Skip to main content

Advertisement

Log in

Mechanical and Energetic Consequences of HCM-Causing Mutations

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Hypertrophic cardiomyopathy (HCM) was the first inherited heart disease to be characterized at the molecular genetic level with the demonstration that it is caused by mutations in genes that encode different components of the cardiac sarcomere. Early functional in vitro studies have concluded that HCM mutations cause a loss of sarcomere mechanical function. Hypertrophy would then follow as a compensatory mechanism to raise the work and power output of the affected heart. More recent in vitro and mouse model studies have suggested that HCM mutations enhance contractile function and myofilament Ca2+ sensitivity and impair cardiac myocyte energetics. It has been hypothesized that these changes may result in cardiac myocyte energy depletion due to inefficient ATP utilization and also in altered myoplasmic Ca2+ handling. The problems encountered in reaching a definitive answer on the effects of HCM mutations are discussed. Though direct analysis of the altered functional characteristics of HCM human cardiac sarcomeres has so far lagged behind the in vitro and mouse studies, recent work with mechanically isolated skinned myocytes and myofibrils from affected human hearts seem to support the energy depletion hypothesis. If further validated in the human heart, this hypothesis would identify tractable therapeutic targets that suggest that HCM, perhaps more than any other cardiomyopathy, will be amenable to disease-modifying therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arad, M., Benson, D. W., Perez-Atayde, A. R., McKenna, W. J., Sparks, E. A., Kanter, R. J., et al. (2002). Constitutively active AMP kinase mutations cause glycogen storage disease mimicking hypertrophic cardiomyopathy. J Clin Invest, 109, 357–362.

    CAS  PubMed  Google Scholar 

  2. Ashrafian, H., Redwood, C., Blair, E., & Watkins, H. (2003). Hypertrophic cardiomyopathy: a paradigm for myocardial energy depletion. Trends in Genetics, 19, 263–268.

    Article  CAS  PubMed  Google Scholar 

  3. Ashrafian, H., & Watkins, H. (2007). Reviews of translational medicine and genomics in cardiovascular disease: new disease taxonomy and therapeutic implications. J Am Coll Cardiol, 49, 1251–1264.

    Article  CAS  PubMed  Google Scholar 

  4. Baudenbacher, F., Schober, T., Pinto, J. R., Sidorov, V. Y., Hilliard, F., Solaro, R. J., et al. (2008). Myofilament Ca2+ sensitization causes susceptibility to cardiac arrhythmia in mice. J Clin Invest, 118, 3893–3903.

    CAS  PubMed  Google Scholar 

  5. Bing, W., Knott, A., Redwood, C., Esposito, G., Purcell, I., Watkins, H., et al. (2000). Effect of hypertrophic cardiomyopathy mutations in human cardiac muscle alpha-tropomyosin (Asp175Asn and Glu180Gly) on the regulatory properties of human cardiac troponin determined by in vitro motility assay. J Mol Cel Cardiol, 32, 1489–1498.

    Article  CAS  Google Scholar 

  6. Blair, E., Redwood, C., Ashrafian, H., Oliveira, M., Broxholme, J., Kerr, B., et al. (2001). Mutations in the gamma(2) subunit of AMP-activated protein kinase cause familial hypertrophic cardiomyopathy: evidence for the central role of energy compromise in disease pathogenesis. Human molecular genetics, 10, 1215–1220.

    Article  CAS  PubMed  Google Scholar 

  7. Belus, A., Piroddi, N., Scellini, B., Tesi, C., D’Amati, G., Girolami, F., et al. (2008). The FHC-associated myosin mutation R403Q accelerates tension generation and relaxation of human cardiac myofibrils. J Physiol, 586, 3639–3644.

    CAS  PubMed  Google Scholar 

  8. Bonne, G., Carrier, L., Bercovici, J., Cruaud, C., Richard, P., Hainque, B., et al. (1995). Cardiac myosin binding protein-C gene splice acceptor site mutation is associated with familial hypertrophic cardiomyopathy. Nat Genet, 11, 438–440.

    Article  CAS  PubMed  Google Scholar 

  9. Borbély, A., van der Velden, J., Bronzwaer, J. G. F., Papp, Z., Édes, I., Stienen, G. J. M., et al. (2005). Cardiomyocyte stiffness in diastolic heart failure. Circulation, 111, 774–781.

    Article  PubMed  Google Scholar 

  10. Bottinelli, R., Coviello, D. A., Redwood, C. S., Pellegrino, M. A., Maron, B. J., Spirito, P., et al. (1998). A mutant tropomyosin that causes hypertrophic cardiomyopathy is expressed in vivo and associated with an increased calcium sensitivity. Circ Res, 82, 106–115.

