Skip to main content
Log in

Involvement of inflammation in Alzheimer’s disease pathogenesis and therapeutic potential of anti-inflammatory agents

  • Review
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is the most common form of dementia. It is characterized by beta-amyloid (Aβ) peptide fibrils, which are extracellular depositions of a specific protein, and is accompanied by extensive neuroinflammation. Various studies have demonstrated risk factors that can affect AD pathogenesis, and they include accumulation of Aβ, hyperphosphorylation of tau protein, and neuroinflammation. Among these detrimental factors, neuroinflammation has been highlighted by epidemiologic studies suggesting that use of anti-inflammatory drugs could significantly reduce the incidence of AD. Evidence suggests that astrocytes, microglia, and infiltrating immune cells from periphery might contribute to or modify the process of neuroinflammation and neurodegeneration in AD brains. In addition, recent data indicate that microRNAs may affect neuroinflammatory responses in the brain. This article focuses on supportive evidence that neuroinflammation plays a critical role in AD development. In addition, we depict putative therapeutic capacity of anti-inflammatory drugs for AD prevention or treatment. We also discuss pathogenic mechanisms by which astrocytes, microglia, T cells and microRNA participate in AD and the neuroprotective mechanisms of anti-inflammatory drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aisen, P.S., K.A. Schafer, M. Grundman, E. Pfeiffer, M. Sano, K.L. Davis, M.R. Farlow, S. Jin, R.G. Thomas, and L.J. Thal. 2003. Effects of rofecoxib or naproxen vs placebo on Alzheimer disease progression: A randomized controlled trial. Journal of the American Medical Association 289: 2819–2826.

    Article  CAS  PubMed  Google Scholar 

  • Alaynick, W.A. 2008. Nuclear receptors, mitochondria and lipid metabolism. Mitochondrion 8: 329–337.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Alexandrov, P.N., P. Dua, J.M. Hill, S. Bhattacharjee, Y. Zhao, and W.J. Lukiw. 2012. microRNA (miRNA) speciation in Alzheimer’s disease (AD) cerebrospinal fluid (CSF) and extracellular fluid (ECF). International Journal of Biochemistry and Molecular Biology 3: 365–373.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Alexandrov, P.N., P. Dua, and W.J. Lukiw. 2014. Up-Regulation of miRNA-146a in progressive, age-related inflammatory neurodegenerative disorders of the human CNS. Frontiers in Neurology 5: 181.

    Article  PubMed Central  PubMed  Google Scholar 

  • Andersen, K., L.J. Launer, A. Ott, A.W. Hoes, M.M. Breteler, and A. Hofman. 1995. Do nonsteroidal anti-inflammatory drugs decrease the risk for Alzheimer’s disease? The Rotterdam study. Neurology 45: 1441–1445.

    Article  CAS  PubMed  Google Scholar 

  • Aso, E., and I. Ferrer. 2014. Cannabinoids for treatment of Alzheimer’s disease: Moving toward the clinic. Frontiers in Pharmacology 5: 37.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Aso, E., S. Juves, R. Maldonado, and I. Ferrer. 2013. CB2 cannabinoid receptor agonist ameliorates Alzheimer-like phenotype in AbetaPP/PS1 mice. Journal of Alzheimers Disease 35: 847–858.

    Google Scholar 

  • Aso, E., E. Palomer, S. Juves, R. Maldonado, F.J. Munoz, and I. Ferrer. 2012. CB1 agonist ACEA protects neurons and reduces the cognitive impairment of AbetaPP/PS1 mice. Journal of Alzheimer’s Disease 30: 439–459.

    CAS  PubMed  Google Scholar 

  • Benzing, W.C., J.R. Wujek, E.K. Ward, D. Shaffer, K.H. Ashe, S.G. Younkin, and K.R. Brunden. 1999. Evidence for glial-mediated inflammation in aged APP(SW) transgenic mice. Neurobiology of Aging 20: 581–589.

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharjee, S., Y. Zhao, and W.J. Lukiw. 2014. Deficits in the miRNA-34a-regulated endogenous TREM2 phagocytosis sensor-receptor in Alzheimer’s disease (AD); an update. Frontiers in Aging Neuroscience 6: 116.

    PubMed Central  PubMed  Google Scholar 

  • Breitner, J.C., L.D. Baker, T.J. Montine, C.L. Meinert, C.G. Lyketsos, K.H. Ashe, J. Brandt, S. Craft, D.E. Evans, R.C. Green, M.S. Ismail, B.K. Martin, M.J. Mullan, M. Sabbagh, P.N. Tariot, and A.R. Group. 2011. Extended results of the Alzheimer’s disease anti-inflammatory prevention trial. Alzheimer’s & Dementia 7: 402–411.

    Article  Google Scholar 

  • Breitner, J.C., B.A. Gau, K.A. Welsh, B.L. Plassman, W.M. McDonald, M.J. Helms, and J.C. Anthony. 1994. Inverse association of anti-inflammatory treatments and Alzheimer’s disease: Initial results of a co-twin control study. Neurology 44: 227–232.

    Article  CAS  PubMed  Google Scholar 

  • Browne, T.C., K. McQuillan, R.M. McManus, J.A. O’Reilly, K.H. Mills, and M.A. Lynch. 2013. IFN-gamma Production by amyloid beta-specific Th1 cells promotes microglial activation and increases plaque burden in a mouse model of Alzheimer’s disease. The Journal of Immunology 190: 2241–2251.

    Article  CAS  PubMed  Google Scholar 

  • Cabral, G.A., and L. Griffin-Thomas. 2009. Emerging role of the cannabinoid receptor CB2 in immune regulation: Therapeutic prospects for neuroinflammation. Expert Reviews in Molecular Medicine 11: e3.

    Article  PubMed Central  PubMed  Google Scholar 

  • Camacho, I.E., L. Serneels, K. Spittaels, P. Merchiers, D. Dominguez, and B. De Strooper. 2004. Peroxisome-proliferator-activated receptor gamma induces a clearance mechanism for the amyloid-beta peptide. Journal of Neuroscience 24: 10908–10917.

    Article  CAS  PubMed  Google Scholar 

  • Carreras, I., A.C. McKee, J.K. Choi, N. Aytan, N.W. Kowall, B.G. Jenkins, and A. Dedeoglu. 2013. R-flurbiprofen improves tau, but not Ass pathology in a triple transgenic model of Alzheimer’s disease. Brain Research 1541: 115–127.

    Article  CAS  PubMed  Google Scholar 

  • Casarejos, M.J., J. Perucho, A. Gomez, M.P. Munoz, M. Fernandez-Estevez, O. Sagredo, J. Fernandez Ruiz, M. Guzman, J.G. de Yebenes, and M.A. Mena. 2013. Natural cannabinoids improve dopamine neurotransmission and tau and amyloid pathology in a mouse model of tauopathy. Journal of Alzheimer’s Disease 35: 525–539.

