Skip to main content
Log in

Hematologic Effects of Continuous Flow Left Ventricular Assist Devices

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

The extent of hematologic effects of the new continuous flow left ventricular assist devices (CF-LVAD) has not been studied. Recent clinical studies have demonstrated that hemolysis and thrombosis are not common during CF-LVAD support, however, the incidence of bleeding remains a concern. The rate of postoperative bleeding is similar to that of the prior generation pulsatile LVAD, but gastrointestinal bleeding due to angiodysplasia and arteriovenous malformations is more common and appears to be related to the blood flow rheology of these devices. New evidence suggests that acquired von Willebrand’s disease develops in some patients due to the reduction in high molecular weight (HMW) multimers of von Willebrand’s factor (vWF). Similar to acquired von Willebrand’s disease seen in patients with aortic stenosis, the shear stress of the CF-LVAD may cause proteolysis of the HMW multimers of vWF. In addition to acquired von Willebrand’s disease, there is activation of the fibrinolytic system and a loss of platelet numbers and function during CF-LVAD support. The hematologic responses during CF-LVAD support are constantly changing, and antiplatelet therapy may need to be adjusted accordingly. Considerable research is needed to better define the complex hematologic effects during CF-LVAD support. Screening of patients for angiodysplasia and von Willebrand’s disease before CF-LVAD implant may allow for effective preemptive treatment. Because bleeding causes significant morbidity for this population, more effective treatment strategies need to be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lahpor, J. R. (2009). State of the art: implantable ventricular assist devices. Current Opinion in Organ Transplantation, 14(5), 554–559.

    Article  CAS  PubMed  Google Scholar 

  2. Pagani, F. D. (2008). Continuous-flow rotary left ventricular assist devices with “3rd generation” design. Seminars in Thoracic and Cardiovascular Surgery, 20(3), 255–263.

    Article  PubMed  Google Scholar 

  3. Slaughter, M. S., Pagani, F. D., Rogers, J. G., Miller, L. W., Sun, B., Russell, S. D., et al. (2010). Clinical management of continuous-flow left ventricular assist devices in advanced heart failure. The Journal of Heart and Lung Transplantation, 29, S1–S39.

    Article  PubMed  Google Scholar 

  4. Pagani, F. D., Miller, L. W., Russell, S. D., Aaronson, K. D., John, R., Boyle, A. J., et al. (2009). Extended mechanical circulatory support with a continuous-flow rotary left ventricular assist device. Journal of the American College of Cardiology, 54(4), 312–321.

    Article  PubMed  Google Scholar 

  5. Goldstein, D. J. (2003). Worldwide experience with the MicroMed DeBakey Ventricular Assist Device as a bridge to transplantation. Circulation, 108(Suppl 1), II272–II277.

    PubMed  Google Scholar 

  6. Miller, L. W., Pagani, F. D., Russell, S. D., John, R., Boyle, A. J., Aaronson, K. D., et al. (2007). Use of a continuous-flow device in patients awaiting heart transplantation. The New England Journal of Medicine, 357(9), 885–896.

    Article  CAS  PubMed  Google Scholar 

  7. Geisen, U., Heilmann, C., Beyersdorf, F., Benk, C., Berchtold-Herz, M., Schlensak, C., et al. (2008). Non-surgical bleeding in patients with ventricular assist devices could be explained by acquired von Willebrand disease. European Journal of Cardiothoracic Surgery, 33(4), 679–684.

    Article  PubMed  Google Scholar 

  8. Letsou, G. V., Shah, N., Gregoric, I. D., Myers, T. J., Delgado, R., & Frazier, O. H. (2005). Gastrointestinal bleeding from arteriovenous malformations in patients supported by the Jarvik 2000 axial-flow left ventricular assist device. The Journal of Heart and Lung Transplantation, 24(1), 105–109.

    Article  PubMed  Google Scholar 

  9. Pennington, D. G., McBride, L. R., Kanter, K. R., Miller, L. W., Ruzevich, S. A., Naunheim, K., et al. (1989). Bridging to heart transplantation with circulatory support devices. The Journal of Heart Transplantation, 8(2), 116–123.

    CAS  PubMed  Google Scholar 

  10. Frazier, O. H., Rose, E. A., Macmanus, Q., Burton, N. A., Lefrak, E. A., Poirier, V. L., et al. (1992). Multicenter clinical evaluation of the HeartMate 1000 IP left ventricular assist device. The Annals of Thoracic Surgery, 53(6), 1080–1090.

    Article  CAS  PubMed  Google Scholar 

  11. Guyton, R. A., Schonberger, J. P., Everts, P. A., Jett, G. K., Gray, L. A., Jr., Gielchinsky, I., et al. (1993). Postcardiotomy shock: clinical evaluation of the BVS 5000 Biventricular Support System. The Annals of Thoracic Surgery, 56(2), 346–356.