    CAS  PubMed  Google Scholar 

  11. Crilley, J. G., Boehm, E. A., Blair, E., Rajagopalan, B., Blamire, A. M., Styles, P., et al. (2003). Hypertrophic cardiomyopathy due to sarcomeric gene mutations is characterized by impaired energy metabolism irrespective of the degree of hypertrophy. J Am Coll Cardiol, 41, 1776–1782.

    Article  CAS  PubMed  Google Scholar 

  12. Cuda, G., Fananapazir, L., Zhu, W. S., Sellers, J. R., & Epstein, N. D. (1993). Skeletal muscle expression and abnormal function of beta-myosin in hypertrophic cardiomyopathy. J Clin Invest, 91, 2861–2865.

    Article  CAS  PubMed  Google Scholar 

  13. Dyer, E., Jacques, A., Burch, M., Kaski, J. P., & Marston, S. (2008). Functional effects of DCM mutation G159D in troponin C from an explanted heart. J Mol Cell Cardiol, 44, 729–730.

    Article  Google Scholar 

  14. Elliott, K., Watkins, H., & Redwood, C. S. (2000). Altered regulatory properties of human cardiac troponin I mutants that cause hypertrophic cardiomyopathy. J Biol Chem, 275, 22069–22074.

    Article  CAS  PubMed  Google Scholar 

  15. Fujita, H., Sugiura, S., Momomura, S., Omata, M., Sugi, H., & Sutoh, K. (1997). Characterization of mutant myosins of Dictyostelium discoideum equivalent to human familial hypertrophic cardiomyopathy mutants. Molecular force level of mutant myosins may have a prognostic implication. J Clin Invest, 99, 1010–1015.

    Article  CAS  PubMed  Google Scholar 

  16. Geisterfer-Lowrance, A. A., Christe, M., Conner, D. A., Ingwall, J. S., Schoen, F. J., Seidman, C. E., et al. (1996). A mouse model of familial hypertrophic cardiomyopathy. Science, 272, 731–734.

    Article  CAS  PubMed  Google Scholar 

  17. Geisterfer-Lowrance, A. A., Kass, S., Tanigawa, G., Vosberg, H. P., McKenna, W., Seidman, C. E., et al. (1990). A molecular basis for familial hypertrophic cardiomyopathy: a beta cardiac myosin heavy chain gene missense mutation. Cell, 62, 999–1006.

    Article  CAS  PubMed  Google Scholar 

  18. Hajjar, R. J., Gwathmey, J. K., Briggs, G. M., & Morgan, J. P. (1988). Differential effect of DPI 201–106 on the sensitivity of the myofilaments to Ca2+ in intact and skinned trabeculae from control and myopathic human hearts. J Clin Invest, 82, 1578–1584.

    Article  CAS  PubMed  Google Scholar 

  19. He, H., Javadpour, M. M., Latif, F., Tardiff, J. C., & Ingwall, J. S. (2007). R-92L and R-92W mutations in cardiac troponin T lead to distinct energetic phenotypes in intact mouse hearts. Biophys J, 93, 1834–1844.

    Article  CAS  PubMed  Google Scholar 

  20. Ho, C., Sweitzer, N. K., McDonough, B., Maron, B. J., Casey, S. A., Seidman, J. G., et al. (2002). Assessment of diastolic function with doppler tissue imaging to predict genotype in preclinical hypertrophic cardiomyopathy. Circulation, 105, 2992–2997.

    Article  PubMed  Google Scholar 

  21. Hoffmann, B., Schmidt-Traub, H., Perrot, A., Osterziel, K. J., & Gessner, R. (2001). First mutation in cardiac troponin C, L29Q, in a patient with hypertrophic cardiomyopathy. Hum Mutat, 17, 524.

    Article  CAS  PubMed  Google Scholar 

  22. Hofmann, P. A., Hartzell, H. C., & Moss, R. L. (1991). Alterations in Ca2+ sensitive tension due to partial extraction of C-protein from rat skinned cardiac myocytes and rabbit skeletal muscle fibers. J Gen Physiol, 97, 1141–1163.

    Article  CAS  PubMed  Google Scholar 

  23. Homsher, E., Lee, D. M., Morris, C., Pavlov, D., & Tobacman, L. S. (2000). Regulation of force and unloaded sliding speed in single thin filaments: effects of regulatory proteins and calcium. J Physiol, 524, 233–243.

    Article  CAS  PubMed  Google Scholar 

  24. Jarcho, J. A., McKenna, W., Pare, J. A., Solomon, S. D., Holcombe, R. F., Dickie, S., et al. (1989). Mapping a gene for familial hypertrophic cardiomyopathy to chromosome 14q1. N Engl J Med, 321, 1372–1378.