    CAS  PubMed  Google Scholar 

  • Choi, D.Y., J.W. Lee, G. Lin, Y.K. Lee, Y.H. Lee, I.S. Choi, S.B. Han, J.K. Jung, Y.H. Kim, K.H. Kim, K.W. Oh, J.T. Hong, and M.S. Lee. 2012a. Obovatol attenuates LPS-induced memory impairments in mice via inhibition of NF-kappaB signaling pathway. Neurochemistry International 60: 68–77.

    Article  CAS  PubMed  Google Scholar 

  • Choi, D.Y., J.W. Lee, J. Peng, Y.J. Lee, J.Y. Han, Y.H. Lee, I.S. Choi, S.B. Han, J.K. Jung, W.S. Lee, S.H. Lee, B.M. Kwon, K.W. Oh, and J.T. Hong. 2012b. Obovatol improves cognitive functions in animal models for Alzheimer’s disease. Journal of Neurochemistry 120: 1048–1059.

    Article  CAS  PubMed  Google Scholar 

  • Choi, D.Y., Y.J. Lee, J.T. Hong, and H.J. Lee. 2012c. Antioxidant properties of natural polyphenols and their therapeutic potentials for Alzheimer’s disease. Brain Research Bulletin 87: 144–153.

    Article  CAS  PubMed  Google Scholar 

  • Choi, S.H., S. Aid, and F. Bosetti. 2009. The distinct roles of cyclooxygenase-1 and -2 in neuroinflammation: Implications for translational research. Trends in Pharmacological Sciences 30: 174–181.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Choi, S.H., S. Aid, L. Caracciolo, S.S. Minami, T. Niikura, Y. Matsuoka, R.S. Turner, M.P. Mattson, and F. Bosetti. 2013. Cyclooxygenase-1 inhibition reduces amyloid pathology and improves memory deficits in a mouse model of Alzheimer’s disease. Journal of Neurochemistry 124: 59–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chuang, D.Y., M.H. Chan, Y. Zong, W. Sheng, Y. He, J.H. Jiang, A. Simonyi, Z. Gu, K.L. Fritsche, J. Cui, J.C. Lee, W.R. Folk, D.B. Lubahn, A.Y. Sun, and G.Y. Sun. 2013. Magnolia polyphenols attenuate oxidative and inflammatory responses in neurons and microglial cells. Journal of Neuroinflammation 10: 15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Combs, C.K., D.E. Johnson, J.C. Karlo, S.B. Cannady, and G.E. Landreth. 2000. Inflammatory mechanisms in Alzheimer’s disease: Inhibition of beta-amyloid-stimulated proinflammatory responses and neurotoxicity by PPARgamma agonists. Journal of Neuroscience 20: 558–567.

    CAS  PubMed  Google Scholar 

  • Craft, S., B. Cholerton, and L.D. Baker. 2013. Insulin and Alzheimer’s disease: Untangling the web. Journal of Alzheimer’s Disease 33: S263–S275.

    PubMed  Google Scholar 

  • Crespo-Biel, N., C. Theunis, and F. Van Leuven. 2012. Protein tau: Prime cause of synaptic and neuronal degeneration in Alzheimer’s disease. International Journal of Alzheimer’s Disease 2012: 251426.

    PubMed Central  PubMed  Google Scholar 

  • Cudaback, E., N.L. Jorstad, Y. Yang, T.J. Montine, and C.D. Keene. 2014. Therapeutic implications of the prostaglandin pathway in Alzheimer’s disease. Biochemical Pharmacology 88: 565–572.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cui, L., Y. Li, G. Ma, Y. Wang, Y. Cai, S. Liu, Y. Chen, J. Li, Y. Xie, G. Liu, B. Zhao, and K. Li. 2014. A functional polymorphism in the promoter region of microRNA-146a is associated with the risk of Alzheimer disease and the rate of cognitive decline in patients. PLoS ONE 9: e89019.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Denner, L.A., J. Rodriguez-Rivera, S.J. Haidacher, J.B. Jahrling, J.R. Carmical, C.M. Hernandez, Y. Zhao, R.G. Sadygov, J.M. Starkey, H. Spratt, B.A. Luxon, T.G. Wood, and K.T. Dineley. 2012. Cognitive enhancement with rosiglitazone links the hippocampal PPARgamma and ERK MAPK signaling pathways. Journal of Neuroscience 32: 16725–16735.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Du, J., B. Sun, K. Chen, L. Fan, and Z. Wang. 2009. Antagonist of peroxisome proliferator-activated receptor gamma induces cerebellar amyloid-beta levels and motor dysfunction in APP/PS1 transgenic mice. Biochemical and Biophysical Research Communications 384: 357–361.

    Article  CAS  PubMed  Google Scholar 

  • Ekdahl, C.T., Z. Kokaia, and O. Lindvall. 2009. Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience 158: 1021–1029.

    Article  CAS  PubMed  Google Scholar 

  • El Khoury, J., M. Toft, S.E. Hickman, T.K. Means, K. Terada, C. Geula, and A.D. Luster. 2007. Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nature Medicine 13: 432–438.

    Article  PubMed  CAS  Google Scholar 

  • Esposito, G., C. Scuderi, M. Valenza, G.I. Togna, V. Latina, D. De Filippis, M. Cipriano, M.R. Carratu, T. Iuvone, and L. Steardo. 2011. Cannabidiol reduces Abeta-induced neuroinflammation and promotes hippocampal neurogenesis through PPARgamma involvement. PLoS ONE 6: e28668.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Etminan, M., S. Gill, and A. Samii. 2003. Effect of non-steroidal anti-inflammatory drugs on risk of Alzheimer’s disease: Systematic review and meta-analysis of observational studies. British Medical Journal 327: 128.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fakhfouri, G., A. Ahmadiani, R. Rahimian, A.A. Grolla, F. Moradi, and A. Haeri. 2012. WIN55212-2 attenuates amyloid-beta-induced neuroinflammation in rats through activation of cannabinoid receptors and PPAR-gamma pathway. Neuropharmacology 63: 653–666.

    Article  CAS  PubMed  Google Scholar 

  • Fisher, Y., A. Nemirovsky, R. Baron, and A. Monsonego. 2010. T cells specifically targeted to amyloid plaques enhance plaque clearance in a mouse model of Alzheimer’s disease. PLoS ONE 5: e10830.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Frautschy, S.A., and G.M. Cole. 2010. Why pleiotropic interventions are needed for Alzheimer’s disease. Molecular Neurobiology 41: 392–409.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fu, Q., J. Hue, and S. Li. 2007. Nonsteroidal anti-inflammatory drugs promote axon regeneration via RhoA inhibition. Journal of Neuroscience 27: 4154–4164.

