuropsychol. 2001;15(3):405–22.

    Article  PubMed  CAS  Google Scholar 

  55. Robertson IH, Ward T, Ridgeway V, Nimmo-Smith I. The structure of normal human attention: the test of everyday attention. J Int Neuropsychol Soc. 1996;2(06):525–34.

    Article  PubMed  CAS  Google Scholar 

  56. Chan R, Lee T, Hoosain R. Application of the test of everday attention in Hong Kong Chinese: a factor structure study. Arch Clin Neuropsychol. 1999;14(8):715–6.

    Google Scholar 

  57. Damasio AR, Tranel D. Nouns and verbs are retrieved with differently distributed neural systems. Proc Natl Acad Sci USA. 1993;90(11):4957–60.

    Article  PubMed  CAS  Google Scholar 

  58. Daniele A, Giustolisi L, Silveri MC, Colosimo C, Gainotti G. Evidence for a possible neuroanatomical basis for lexical processing of nouns and verbs. Neuropsychologia. 1994;32(11):1325–41.

    Article  PubMed  CAS  Google Scholar 

  59. Perani D, Cappa SF, Schnur T, Tettamanti M, Collina S, Rosa MM, et al. The neural correlates of verb and noun processing. A PET study. Brain J Neurol. 1999;122:12337–44.

    Article  Google Scholar 

  60. Schmahmann JD. The role of the cerebellum in cognition and emotion: personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychol Rev. 2010;20(3):236–60.

    Article  PubMed  Google Scholar 

  61. Schmahmann JD, Pandya DN. Prefrontal cortex projections to the basilar pons in rhesus monkey: implications for the cerebellar contribution to higher function. Neurosci Lett. 1995;199(3):175–8.

    Article  PubMed  CAS  Google Scholar 

  62. Allen G, McColl R, Barnard H, Ringe WK, Fleckenstein J, Cullum CM. Magnetic resonance imaging of cerebellar-prefrontal and cerebellar-parietal functional connectivity. Neuroimage. 2005;28(1):39–48.

    Article  PubMed  Google Scholar 

  63. Middleton FA, Strick PL. Dentate output channels: motor and cognitive components. Prog Brain Res. 1997;114:553–66.

    Article  PubMed  CAS  Google Scholar 

  64. Clower DM, West RA, Lynch JC, Strick PL. The inferior parietal lobule is the target of output from the superior colliculus, hippocampus, and cerebellum. J Neurosci. 2001;21(16):6283–91.

    PubMed  CAS  Google Scholar 

  65. Prevosto V, Graf W, Ugolini G. Cerebellar inputs to intraparietal cortex areas LIP and MIP: functional frameworks for adaptive control of eye movements, reaching, and arm/eye/head movement coordination. Cereb Cortex. 2010;20(1):214–28.

    Article  PubMed  Google Scholar 

  66. Oppenheimer D. Brain lesions in Friedreich’s ataxia. Can J Neurol Sci Le journal canadien des sciences neurologiques. 1979;6(2):173–6.

    CAS  Google Scholar 

  67. Oppenheimer D, Esiri M. Diseases of the basal ganglia, cerebellum and motor neurons. In: Duchen J, Adams L, editors. Greenfield’s neuropathology. London: Edward Arnold; 1976. p. 608–51.

    Google Scholar 

  68. Lamarche J, Lemieux B, Lieu H. The neuropathology of “typical” Friedreich’s ataxia in Quebec. Can J Neurol Sci Le J Can Sci Neurol. 1984;11(4 Suppl):592–600.

    CAS  Google Scholar 

  69. França MC, D’Abreu A, Yasuda CL, Bonadia LC, Santos da Silva M, Nucci A, et al. A combined voxel-based morphometry and 1 H-MRS study in patients with Friedreich’s ataxia. J Neurol. 2009;256(7):1114–20.

    Article  PubMed  Google Scholar 

  70. Della Nave R, Ginestroni A, Tessa C, Salvatore E, Bartolomei I, Salvi F, et al. Brain white matter tracts degeneration in Friedreich ataxia. An in vivo MRI study using tract-based spatial statistics and voxel-based morphometry. Neuroimage. 2008;40(1):19–25.

    Article  PubMed  Google Scholar 

  71. Della Nave R, Ginestroni A, Giannelli M, Tessa C, Salvatore E, Salvi F, et al. Brain structural damage in Friedreich’s ataxia. J Neurol Neurosurg Psychiatry. 2008;79(1):82–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Berciano (Hospital Marques de Valdecillas, Santander) and Dr. Arpa (Hospital La Paz, Madrid) for providing access to patients and for their helpful assistance. They also thank Margaret Guillon for linguistic review of the manuscript. This research has been partially supported by a research grant from Ministerio de Ciencia e Innovacion (PSI2011-24665) and Proyecto Estructurante Neurocog, financed by the ACIISI and cofinanced by FEDER funds and the University of La Laguna.

Conflict of Interest

The authors declare that they have no competing personal or financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonieta Nieto.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

ESM 1

(DOC 77 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nieto, A., Correia, R., de Nóbrega, E. et al. Cognition in Friedreich Ataxia. Cerebellum 11, 834–844 (2012). https://doi.org/10.1007/s12311-012-0363-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-012-0363-9

Keywords

Navigation