Skip to main content
Log in

Ocular Motor Fixation Deficits in Friedreich Ataxia

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Friedreich ataxia (FRDA) is the most common genetic cause of ataxia with a prevalence of approximately 1 in 29,000. Ocular motor abnormalities are common in FRDA and include fixation instability, saccadic dysmetria, and vestibular dysfunction. It has not yet been determined whether aspects of spatial attention, which are closely coupled to eye movements, are similarly compromised in FRDA. This study examined attentional engagement and disengagement of eye movements in FRDA using a gap overlap task. Thirteen individuals with genetically confirmed FRDA and 12 age-matched unaffected controls participated in the experiment. The gap overlap paradigm was used to examine the effect of early (gap condition), simultaneous (null condition), or late (overlap condition) removal of a central fixation on saccadic latency to a peripheral target stimulus. Although the FRDA group showed a larger gap effect (i.e., difference in saccadic latencies between the overlap and gap condition), these participants demonstrated a greater difference in latencies in the overlap relative to the null condition, suggestive of deficits within the disengagement process of attentional orienting. We propose a role for the cerebellum in these deficits in the disengagement of spatial attention based on evidence of cerebellar connectivity with regions involved in exogenous shifts of attention. The significant correlations between saccadic latency and disease severity as measured by the Friedreich Ataxia Rating Scale further support the proposal that saccadic latency might be useful as a surrogate marker of disease severity and progression in future clinical trials in FRDA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Delatycki M, Williamson R, Forrest S. Friedreich ataxia: an overview. J Med Genet. 2000;37:1–8.

    Article  CAS  PubMed  Google Scholar 

  2. Voncken M, Ionnou P, Delatycki M. Friedreich ataxia: update on pathogenesis and possible therapies. Neurogenetics. 2004;5:1–8.

    Article  PubMed  Google Scholar 

  3. Campuzano V, Montermini L, Moltò MD, Pianese L, Cossée M, Cavalcanti F, et al. Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science. 1996;271:1374–5.

    Article  Google Scholar 

  4. Lynch DR, Farmer JM, Balcer LJ, Wilson RB. Friedreich ataxia: effects of genetic understanding on clinical evaluation and therapy. Arch Neurol. 2002;59(5):743–7.

    Article  PubMed  Google Scholar 

  5. Pandolfo M. Friedreich ataxia. Semin Pediatr Neurol. 2003;10:163–72.

    Article  PubMed  Google Scholar 

  6. Della Nave R, Ginestroni A, Giannelli M, Tessa C, Salvatore E, Salvi F, et al. Brain structural damage in Friedreich's ataxia. J Neurol Neurosurg Psychiatry. 2008;79(1):82–5.

    Article  CAS  PubMed  Google Scholar 

  7. Delatycki MB. Evaluating the progression of Friedreich ataxia and its treatment. J Neurol. 2009;256 Suppl 1:36–41.

    Article  PubMed  Google Scholar 

  8. Furman J, Perlman S, Baloh R. Eye movements in Friedreich's ataxia. Arch Neurol. 1983;40:434–6.

    Google Scholar 

  9. Klockgether T, Zuhlke C, Schulz JB, Burk K, Fetter M, Dittmann H, et al. Friedreich's ataxia with retained tendon reflexes: molecular genetics, clinical neurophysiology, and magnetic resonance imaging. Neurology. 1996;46:118–21.

    CAS  PubMed  Google Scholar 

  10. Spieker S, Schulz JB, Petersen D, Fetter M, Klockgether T, Dichgans J. Fixation instability and oculomotor abnormalities in Friedreich's ataxia. J Neurol. 1995;242:517–21.

    Article  CAS  PubMed  Google Scholar 

  11. Fahey MC, Cremer PD, Aw ST, Millist L, Todd MJ, White OB, et al. Vestibular, saccadic and fixation abnormalities in genetically confirmed Friedreich ataxia. Brain. 2008;131(Pt 4):1035–45.

    Article  PubMed  Google Scholar 

  12. Corben LA, Georgiou-Karistianis N, Fahey M, Storey E, Churchyard A, Horne M, et al. Towards an understanding of cognitive function in Friedreich Ataxia. Brain Res Bull. 2006;70(3):197–202.

    Article  PubMed  Google Scholar 

  13. Fielding J, Corben L, Cremer P, Millist L, White O, Delatycki M. Disruption to higher order processes in Friedreich ataxia. Neuropsychologia. 2010;48(1):235–42.