    Article  CAS  PubMed  Google Scholar 

  • Gabbita, S.P., M.K. Srivastava, P. Eslami, M.F. Johnson, N.K. Kobritz, D. Tweedie, N.H. Greig, F.P. Zemlan, S.P. Sharma, and M.E. Harris-White. 2012. Early intervention with a small molecule inhibitor for tumor necrosis factor-alpha prevents cognitive deficits in a triple transgenic mouse model of Alzheimer’s disease. Journal of Neuroinflammation 9: 99.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gasparini, L., E. Ongini, and G. Wenk. 2004. Non-steroidal anti-inflammatory drugs (NSAIDs) in Alzheimer’s disease: Old and new mechanisms of action. Journal of Neurochemistry 91: 521–536.

    Article  CAS  PubMed  Google Scholar 

  • Geldmacher, D.S., T. Fritsch, M.J. McClendon, and G. Landreth. 2011. A randomized pilot clinical trial of the safety of pioglitazone in treatment of patients with Alzheimer disease. Archives of Neurology 68: 45–50.

    PubMed  Google Scholar 

  • Gertsch, J., and S. Anavi-Goffer. 2012. Methylhonokiol attenuates neuroinflammation: A role for cannabinoid receptors? Journal of Neuroinflammation 9: 135.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Giannakopoulos, P., F.R. Herrmann, T. Bussiere, C. Bouras, E. Kovari, D.P. Perl, J.H. Morrison, G. Gold, and P.R. Hof. 2003. Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer’s disease. Neurology 60: 1495–1500.

    Article  CAS  PubMed  Google Scholar 

  • Gold, M., C. Alderton, M. Zvartau-Hind, S. Egginton, A.M. Saunders, M. Irizarry, S. Craft, G. Landreth, U. Linnamagi, and S. Sawchak. 2010. Rosiglitazone monotherapy in mild-to-moderate Alzheimer’s disease: Results from a randomized, double-blind, placebo-controlled phase III study. Dementia and Geriatric Cognitive Disorders 30: 131–146.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goldeck, D., A. Larbi, M. Pellicano, I. Alam, I. Zerr, C. Schmidt, T. Fulop, and G. Pawelec. 2013. Enhanced chemokine receptor expression on leukocytes of patients with Alzheimer’s disease. PLoS ONE 8: e66664.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gonzalez, H., and R. Pacheco. 2014. T-cell-mediated regulation of neuroinflammation involved in neurodegenerative diseases. Journal of Neuroinflammation 11: 201.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Group, A.R., C.G. Lyketsos, J.C. Breitner, R.C. Green, B.K. Martin, C. Meinert, S. Piantadosi, and M. Sabbagh. 2007. Naproxen and celecoxib do not prevent AD in early results from a randomized controlled trial. Neurology 68: 1800–1808.

    Article  CAS  Google Scholar 

  • Guedes, J., A.L. Cardoso, and M.C. Pedroso de Lima. 2013. Involvement of microRNA in microglia-mediated immune response. Clinical and Developmental Immunology 2013: 186872.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guerreiro, R., A. Wojtas, J. Bras, M. Carrasquillo, E. Rogaeva, E. Majounie, C. Cruchaga, C. Sassi, J.S. Kauwe, S. Younkin, L. Hazrati, J. Collinge, J. Pocock, T. Lashley, J. Williams, J.C. Lambert, P. Amouyel, A. Goate, R. Rademakers, K. Morgan, J. Powell, P. St George-Hyslop, A. Singleton, and J. Hardy. 2013. TREM2 variants in Alzheimer’s disease. New England Journal of Medicine 368: 117–127.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hartlage-Rubsamen, M., U. Zeitschel, J. Apelt, U. Gartner, H. Franke, T. Stahl, A. Gunther, R. Schliebs, M. Penkowa, V. Bigl, and S. Rossner. 2003. Astrocytic expression of the Alzheimer’s disease beta-secretase (BACE1) is stimulus-dependent. Glia 41: 169–179.

    Article  PubMed  Google Scholar 

  • Hayden, K.M., P.P. Zandi, A.S. Khachaturian, C.A. Szekely, M. Fotuhi, M.C. Norton, J.T. Tschanz, C.F. Pieper, C. Corcoran, C.G. Lyketsos, J.C. Breitner, K.A. Welsh-Bohmer, and I. Cache County. 2007. Does NSAID use modify cognitive trajectories in the elderly? The Cache County study. Neurology 69: 275–282.

    Article  CAS  PubMed  Google Scholar 

  • He, P., X. Cheng, M. Staufenbiel, R. Li, and Y. Shen. 2013. Long-term treatment of thalidomide ameliorates amyloid-like pathology through inhibition of beta-secretase in a mouse model of Alzheimer’s disease. PLoS ONE 8: e55091.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heneka, M.T., V. Gavrilyuk, G.E. Landreth, M.K. O’Banion, G. Weinberg, and D.L. Feinstein. 2003. Noradrenergic depletion increases inflammatory responses in brain: Effects on IkappaB and HSP70 expression. Journal of Neurochemistry 85: 387–398.

    Article  CAS  PubMed  Google Scholar 

  • Heneka, M.T., G.E. Landreth, and D.L. Feinstein. 2001. Role for peroxisome proliferator-activated receptor-gamma in Alzheimer’s disease. Annals of Neurology 49: 276.

    Article  CAS  PubMed  Google Scholar 

  • Heneka, M.T., E. Reyes-Irisarri, M. Hull, and M.P. Kummer. 2011. Impact and Therapeutic Potential of PPARs in Alzheimer’s Disease. Current Neuropharmacology 9: 643–650.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heneka, M.T., M. Sastre, L. Dumitrescu-Ozimek, I. Dewachter, J. Walter, T. Klockgether, and F. Van Leuven. 2005a. Focal glial activation coincides with increased BACE1 activation and precedes amyloid plaque deposition in APP[V717I] transgenic mice. Journal of Neuroinflammation 2: 22.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Heneka, M.T., M. Sastre, L. Dumitrescu-Ozimek, A. Hanke, I. Dewachter, C. Kuiperi, K. O’Banion, T. Klockgether, F. Van Leuven, and G.E. Landreth. 2005b. Acute treatment with the PPARgamma agonist pioglitazone and ibuprofen reduces glial inflammation and Abeta1-42 levels in APPV717I transgenic mice. Brain 128: 1442–1453.

    Article  PubMed  Google Scholar 

  • Hickman, S.E., E.K. Allison, and J. El Khoury. 2008. Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer's disease mice. Journal of Neuroscience 28: 8354–8360.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Howlett, A.C. 2005. Cannabinoid receptor signaling. Handbook of Experimental Pharmacology 168: 53–79.