    Article  CAS  PubMed  Google Scholar 

  12. Slaughter, M. S., Rogers, J. G., Milano, C. A., Russell, S. D., Conte, J. V., Feldman, D., et al. (2009). Advanced heart failure treated with continuous-flow left ventricular assist device. The New England Journal of Medicine, 361(23), 2241–2251.

    Article  CAS  PubMed  Google Scholar 

  13. Slaughter, M. S., Sobieski, M. A., Gallagher, C., Graham, J., Brandise, J., & Stein, R. (2008). Fibrinolytic activation during long-term support with the HeartMate II left ventricular assist device. ASAIO Journal, 54(1), 115–119.

    Article  PubMed  Google Scholar 

  14. John, R., Panch, S., Hrabe, J., Wei, P., Solovey, A., Joyce, L., et al. (2009). Activation of endothelial and coagulation systems in left ventricular assist device recipients. The Annals of Thoracic Surgery, 88, 1171–1179.

    Article  PubMed  Google Scholar 

  15. Livingston, E. R., Fisher, C. A., Bibidakis, E. J., Pathak, A. S., Todd, B. A., Furukawa, S., et al. (1996). Increased activation of the coagulation and fibrinolytic systems leads to hemorrhagic complications during left ventricular assist implantation. Circulation, 94, II227–II234.

    CAS  PubMed  Google Scholar 

  16. Spanier, T., Oz, M., Levin, H., Weinberg, A., Stamatis, K., Stern, D., et al. (1996). Activation of coagulation and fibrinolytic pathways in patients with left ventricular assist devices. The Journal of Thoracic and Cardiovascular Surgery, 112, 1090–1097.

    Article  CAS  PubMed  Google Scholar 

  17. Thoennissen, N. H., Schneider, M., Allroggen, A., Ritter, M., Dittrich, R., Schmid, C., et al. (2005). High level of cerebral microembolization in patients supported with the DeBakey left ventricular assist device. The Journal of Thoracic and Cardiovascular Surgery, 130(4), 1159–1166.

    Article  PubMed  Google Scholar 

  18. Westaby, S., Banning, A. P., Jarvik, R., Frazier, O. H., Pigott, D. W., Jin, X. Y., et al. (2000). First permanent implant of the Jarvik 2000 Heart. Lancet, 356(9233), 900–903.

    Article  CAS  PubMed  Google Scholar 

  19. Hayes, H., Dembo, L., Larbalestier, R., & O’Driscoll, G. (2008). Successful treatment of ventricular assist device associated ventricular thrombus with systemic tenecteplase. Heart, Lung & Circulation, 17(3), 253–255.

    Article  CAS  Google Scholar 

  20. Delgado, R., 3rd, Frazier, O. H., Myers, T. J., Gregoric, I. D., Robertson, K., & Shah, N. A. (2005). Direct thrombolytic therapy for intraventricular thrombosis in patients with the Jarvik 2000 left ventricular assist device. The Journal of Heart and Lung Transplantation, 24(2), 231–233.

    Article  PubMed  Google Scholar 

  21. Westaby, S., Banning, A. P., Saito, S., Pigott, D. W., Jin, X. Y., Catarino, P. A., et al. (2002). Circulatory support for long-term treatment of heart failure: experience with an intraventricular continuous flow pump. Circulation, 105(22), 2588–2591.

    Article  PubMed  Google Scholar 

  22. Crow, S., John, R., Boyle, A., Shumway, S., Liao, K., Colvin-Adams, M., et al. (2009). Gastrointestinal bleeding rates in recipients of nonpulsatile and pulsatile left ventricular assist devices. The Journal of Thoracic and Cardiovascular Surgery, 137(1), 208–215.

    Article  CAS  PubMed  Google Scholar 

  23. Mason, N. O., Reid, B. B., Marmstan, G., Jones, J., Stoker, S., Budge, D., et al. (2010). Characterization of gastrointestinal bleeding in Heartmate II left ventricular assist device patients. The Journal of Heart and Lung Transplantation, 29(2S), S9.

    Google Scholar 

  24. Wang, I. W., Guthrie, T., Ewald, G. A., Geltman, E. M., Joseph, S., & Moazami, N. (2010). Gastrointestinal bleeding complications in continuous flow LVAD patients—is it device specific? The Journal of Heart and Lung Transplantation, 29(2S), S8.

    Article  Google Scholar 

  25. Siddiqui, M. A., Slaughter, M. S., & Silva, R. G. (2009). Gastrointestinal complications in patients supported with ventricular assist devices. Gastroenterology, 136(5), A213–A214.

    Google Scholar 

  26. Boyle, A. J., Russell, S. D., Teuteberg, J. J., Slaughter, M. S., Moazami, N., Pagani, F. D., et al. (2009). Low thromboembolism and pump thrombosis with the HeartMate II left ventricular assist device: analysis of outpatient anti-coagulation. The Journal of Heart and Lung Transplantation, 28(9), 881–887.