    Article  PubMed  Google Scholar 

  14. Botez-Marquard T, Botez M. Cognitive behavior in heredodegenerative ataxias. Eur Neurol. 1993;33:351–7.

    Article  CAS  PubMed  Google Scholar 

  15. Botez-Marquard T, Botez M. Olivopontocerebellar atrophy and Friedreich's ataxia: neuropsychological consequences of bilateral versus unilateral cerebellar lesions. Int Rev Neurobiol. 1997;41:387–410.

    Article  CAS  PubMed  Google Scholar 

  16. Hart R, Henry G, Kwentus J, Leshner R. Information processing speed of children with Friedreich’s ataxia. Dev Med Child Neurol. 1986;28:310–3.

    Article  CAS  PubMed  Google Scholar 

  17. Hart R, Kwentus J, Leshner R, Frazier R. Information processing speed in Friedreich’s ataxia. Ann Neurol. 1985;17:612–4.

    Article  CAS  PubMed  Google Scholar 

  18. White, Lalonde R, Botez-Marquard T. Neuropsychologic and neuropsychiatric characteristics of patients with Friedreich's ataxia. J Clin Exp Neuropsychol. 2000;24:677–86.

    Google Scholar 

  19. Wollmann T, Barroso J, Monton F, Nieto A. Neuropsychological test performance of patients with Friedreich's ataxia. J Clin Exp Neuropsychol. 2002;24:677–86.

    Article  PubMed  Google Scholar 

  20. Mantovan M, Martinuzzi A, Squarzanti F, Bolla A, Silvestri I, Liessi G, et al. Exploring mental status in Friedreich's ataxia: a combined neuropsychological, behavioral and neuroimaging study. Eur J Neurol. 2006;13:827–35.

    Article  CAS  PubMed  Google Scholar 

  21. Corben LA, Delatycki MB, Bradshaw JL, Horne MK, Fahey MC, Churchyard AC, et al. Impairment in motor reprogramming in Friedreich ataxia reflecting possible cerebellar dysfunction. J Neurol. 2009. doi:10.1007/s00415-009-5410-1.

    Google Scholar 

  22. Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32:413–34.

    Article  CAS  PubMed  Google Scholar 

  23. Baillieux H, De Smet H, Paquier F, De Deyn P, Marien P. Cerebellar neurocognition: insights into the bottom of the brain. Clin Neurol Neurosurg. 2008;110:763–73.

    Article  PubMed  Google Scholar 

  24. Botez-Marquard T, Bard C, Leveille J, Botez M. A severe frontal-parietal lobe syndrome following cerebellar damage. Eur J Neurol. 2001;8:347–53.

    Article  CAS  PubMed  Google Scholar 

  25. Grafman J, Litvan I, Massaquoi SG, Stewart M, Sirigu A, Hallet M. Cognitive planning deficit in patients with cerebellar atrophy. Neurology. 1992;42:1493–6.

    CAS  PubMed  Google Scholar 

  26. Schmahmann J. An emerging concept. The cerebellar contribution to higher function. Arch Neurol. 1991;48:1178–87.

    CAS  PubMed  Google Scholar 

  27. Schmahmann J, Pandya D. Prefrontal cortex projections to the basilar pons in rhesus monkey: implications for the cerebellar contribution to higher function. Neurosci Lett. 1995;199:175–8.

    Article  CAS  PubMed  Google Scholar 

  28. Schmahmann J, Pandya D. The cerebrocerebellar system. Int Rev Neurobiol. 1997;41:31–60.

    Article  CAS  PubMed  Google Scholar 

  29. Schmahmann J, Sherman J. The cerebellar cognitive affective syndrome. Brain. 1998;121:561–79.

    Article  PubMed  Google Scholar 

  30. Akshoomoff NA, Courchesne E. A new role for the cerebellum in cognitive operations. Behav Neurosci. 1992;106(5):731–8.

    Article  CAS  PubMed  Google Scholar 

  31. Courchesne E, Townsend J, Akshoomoff NA, Saitoh O, Yeung-Courchesne R, Lincoln AJ, et al. Impairment in shifting attention in autistic and cerebellar patients. Behav Neurosci. 1994;108(5):848–65.

    Article  CAS  PubMed  Google Scholar 

  32. Prevosto V, Graf W, Ugolini G. Cerebellar inputs to intraparietal cortex areas LIP and MIP: functional frameworks for adaptive control of eye movements, reaching, and arm/eye/head movement coordination. Cereb Cortex. 2010;20(1):214–28.