    Article  CAS  PubMed  Google Scholar 

  • Inestrosa, N.C., and E.M. Toledo. 2008. The role of Wnt signaling in neuronal dysfunction in Alzheimer’s Disease. Molecular Neurodegeneration 3: 9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jahrling, J.B., C.M. Hernandez, L. Denner, and K.T. Dineley. 2014. PPARgamma recruitment to active ERK during memory consolidation is required for Alzheimer’s disease-related cognitive enhancement. Journal of Neuroscience 34: 4054–4063.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jaworski, T., B. Lechat, D. Demedts, L. Gielis, H. Devijver, P. Borghgraef, H. Duimel, F. Verheyen, S. Kugler, and F. Van Leuven. 2011. Dendritic degeneration, neurovascular defects, and inflammation precede neuronal loss in a mouse model for tau-mediated neurodegeneration. American Journal of Pathology 179: 2001–2015.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jonsson, T., H. Stefansson, S. Steinberg, I. Jonsdottir, P.V. Jonsson, J. Snaedal, S. Bjornsson, J. Huttenlocher, A.I. Levey, J.J. Lah, D. Rujescu, H. Hampel, I. Giegling, O.A. Andreassen, K. Engedal, I. Ulstein, S. Djurovic, C. Ibrahim-Verbaas, A. Hofman, M.A. Ikram, C.M. van Duijn, U. Thorsteinsdottir, A. Kong, and K. Stefansson. 2013. Variant of TREM2 associated with the risk of Alzheimer’s disease. New England Journal of Medicine 368: 107–116.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kaufmann, W.E., K.I. Andreasson, P.C. Isakson, and P.F. Worley. 1997. Cyclooxygenases and the central nervous system. Prostaglandins 54: 601–624.

    Article  CAS  PubMed  Google Scholar 

  • Kettenmann, H., U.K. Hanisch, M. Noda, and A. Verkhratsky. 2011. Physiology of microglia. Physiological Reviews 91: 461–553.

    Article  CAS  PubMed  Google Scholar 

  • Kim, W.G., R.P. Mohney, B. Wilson, G.H. Jeohn, B. Liu, and J.S. Hong. 2000. Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: Role of microglia. Journal of Neuroscience 20: 6309–6316.

    CAS  PubMed  Google Scholar 

  • Kitazawa, M., S. Oddo, T.R. Yamasaki, K.N. Green, and F.M. LaFerla. 2005. Lipopolysaccharide-induced inflammation exacerbates tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of Alzheimer’s disease. Journal of Neuroscience 25: 8843–8853.

    Article  CAS  PubMed  Google Scholar 

  • Koenigsknecht-Talboo, J., and G.E. Landreth. 2005. Microglial phagocytosis induced by fibrillar beta-amyloid and IgGs are differentially regulated by proinflammatory cytokines. Journal of Neuroscience 25: 8240–8249.

    Article  CAS  PubMed  Google Scholar 

  • Krishnan, S., R. Cairns, and R. Howard. 2009. Cannabinoids for the treatment of dementia. Cochrane Database of Systematic Reviews 15(2): CD007204.

    Google Scholar 

  • Kukar, T., S. Prescott, J.L. Eriksen, V. Holloway, M.P. Murphy, E.H. Koo, T.E. Golde, and M.M. Nicolle. 2007. Chronic administration of R-flurbiprofen attenuates learning impairments in transgenic amyloid precursor protein mice. BMC Neuroscience 8: 54.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kummer, M.P., and M.T. Heneka. 2008. PPARs in Alzheimer’s Disease. PPAR Research 2008: 403896.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Landreth, G.E., and M.T. Heneka. 2001. Anti-inflammatory actions of peroxisome proliferator-activated receptor gamma agonists in Alzheimer’s disease. Neurobiology of Aging 22: 937–944.

    Article  CAS  PubMed  Google Scholar 

  • Laporte, V., G. Ait-Ghezala, C.H. Volmar, and M. Mullan. 2006. CD40 deficiency mitigates Alzheimer’s disease pathology in transgenic mouse models. Journal of Neuroinflammation 3: 3.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lee, Y.J., D.Y. Choi, I.S. Choi, K.H. Kim, Y.H. Kim, H.M. Kim, K. Lee, W.G. Cho, J.K. Jung, S.B. Han, J.Y. Han, S.Y. Nam, Y.W. Yun, J.H. Jeong, K.W. Oh, and J.T. Hong. 2012a. Inhibitory effect of 4-O-methylhonokiol on lipopolysaccharide-induced neuroinflammation, amyloidogenesis and memory impairment via inhibition of nuclear factor-kappaB in vitro and in vivo models. Journal of Neuroinflammation 9: 35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee, Y.J., D.Y. Choi, Y.K. Lee, Y.M. Lee, S.B. Han, Y.H. Kim, K.H. Kim, S.Y. Nam, B.J. Lee, J.K. Kang, Y.W. Yun, K.W. Oh, and J.T. Hong. 2012b. 4-O-methylhonokiol prevents memory impairment in the Tg2576 transgenic mice model of Alzheimer’s disease via regulation of beta-secretase activity. Journal of Alzheimer’s Disease 29: 677–690.

    CAS  PubMed  Google Scholar 

  • Lee, Y.J., I.S. Choi, M.H. Park, Y.M. Lee, J.K. Song, Y.H. Kim, K.H. Kim, D.Y. Hwang, J.H. Jeong, Y.P. Yun, K.W. Oh, J.K. Jung, S.B. Han, and J.T. Hong. 2011a. 4-O-Methylhonokiol attenuates memory impairment in presenilin 2 mutant mice through reduction of oxidative damage and inactivation of astrocytes and the ERK pathway. Free Radical Biology and Medicine 50: 66–77.

    Article  CAS  PubMed  Google Scholar 

  • Lee, Y.J., S.B. Han, S.Y. Nam, K.W. Oh, and J.T. Hong. 2010. Inflammation and Alzheimer’s disease. Archives of Pharmacal Research 33: 1539–1556.

    Article  CAS  PubMed  Google Scholar 

  • Lee, Y.J., Y.M. Lee, C.K. Lee, J.K. Jung, S.B. Han, and J.T. Hong. 2011b. Therapeutic applications of compounds in the Magnolia family. Pharmacology & Therapeutics 130: 157–176.

    Article  CAS  Google Scholar 

  • Leuner, K., S. Hauptmann, R. Abdel-Kader, I. Scherping, U. Keil, J.B. Strosznajder, A. Eckert, and W.E. Muller. 2007. Mitochondrial dysfunction: The first domino in brain aging and Alzheimer’s disease? Antioxidants & Redox Signaling 9: 1659–1675.