    Article  CAS  PubMed  Google Scholar 

  25. Jacques, A., Hoskins, A., Kentish, J. C., & Marston, S. B. (2008). From genotype to phenotype: a longitudinal study of a patient with hypertrophic cardiomyopathy due to a mutation in the MYBPC3 gene. J Muscle Res Cell Motility, 29, 239–246.

    Article  Google Scholar 

  26. Javadpour, M. M., Tardiff, J. C., Pinz, I., & Ingwall, J. S. (2003). Decreased energetics in murine hearts bearing the R92Q mutation in cardiac troponin T. J Clin Invest, 112, 768–775.

    CAS  PubMed  Google Scholar 

  27. Keller, D. I., Coirault, C., Rau, T., Cheav, T., Weyand, M., Amann, K., et al. (2004). Human homozygous R403W mutant cardiac myosin presents disproportionate enhancement of mechanical and enzymatic properties. J Mol Cell Cardiol, 36, 355–362.

    Article  CAS  PubMed  Google Scholar 

  28. Kimura, A., Harada, H., Park, J. E., Nishi, H., Satoh, M., Takahashi, M., et al. (1997). Mutations in the cardiac troponin I gene associated with hypertrophic cardiomyopathy. Nat Genet, 16, 379–382.

    Article  CAS  PubMed  Google Scholar 

  29. Knollmann, B. C., Blatt, S. A., Horton, K., de Freitas, F., Miller, T., Bell, M., et al. (2001). Inotropic stimulation induces cardiac dysfunction in transgenic mice expressing a troponin T (I79N) mutation linked to familial hypertrophic cardiomyopathy. J Biol Chem, 276, 10039–10048.

    Article  CAS  PubMed  Google Scholar 

  30. Kulikovskaya, I., McClellan, G., Levine, R., & Winegrad, S. (2003). Effect of extraction of myosin binding protein C on contractility of rat heart. Am J Physiol Heart Circ Physiol, 285, H857–H865.

    CAS  PubMed  Google Scholar 

  31. Landstrom, A. P., Parvatiyar, M. S., Pinto, J. R., Marquardt, M. L., Bos, J. M., Tester, D. J., et al. (2008). Molecular and functional characterization of novel hypertrophic cardiomyopathy susceptibility mutations in TNNC1-encoded troponin C. J Mol Cell Cardiol, 45(2), 281–288.

    Article  CAS  PubMed  Google Scholar 

  32. Lankford, E. B., Epstein, N. D., Fananapazir, L., & Sweeney, H. L. (1995). Abnormal contractile properties of muscle fibers expressing beta-myosin heavy chain gene mutations in patients with hypertrophic cardiomyopathy. J Clin Invest, 95, 1409–1414.

    Article  CAS  PubMed  Google Scholar 

  33. Lin, D., Bobkova, A., Homsher, E., & Tobacman, L. S. (1996). Altered cardiac troponin T in vitro function in the presence of a mutation implicated in familial hypertrophic cardiomyopathy. J Clin Invest, 97(12), 2842–8.

    Article  CAS  PubMed  Google Scholar 

  34. Lowey, S. (2002). Functional consequences of mutations in the myosin heavy chain at sites implicated in familial hypertrophic cardiomyopathy. Trends Cardiovasc Med, 12, 348–354.

    Article  CAS  PubMed  Google Scholar 

  35. Lowey, S., Lesko, M., Rovner, A. S., Hodges, A. R., White, S. L., Low, R. B., et al. (2008). Functional effects of the hypertrophic cardiomyopathy R403Q mutation are different in an alpha- or beta-myosin heavy chain backbone. J Biol Chem, 283, 20579–2089.

    Article  CAS  PubMed  Google Scholar 

  36. Marian, A. J. (2000). Pathogenesis of diverse clinical and pathological phenotypes in hypertrophic cardiomyopathy. Lancet, 355, 58–60.

    Article  CAS  PubMed  Google Scholar 

  37. Marian, A. J., & Roberts, R. (2001). The molecular genetic basis for hypertrophic cardiomyopathy. J Mol Cell Cardiol, 33(4), 655–670.

    Article  CAS  PubMed  Google Scholar 

  38. Miller, G., Maycock, J., White, E., Peckham, M., & Calaghan, S. (2003). Heterologous expression of wild-type and mutant beta-cardiac myosin changes the contractile kinetics of cultured mouse myotubes. J Physiol, 548, 167–174.

    Article  CAS  PubMed  Google Scholar 

  39. Mogensen, J., Klausen, I. C., Pedersen, A. K., Egeblad, H., Bross, P., Kruse, T. A., et al. (1999). Alpha-cardiac actin is a novel disease gene in familial hypertrophic cardiomyopathy. J Clin Invest, 103, R39–43.