    Article  PubMed  Google Scholar 

  33. May PJ, Hartwich-Young R, Nelson J, Porter JD. Cerebellotectal pathways in the macaque: implications for collicular generation of saccades. Neuroscience. 1990;36:305–24.

    Article  CAS  PubMed  Google Scholar 

  34. Kustov AA, Robinson DL. Shared neural control of attentional shifts and eye movements. Nature. 1996;384(6604):74–7.

    Article  CAS  PubMed  Google Scholar 

  35. Munoz DP, Fecteau JH. Vying for dominance: dynamic interactions control visual fixation and saccadic initiation in the superior colliculus. Prog Brain Res. 2002;140:3–19.

    Article  PubMed  Google Scholar 

  36. Fischer B, Weber H. Express saccades and visual attention. Behav Brain Sci. 1993;16:553–610.

    Article  Google Scholar 

  37. Aw ST, Haslwanter T, Halmagyi GM, Curthoys IS, Yavor RA, Todd MJ. Three-dimensional vector analysis of the human vestibulo-ocular reflex in response to high-acceleration head rotations. I. Responses in normal subjects. J Neurophysiol. 1996;76:4009–20.

    CAS  PubMed  Google Scholar 

  38. Cremer PD, Halmagyi GM, Aw ST, Curthoys IS, McGarvie LA, Todd MJ, et al. Semicircular canal plane head impulses detect absent function of individual semicircular canals. Brain. 1998;121:699–716.

    Article  PubMed  Google Scholar 

  39. Robinson DA. A method of measuring eye movement using a scleral coil in a magnetic field. IEEE Trans Biomed Electron. 1963;10:137–45.

    CAS  Google Scholar 

  40. Subramony S, May W, Lynch D, Gomez C, Fischbeck K, Hallet M, et al. Measuring Friedreich ataxia: interrater reliability of a neurologic rating scale. Neurology. 2005;64:1261–2.

    CAS  PubMed  Google Scholar 

  41. Lynch D, Farmer J, Tsou A, Perlman S, Subramony S, Gomez C, et al. Measuring Friedreich ataxia: complementary features of examination and performance measures. Neurology. 2006;66:1711–6.

    Article  CAS  PubMed  Google Scholar 

  42. Courchesne E. Prediction and preparation, fundamental functions of the cerebellum. Learn Mem. 1997;4:1–35.

    Article  CAS  PubMed  Google Scholar 

  43. Ghajar J, Ivry I. The predictive brain state: asynchrony in disorders of attention? Neuroscientist. 2009;15(3):232–42.

    Article  PubMed  Google Scholar 

  44. Akshoomoff NA, Courchesne E, Townsend J. Attention coordination and anticipatory control. Int Rev Neurobiol. 1997;41:575–98.

    Article  CAS  PubMed  Google Scholar 

  45. Dum R, Strick P. An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J Neurophysiol. 2003;89:634–9.

    Article  PubMed  Google Scholar 

  46. Goldberg ME, Bisley JW, Powell KD, Gottlieb J. Saccades, salience and attention: the role of the lateral intraparietal area in visual behavior. Prog Brain Res. 2006;155:157–75.

    Article  PubMed  Google Scholar 

  47. Ferraina S, Paré M, Wurtz RH. Comparison of cortico-cortical and cortico-collicular signals for the generation of saccadic eye movements. J Neurophysiol. 2002;87(2):845–58.

    PubMed  Google Scholar 

  48. Rizzolatti G, Riggio L, Dascola I, Umiltá C. Reorienting attention across the horizontal and vertical meridians: evidence in favor of a premotor theory of attention. Neuropsychologia. 1987;25(1A):31–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the participants, who willingly gave their time and continue to support our research. This research was supported by the National Health and Medical Research Council Australia (JF #454811, MBD #546452), the Friedreich Ataxia Research Association, Australasia, and the Friedreich Ataxia Research Alliance, USA.

Conflict of interest

The authors declare no conflict of interest with respect to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darren R. Hocking.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hocking, D.R., Fielding, J., Corben, L.A. et al. Ocular Motor Fixation Deficits in Friedreich Ataxia. Cerebellum 9, 411–418 (2010). https://doi.org/10.1007/s12311-010-0178-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-010-0178-5

Keywords

Navigation