    Article  CAS  Google Scholar 

  • Li, Y.Y., J.G. Cui, J.M. Hill, S. Bhattacharjee, Y. Zhao, and W.J. Lukiw. 2011. Increased expression of miRNA-146a in Alzheimer’s disease transgenic mouse models. Neuroscience Letters 487: 94–98.

    Article  CAS  PubMed  Google Scholar 

  • Liang, X., Q. Wang, T. Hand, L. Wu, R.M. Breyer, T.J. Montine, and K. Andreasson. 2005. Deletion of the prostaglandin E2 EP2 receptor reduces oxidative damage and amyloid burden in a model of Alzheimer’s disease. Journal of Neuroscience 25: 10180–10187.

    Article  CAS  PubMed  Google Scholar 

  • Lim, D., A. Iyer, V. Ronco, A.A. Grolla, P.L. Canonico, E. Aronica, and A.A. Genazzani. 2013. Amyloid beta deregulates astroglial mGluR5-mediated calcium signaling via calcineurin and Nf-kB. Glia 61: 1134–1145.

    Article  PubMed  Google Scholar 

  • Lim, G.P., F. Yang, T. Chu, E. Gahtan, O. Ubeda, W. Beech, J.B. Overmier, K. Hsiao-Ashec, S.A. Frautschy, and G.M. Cole. 2001. Ibuprofen effects on Alzheimer pathology and open field activity in APPsw transgenic mice. Neurobiology of Aging 22: 983–991.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Q., H.G. Lee, K. Honda, S.L. Siedlak, P.L. Harris, A.D. Cash, X. Zhu, J. Avila, A. Nunomura, A. Takeda, M.A. Smith, and G. Perry. 2005. Tau modifiers as therapeutic targets for Alzheimer’s disease. Biochimica et Biophysica Acta 1739: 211–215.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y.J., D.W. Guo, L. Tian, D.S. Shang, W.D. Zhao, B. Li, W.G. Fang, L. Zhu, and Y.H. Chen. 2010. Peripheral T cells derived from Alzheimer’s disease patients overexpress CXCR2 contributing to its transendothelial migration, which is microglial TNF-alpha-dependent. Neurobiology of Aging 31: 175–188.

    Article  CAS  PubMed  Google Scholar 

  • Lukiw, W.J. 2007. Micro-RNA speciation in fetal, adult and Alzheimer’s disease hippocampus. NeuroReport 18: 297–300.

    Article  CAS  PubMed  Google Scholar 

  • Lukiw, W.J., Y. Zhao, and J.G. Cui. 2008. An NF-kappaB-sensitive micro RNA-146a-mediated inflammatory circuit in Alzheimer disease and in stressed human brain cells. Journal of Biological Chemistry 283: 31315–31322.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mandrekar-Colucci, S., and G.E. Landreth. 2010. Microglia and inflammation in Alzheimer’s disease. CNS & Neurological Disorders: Drug Targets 9: 156–167.

    Article  CAS  Google Scholar 

  • Mandrekar-Colucci, S., and G.E. Landreth. 2011. Nuclear receptors as therapeutic targets for Alzheimer’s disease. Expert Opinion on Therapeutic Targets 15: 1085–1097.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mandrekar-Colucci, S., A. Sauerbeck, P.G. Popovich, and D.M. McTigue. 2013. PPAR agonists as therapeutics for CNS trauma and neurological diseases. American Society for Neurochemistry 5: e00129.

    Google Scholar 

  • Marsicano, G., S. Goodenough, K. Monory, H. Hermann, M. Eder, A. Cannich, S.C. Azad, M.G. Cascio, S.O. Gutierrez, M. van der Stelt, M.L. Lopez-Rodriguez, E. Casanova, G. Schutz, W. Zieglgansberger, V. Di Marzo, C. Behl, and B. Lutz. 2003. CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science 302: 84–88.

    Article  CAS  PubMed  Google Scholar 

  • Martin-Moreno, A.M., B. Brera, C. Spuch, E. Carro, L. Garcia-Garcia, M. Delgado, M.A. Pozo, N.G. Innamorato, A. Cuadrado, and M.L. de Ceballos. 2012. Prolonged oral cannabinoid administration prevents neuroinflammation, lowers beta-amyloid levels and improves cognitive performance in Tg APP 2576 mice. Journal of Neuroinflammation 9: 8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martin-Moreno, A.M., D. Reigada, B.G. Ramirez, R. Mechoulam, N. Innamorato, A. Cuadrado, and M.L. de Ceballos. 2011. Cannabidiol and other cannabinoids reduce microglial activation in vitro and in vivo: Relevance to Alzheimer’s disease. Molecular Pharmacology 79: 964–973.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Matsuoka, Y., M. Picciano, B. Malester, J. LaFrancois, C. Zehr, J.M. Daeschner, J.A. Olschowka, M.I. Fonseca, M.K. O’Banion, A.J. Tenner, C.A. Lemere, and K. Duff. 2001. Inflammatory responses to amyloidosis in a transgenic mouse model of Alzheimer’s disease. American Journal of Pathology 158: 1345–1354.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McGeer, P.L., and E.G. McGeer. 2013. The amyloid cascade-inflammatory hypothesis of Alzheimer disease: Implications for therapy. Acta Neuropathologica 126: 479–497.

    Article  CAS  PubMed  Google Scholar 

  • McKee, A.C., I. Carreras, L. Hossain, H. Ryu, W.L. Klein, S. Oddo, F.M. LaFerla, B.G. Jenkins, N.W. Kowall, and A. Dedeoglu. 2008. Ibuprofen reduces Abeta, hyperphosphorylated tau and memory deficits in Alzheimer mice. Brain Research 1207: 225–236.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miller, B.W., K.C. Willett, and A.R. Desilets. 2011. Rosiglitazone and pioglitazone for the treatment of Alzheimer’s disease. Annals of Pharmacotherapy 45: 1416–1424.

    Article  CAS  PubMed  Google Scholar 

  • Monsonego, A., J. Imitola, S. Petrovic, V. Zota, A. Nemirovsky, R. Baron, Y. Fisher, T. Owens, and H.L. Weiner. 2006. Abeta-induced meningoencephalitis is IFN-gamma-dependent and is associated with T cell-dependent clearance of Abeta in a mouse model of Alzheimer’s disease. Proceedings of the National Academy of Sciences USA 103: 5048–5053.

    Article  CAS  Google Scholar 

  • Monsonego, A., V. Zota, A. Karni, J.I. Krieger, A. Bar-Or, G. Bitan, A.E. Budson, R. Sperling, D.J. Selkoe, and H.L. Weiner. 2003. Increased T cell reactivity to amyloid beta protein in older humans and patients with Alzheimer disease. Journal of Clinical Investigation 112: 415–422.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morales, I., L. Guzman-Martinez, C. Cerda-Troncoso, G.A. Farias, and R.B. Maccioni. 2014. Neuroinflammation in the pathogenesis of Alzheimer’s disease. A rational framework for the search of novel therapeutic approaches. Frontiers in Cellular Neuroscience 8: 112.