    Article  PubMed  Google Scholar 

  27. Heyde, E. C. (1958). Gastrointestinal bleeding in aortic stenosis [letter]. The New England Journal of Medicine, 259, 196.

    Google Scholar 

  28. Warkentin, T. E., Moore, J. C., & Morgan, D. G. (1992). Aortic stenosis and bleeding gastrointestinal angiodysplasia: is acquired von Willebrand’s disease the link? Lancet, 340(8810), 35–37.

    Article  CAS  PubMed  Google Scholar 

  29. Cappell, M. S., & Lebwohl, O. (1986). Cessation of recurrent bleeding from gastrointestinal angiodysplasias after aortic valve replacement. Annals of Internal Medicine, 105(1), 54–57.

    CAS  PubMed  Google Scholar 

  30. Sucker, C. (2007). The Heyde syndrome: proposal for a unifying concept explaining the association of aortic valve stenosis, gastrointestinal angiodysplasia and bleeding. International Journal of Cardiology, 115(1), 77–78.

    Article  PubMed  Google Scholar 

  31. Williams, R. C., Jr. (2003). Aortic stenosis, von Willebrand factor, and bleeding. The New England Journal of Medicine, 349(18), 1773–1774. author reply 1773–4.

    Article  PubMed  Google Scholar 

  32. Pareti, F. I., Lattuada, A., Bressi, C., Zanobini, M., Sala, A., Steffan, A., et al. (2000). Proteolysis of von Willebrand factor and shear stress-induced platelet aggregation in patients with aortic valve stenosis. Circulation, 102(11), 1290–1295.

    CAS  PubMed  Google Scholar 

  33. Yoshida, K., Tobe, S., Kawata, M., & Yamaguchi, M. (2006). Acquired and reversible von Willebrand disease with high shear stress aortic valve stenosis. The Annals of Thoracic Surgery, 81(2), 490–494.

    Article  PubMed  Google Scholar 

  34. Batur, P., Stewart, W. J., & Isaacson, J. H. (2003). Increased prevalence of aortic stenosis in patients with arteriovenous malformations of the gastrointestinal tract in Heyde syndrome. Archives of Internal Medicine, 163(15), 1821–1824.

    Article  PubMed  Google Scholar 

  35. Morishima, A., Marui, A., Shimamoto, T., Saji, Y., Tambara, K., Nishina, T., et al. (2007). Successful aortic valve replacement for Heyde syndrome with confirmed hematologic recovery. The Annals of Thoracic Surgery, 83(1), 287–288.

    Article  PubMed  Google Scholar 

  36. Malehsa, D., Meyer, A. L., Bara, C., & Struber, M. (2009). Acquired von Willebrand syndrome after exchange of the HeartMate XVE to the HeartMate II ventricular assist device. European Journal of Cardiothoracic Surgery, 35(6), 1091–1093.

    Article  PubMed  Google Scholar 

  37. Klovaite, J., Gustafsson, F., Mortensen, S. A., Sander, K., & Nielsen, L. B. (2009). Severely impaired von Willebrand factor-dependent platelet aggregation in patients with a continuous-flow left ventricular assist device (HeartMate II). Journal of the American College of Cardiology, 53(23), 2162–2167.

    Article  CAS  PubMed  Google Scholar 

  38. John, R., Kamdar, F., Liao, K., Colvin-Adams, M., Miller, L., Joyce, L., et al. (2008). Low thromboembolic risk for patients with the Heartmate II left ventricular assist device. The Journal of Thoracic and Cardiovascular Surgery, 136(5), 1318–1323.

    Article  PubMed  Google Scholar 

  39. Slaughter, M. S., Naka, Y., John, R., Boyle, A. J., Conte, J. V., Russell, S. D., et al. (2009). Postoperative heparin is not required in transitioning patients with HeartMate II LVAD to long term warfarin therapy. The Journal of Heart and Lung Transplantation, 28(2S), S153.

    Article  Google Scholar 

  40. Holman, W. L., Teitel, E. R., & Itescu, S. (2006). Biologic barriers to mechanical circulatory support. In O. H. Frazier & J. K. Kirklin (Eds.), ISHLT monograft series (pp. 9–32). New York: Elsevier.

    Google Scholar 

  41. Bonaros, N., Mueller, M. R., Salat, A., Schima, H., Roethy, W., Kocher, A. A., et al. (2004). Extensive coagulation monitoring in patients after implantation of the MicroMed Debakey continuous flow axial pump. ASAIO Journal, 50(5), 424–431.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark S. Slaughter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slaughter, M.S. Hematologic Effects of Continuous Flow Left Ventricular Assist Devices. J. of Cardiovasc. Trans. Res. 3, 618–624 (2010). https://doi.org/10.1007/s12265-010-9222-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-010-9222-6

Keywords

Navigation