    PubMed Central  PubMed  Google Scholar 

  • More, S.V., J.Y. Park, B.W. Kim, H. Kumar, H.W. Lim, S.M. Kang, S. Koppula, S.H. Yoon, and D.K. Choi. 2013. Anti-neuroinflammatory activity of a novel cannabinoid derivative by inhibiting the NF-kappaB signaling pathway in lipopolysaccharide-induced BV-2 microglial cells. Journal of Pharmaceutical Sciences 121: 119–130.

    Article  CAS  Google Scholar 

  • Mori, T., N. Koyama, G.W. Arendash, Y. Horikoshi-Sakuraba, J. Tan, and T. Town. 2010. Overexpression of human S100B exacerbates cerebral amyloidosis and gliosis in the Tg2576 mouse model of Alzheimer’s disease. Glia 58: 300–314.

    PubMed Central  PubMed  Google Scholar 

  • Mucke, L., G.Q. Yu, L. McConlogue, E.M. Rockenstein, C.R. Abraham, and E. Masliah. 2000. Astroglial expression of human alpha(1)-antichymotrypsin enhances alzheimer-like pathology in amyloid protein precursor transgenic mice. American Journal of Pathology 157: 2003–2010.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nagele, R.G., J. Wegiel, V. Venkataraman, H. Imaki, K.C. Wang, and J. Wegiel. 2004. Contribution of glial cells to the development of amyloid plaques in Alzheimer’s disease. Neurobiology of Aging 25: 663–674.

    Article  CAS  PubMed  Google Scholar 

  • Netland, E.E., J.L. Newton, R.E. Majocha, and B.A. Tate. 1998. Indomethacin reverses the microglial response to amyloid beta-protein. Neurobiology of Aging 19: 201–204.

    Article  CAS  PubMed  Google Scholar 

  • Nicolakakis, N., and E. Hamel. 2010. The nuclear receptor PPARgamma as a therapeutic target for cerebrovascular and brain dysfunction in Alzheimer’s disease. Frontiers in Aging Neuroscience 2: 21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nilsson, L.N., K.R. Bales, G. DiCarlo, M.N. Gordon, D. Morgan, S.M. Paul, and H. Potter. 2001. Alpha-1-antichymotrypsin promotes beta-sheet amyloid plaque deposition in a transgenic mouse model of Alzheimer’s disease. Journal of Neuroscience 21: 1444–1451.

    CAS  PubMed  Google Scholar 

  • Ock, J., H.S. Han, S.H. Hong, S.Y. Lee, Y.M. Han, B.M. Kwon, and K. Suk. 2010. Obovatol attenuates microglia-mediated neuroinflammation by modulating redox regulation. British Journal of Pharmacology 159: 1646–1662.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Olivieri, F., M.R. Rippo, A.D. Procopio, and F. Fazioli. 2013. Circulating inflamma-miRs in aging and age-related diseases. Frontiers in Genetics 4: 121.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ousman, S.S., and P. Kubes. 2012. Immune surveillance in the central nervous system. Nature Neuroscience 15: 1096–1101.

    Article  CAS  PubMed  Google Scholar 

  • Padmanabhan, J., M. Levy, D.W. Dickson, and H. Potter. 2006. Alpha1-antichymotrypsin, an inflammatory protein overexpressed in Alzheimer’s disease brain, induces tau phosphorylation in neurons. Brain 129: 3020–3034.

    Article  PubMed  Google Scholar 

  • Panza, F., V. Frisardi, V. Solfrizzi, B.P. Imbimbo, G. Logroscino, A. Santamato, A. Greco, D. Seripa, and A. Pilotto. 2012. Immunotherapy for Alzheimer’s disease: From anti-beta-amyloid to tau-based immunization strategies. Immunotherapy 4: 213–238.

    Article  CAS  PubMed  Google Scholar 

  • Pasqualetti, P., C. Bonomini, G. Dal Forno, L. Paulon, E. Sinforiani, C. Marra, O. Zanetti, and P.M. Rossini. 2009. A randomized controlled study on effects of ibuprofen on cognitive progression of Alzheimer's disease. Aging Clinical and Experimental Research 21: 102–110.

    Article  CAS  PubMed  Google Scholar 

  • Passmore, M.J. 2008. The cannabinoid receptor agonist nabilone for the treatment of dementia-related agitation. International Journal of Geriatric Psychiatry 23: 116–117.

    Article  PubMed  Google Scholar 

  • Prosperi, C., C. Scali, M. Barba, A. Bellucci, M.G. Giovannini, G. Pepeu, and F. Casamenti. 2004. Comparison between flurbiprofen and its nitric oxide-releasing derivatives HCT-1026 and NCX-2216 on Abeta(1-42)-induced brain inflammation and neuronal damage in the rat. International Journal of Immunopathology and Pharmacology 17: 317–330.

    CAS  PubMed  Google Scholar 

  • Qiao, X., D.J. Cummins, and S.M. Paul. 2001. Neuroinflammation-induced acceleration of amyloid deposition in the APPV717F transgenic mouse. European Journal of Neuroscience 14: 474–482.

    Article  CAS  PubMed  Google Scholar 

  • Ransohoff, R.M., and B. Engelhardt. 2012. The anatomical and cellular basis of immune surveillance in the central nervous system. Nature Reviews Immunology 12: 623–635.

    Article  CAS  PubMed  Google Scholar 

  • Ribizzi, G., S. Fiordoro, S. Barocci, E. Ferrari, and M. Megna. 2010. Cytokine polymorphisms and Alzheimer disease: Possible associations. Neurological Sciences 31: 321–325.

    Article  CAS  PubMed  Google Scholar 

  • Risner, M.E., A.M. Saunders, J.F. Altman, G.C. Ormandy, S. Craft, I.M. Foley, M.E. Zvartau-Hind, D.A. Hosford, and A.D. Roses. 2006. Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer’s disease. Pharmacogenomics Journal 6: 246–254.

    CAS  PubMed  Google Scholar 

  • Rogers, J., L.C. Kirby, S.R. Hempelman, D.L. Berry, P.L. McGeer, A.W. Kaszniak, J. Zalinski, M. Cofield, L. Mansukhani, P. Willson, et al. 1993. Clinical trial of indomethacin in Alzheimer’s disease. Neurology 43: 1609–1611.

    Article  CAS  PubMed  Google Scholar 

  • Ronco, A.M., M. Llanos, D. Tamayo, and S. Hirsch. 2007. Anandamide inhibits endothelin-1 production by human cultured endothelial cells: A new vascular action of this endocannabinoid. Pharmacology 79: 12–16.

    Article  CAS  PubMed  Google Scholar 

  • Rossner, S., J. Apelt, R. Schliebs, J.R. Perez-Polo, and V. Bigl. 2001. Neuronal and glial beta-secretase (BACE) protein expression in transgenic Tg2576 mice with amyloid plaque pathology. Journal of Neuroscience Research 64: 437–446.

    Article  CAS  PubMed  Google Scholar 

  • Rossner, S., C. Lange-Dohna, U. Zeitschel, and J.R. Perez-Polo. 2005. Alzheimer’s disease beta-secretase BACE1 is not a neuron-specific enzyme. Journal of Neurochemistry 92: 226–234.

    Article  CAS  PubMed  Google Scholar 

  • Sastre, M., I. Dewachter, G.E. Landreth, T.M. Willson, T. Klockgether, F. van Leuven, and M.T. Heneka. 2003. Nonsteroidal anti-inflammatory drugs and peroxisome proliferator-activated receptor-gamma agonists modulate immunostimulated processing of amyloid precursor protein through regulation of beta-secretase. Journal of Neuroscience 23: 9796–9804.

    CAS  PubMed  Google Scholar 

  • Sastre, M., T. Klockgether, and M.T. Heneka. 2006. Contribution of inflammatory processes to Alzheimer’s disease: Molecular mechanisms. International Journal of Developmental Neuroscience 24: 167–176.

    Article  CAS  PubMed  Google Scholar 

  • Sato, T., H. Hanyu, K. Hirao, H. Kanetaka, H. Sakurai, and T. Iwamoto. 2011. Efficacy of PPAR-gamma agonist pioglitazone in mild Alzheimer disease. Neurobiology of Aging 32: 1626–1633.

    Article  CAS  PubMed  Google Scholar 

  • Schuehly, W., J.M. Paredes, J. Kleyer, A. Huefner, S. Anavi-Goffer, S. Raduner, K.H. Altmann, and J. Gertsch. 2011. Mechanisms of osteoclastogenesis inhibition by a novel class of biphenyl-type cannabinoid CB(2) receptor inverse agonists. Chemistry & Biology 18: 1053–1064.

    Article  CAS  Google Scholar 

  • Searcy, J.L., J.T. Phelps, T. Pancani, I. Kadish, J. Popovic, K.L. Anderson, T.L. Beckett, M.P. Murphy, K.C. Chen, E.M. Blalock, P.W. Landfield, N.M. Porter, and O. Thibault. 2012. Long-term pioglitazone treatment improves learning and attenuates pathological markers in a mouse model of Alzheimer’s disease. Journal of Alzheimer’s Disease 30: 943–961.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sethi, P., and W.J. Lukiw. 2009. Micro-RNA abundance and stability in human brain: Specific alterations in Alzheimer’s disease temporal lobe neocortex. Neuroscience Letters 459: 100–104.

    Article  CAS  PubMed  Google Scholar 

  • Shi, J.Q., W. Shen, J. Chen, B.R. Wang, L.L. Zhong, Y.W. Zhu, H.Q. Zhu, Q.Q. Zhang, Y.D. Zhang, and J. Xu. 2011a. Anti-TNF-alpha reduces amyloid plaques and tau phosphorylation and induces CD11c-positive dendritic-like cell in the APP/PS1 transgenic mouse brains. Brain Research 1368: 239–247.

    Article  CAS  PubMed  Google Scholar 

  • Shi, J.Q., B.R. Wang, W.W. Jiang, J. Chen, Y.W. Zhu, L.L. Zhong, Y.D. Zhang, and J. Xu. 2011b. Cognitive improvement with intrathecal administration of infliximab in a woman with Alzheimer’s disease. Journal of the American Geriatrics Society 59: 1142–1144.

    Article  PubMed  Google Scholar 

  • Simpson, J.E., P.G. Ince, G. Lace, G. Forster, P.J. Shaw, F. Matthews, G. Savva, C. Brayne, and S.B. Wharton. 2010. Astrocyte phenotype in relation to Alzheimer-type pathology in the ageing brain. Neurobiology of Aging 31: 578–590.

    Article  CAS  PubMed  Google Scholar 

  • Sodhi, R.K., N. Singh, and A.S. Jaggi. 2011. Neuroprotective mechanisms of peroxisome proliferator-activated receptor agonists in Alzheimer’s disease. Naunyn-Schmiedeberg’s Archives of Pharmacology 384: 115–124.

    Article  CAS  PubMed  Google Scholar 

  • Soininen, H., C. West, J. Robbins, and L. Niculescu. 2007. Long-term efficacy and safety of celecoxib in Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders 23: 8–21.

    Article  CAS  PubMed  Google Scholar 

  • Solas, M., P.T. Francis, R. Franco, and M.J. Ramirez. 2013. CB2 receptor and amyloid pathology in frontal cortex of Alzheimer’s disease patients. Neurobiology of Aging 34: 805–808.

    Article  CAS  PubMed  Google Scholar 

  • Solito, E., and M. Sastre. 2012. Microglia function in Alzheimer’s disease. Frontiers in Pharmacology 3: 14.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Steele, M.L., and S.R. Robinson. 2012. Reactive astrocytes give neurons less support: Implications for Alzheimer’s disease. Neurobiology of Aging 33: e1–e13.

    Article  PubMed  CAS  Google Scholar 

  • Stewart, W.F., C. Kawas, M. Corrada, and E.J. Metter. 1997. Risk of Alzheimer’s disease and duration of NSAID use. Neurology 48: 626–632.

    Article  CAS  PubMed  Google Scholar 

  • Stumm, C., C. Hiebel, R. Hanstein, M. Purrio, H. Nagel, A. Conrad, B. Lutz, C. Behl, and A.B. Clement. 2013. Cannabinoid receptor 1 deficiency in a mouse model of Alzheimer’s disease leads to enhanced cognitive impairment despite of a reduction in amyloid deposition. Neurobiology of Aging 34: 2574–2584.

    Article  CAS  PubMed  Google Scholar 

  • Sung, S., H. Yang, K. Uryu, E.B. Lee, L. Zhao, D. Shineman, J.Q. Trojanowski, V.M. Lee, and D. Pratico. 2004. Modulation of nuclear factor-kappa B activity by indomethacin influences A beta levels but not A beta precursor protein metabolism in a model of Alzheimer’s disease. American Journal of Pathology 165: 2197–2206.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sy, M., M. Kitazawa, R. Medeiros, L. Whitman, D. Cheng, T.E. Lane, and F.M. Laferla. 2011. Inflammation induced by infection potentiates tau pathological features in transgenic mice. American Journal of Pathology 178: 2811–2822.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Szekely, C.A., J.C. Breitner, A.L. Fitzpatrick, T.D. Rea, B.M. Psaty, Z.H. Kuller, and P.P. Zandi. 2008. NSAID use and dementia risk in the Cardiovascular Health Study: Role of APOE and NSAID type. Neurology 70: 17–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thal, L.J., S.H. Ferris, L. Kirby, G.A. Block, C.R. Lines, E. Yuen, C. Assaid, M.L. Nessly, B.A. Norman, C.C. Baranak, and S.A. Reines. 2005. A randomized, double-blind, study of rofecoxib in patients with mild cognitive impairment. Neuropsychopharmacology 30: 1204–1215.

    Article  CAS  PubMed  Google Scholar 

  • Thounaojam, M.C., D.K. Kaushik, and A. Basu. 2013. MicroRNAs in the brain: It’s regulatory role in neuroinflammation. Molecular Neurobiology 47: 1034–1044.

    Article  CAS  PubMed  Google Scholar 

  • Tobinick, E., H. Gross, A. Weinberger, and H. Cohen. 2006. TNF-alpha modulation for treatment of Alzheimer’s disease: A 6-month pilot study. Medscape General Medicine 8: 25.

    PubMed Central  PubMed  Google Scholar 

  • Tobinick, E.L., and H. Gross. 2008. Rapid cognitive improvement in Alzheimer’s disease following perispinal etanercept administration. Journal of Neuroinflammation 5: 2.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Togo, T., H. Akiyama, E. Iseki, H. Kondo, K. Ikeda, M. Kato, T. Oda, K. Tsuchiya, and K. Kosaka. 2002. Occurrence of T cells in the brain of Alzheimer’s disease and other neurological diseases. Journal of Neuroimmunology 124: 83–92.

    Article  CAS  PubMed  Google Scholar 

  • Townsend, K.P., T. Town, T. Mori, L.F. Lue, D. Shytle, P.R. Sanberg, D. Morgan, F. Fernandez, R.A. Flavell, and J. Tan. 2005. CD40 signaling regulates innate and adaptive activation of microglia in response to amyloid beta-peptide. European Journal of Immunology 35: 901–910.

    Article  CAS  PubMed  Google Scholar 

  • Trepanier, C.H., and N.W. Milgram. 2010. Neuroinflammation in Alzheimer’s disease: Are NSAIDs and selective COX-2 inhibitors the next line of therapy? Journal of Alzheimer’s Disease 21: 1089–1099.

    CAS  PubMed  Google Scholar 

  • Verkhratsky, A., M. Olabarria, H.N. Noristani, C.Y. Yeh, and J.J. Rodriguez. 2010. Astrocytes in Alzheimer’s disease. Neurotherapeutics 7: 399–412.

    Article  CAS  PubMed  Google Scholar 

  • Vitek, M.P., C.M. Brown, and C.A. Colton. 2009. APOE genotype-specific differences in the innate immune response. Neurobiology of Aging 30: 1350–1360.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Volicer, L., M. Stelly, J. Morris, J. McLaughlin, and B.J. Volicer. 1997. Effects of dronabinol on anorexia and disturbed behavior in patients with Alzheimer’s disease. International Journal of Geriatric Psychiatry 12: 913–919.

    Article  CAS  PubMed  Google Scholar 

  • Walther, S., R. Mahlberg, U. Eichmann, and D. Kunz. 2006. Delta-9-tetrahydrocannabinol for nighttime agitation in severe dementia. Psychopharmacology (Berl) 185: 524–528.

    Article  CAS  Google Scholar 

  • Walther, S., B. Schupbach, E. Seifritz, P. Homan, and W. Strik. 2011. Randomized, controlled crossover trial of dronabinol, 2.5 mg, for agitation in 2 patients with dementia. Journal of Clinical Psychopharmacology 31: 256–258.

    Article  PubMed  Google Scholar 

  • Watson, G.S., B.A. Cholerton, M.A. Reger, L.D. Baker, S.R. Plymate, S. Asthana, M.A. Fishel, J.J. Kulstad, P.S. Green, D.G. Cook, S.E. Kahn, M.L. Keeling, and S. Craft. 2005. Preserved cognition in patients with early Alzheimer disease and amnestic mild cognitive impairment during treatment with rosiglitazone: A preliminary study. The American Journal of Geriatric Psychiatry 13: 950–958.

    PubMed  Google Scholar 

  • Weggen, S., J.L. Eriksen, S.A. Sagi, C.U. Pietrzik, V. Ozols, A. Fauq, T.E. Golde, and E.H. Koo. 2003. Evidence that nonsteroidal anti-inflammatory drugs decrease amyloid beta 42 production by direct modulation of gamma-secretase activity. Journal of Biological Chemistry 278: 31831–31837.

    Article  CAS  PubMed  Google Scholar 

  • Wenk, G.L. 2003. Neuropathologic changes in Alzheimer’s disease. Journal of Clinical Psychiatry 64: 7–10.

    PubMed  Google Scholar 

  • Yan, Q., J. Zhang, H. Liu, S. Babu-Khan, R. Vassar, A.L. Biere, M. Citron, and G. Landreth. 2003. Anti-inflammatory drug therapy alters beta-amyloid processing and deposition in an animal model of Alzheimer’s disease. Journal of Neuroscience 23: 7504–7509.

    CAS  PubMed  Google Scholar 

  • Yoshiyama, Y., M. Higuchi, B. Zhang, S.M. Huang, N. Iwata, T.C. Saido, J. Maeda, T. Suhara, J.Q. Trojanowski, and V.M. Lee. 2007. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53: 337–351.

    Article  CAS  PubMed  Google Scholar 

  • Zahs, K.R., and K.H. Ashe. 2010. ‘Too much good news’—Are Alzheimer mouse models trying to tell us how to prevent, not cure, Alzheimer’s disease? Trends in Neurosciences 33: 381–389.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, Y., S. Bhattacharjee, B.M. Jones, P. Dua, P.N. Alexandrov, J.M. Hill, and W.J. Lukiw. 2013. Regulation of TREM2 expression by an NF-small ka, CyrillicB-sensitive miRNA-34a. NeuroReport 24: 318–323.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was fully supported by 2015 Yeungnam University Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong-Young Choi or Jin Tae Hong.

Ethics declarations

Conflict of interest

The authors of the present article declare that there is no conflict of interest.

Additional information

Sina Shadfar and Chul Ju Hwang have contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shadfar, S., Hwang, C.J., Lim, MS. et al. Involvement of inflammation in Alzheimer’s disease pathogenesis and therapeutic potential of anti-inflammatory agents. Arch. Pharm. Res. 38, 2106–2119 (2015). https://doi.org/10.1007/s12272-015-0648-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-015-0648-x

Keywords

Navigation