    Article  CAS  PubMed  Google Scholar 

  40. Morano, I., Bletz, C., Wojciechowski, R., & Ruegg, J. C. (1991). Modulation of crossbridge kinetics by myosin isoenzymes in skinned human heart fibers. Circ Res, 68, 614–618.

    CAS  PubMed  Google Scholar 

  41. Morimoto, S., Yanaga, F., Minatami, R., & Ohtsuki, I. (1998). Ca2+-sensitizing effects of the mutations at Ile-79 and Arg-92 of troponin T in hypertrophic cardiomyopathy. Am J Physiol, 275, C200–C207.

    CAS  PubMed  Google Scholar 

  42. Mulieri, L. A., Barnes, W., Leavitt, B. J., Ittleman, F. P., LeWinter, M. M., Alpert, N. R., et al. (2002). Alterations of myocardial dynamic stiffness implicating abnormal crossbridge function in human mitral regurgitation heart failure. Circ Res, 90, 66–72.

    Article  CAS  PubMed  Google Scholar 

  43. Narolska, N. A., van Loon, R. B., Boontje, N. M., Zaremba, R., Penas, S. E., Russell, J., et al. (2005). Myocardial contraction is 5-fold more economical in ventricular than in atrial human tissue. Cardiovasc Res, 65, 221–229.

    Article  CAS  PubMed  Google Scholar 

  44. Palmiter, K. A., Tyska, M. J., Haeberle, J. R., Alpert, N. R., Fananapazir, L., & Warshaw, D. M. (2000). R403Q and L908V mutant beta-cardiac myosin from patients with familial hypertrophic cardiomyopathy exhibit enhanced mechanical performance at the single molecule level. J Muscle Res Cell Motil, 21, 609–620.

    Article  CAS  PubMed  Google Scholar 

  45. Pinto, J. R., Parvatiyar, M. S., Jones, M. A., Liang, J., Ackerman, M. J., & Potter, J. D. (2009). A functional and structural study of troponin C mutations related to hypertrophic cardiomyopathy. J Biol Chem, 284, 19090–19100.

    Article  CAS  PubMed  Google Scholar 

  46. Piroddi, N., Belus, A., Scellini, B., Tesi, C., Giunti, G., Cerbai, E., et al. (2007). Tension generation and relaxation in single myofibrils from human atrial and ventricular myocardium. Pflugers Arch, 454, 63–73.

    Article  CAS  PubMed  Google Scholar 

  47. Poggesi, C., Tesi, C., & Stehle, R. (2005). Sarcomeric determinants of striated muscle relaxation kinetics. Pflügers Arch, 449, 505–517.

    Article  CAS  PubMed  Google Scholar 

  48. Poetter, K., Jiang, H., Hassanzadeh, S., Master, S. R., Chang, A., Dalakas, M. C., et al. (1996). Mutations in either the essential or regulatory light chains of myosin are associated with a rare myopathy in human heart and skeletal muscle. Nat Genet, 13, 63–69.

    Article  CAS  PubMed  Google Scholar 

  49. Redwood, C., Lohmann, K., Bing, W., Esposito, G. M., Elliott, K., Abdulrazzak, H., et al. (2000). Investigation of a truncated cardiac troponin T that causes familial hypertrophic cardiomyopathy: Ca2+ regulatory properties of reconstituted thin filaments depend on the ratio of mutant to wild-type protein. Circ Res, 86, 1146–1152.

    CAS  PubMed  Google Scholar 

  50. Richard, P., Charron, P., Carrier, L., Ledeuil, C., Cheav, T., Pichereau, C., et al. (2003). Hypertrophic cardiomyopathy: distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation, 107, 2227–2232.

    Article  PubMed  Google Scholar 

  51. Robinson, P., Griffiths, P. J., Watkins, H., & Redwood, C. S. (2007). Dilated and hypertrophic cardiomyopathy mutations in troponin and alpha-tropomyosin have opposing effects on the calcium affinity of cardiac thin filaments. Circ Res, 101, 1266–1273.

    Article  CAS  PubMed  Google Scholar 

  52. Robinson, P., Mirza, M., Knott, A., Abdulrazzak, H., Willott, R., Marston, S., et al. (2002). Alterations in thin filament regulation induced by a human cardiac troponin T mutant that causes dilated cardiomyopathy are distinct from those induced by troponin T mutants that cause hypertrophic cardiomyopathy. J Biol Chem, 277, 40710–40716.

    Article  CAS  PubMed  Google Scholar 

  53. Roopnarine, O., & Leinwand, L. A. (1998). Functional analysis of myosin mutations that cause familial hypertrophic cardiomyopathy. Biophys J, 75, 3023–3030.

    Article  CAS  PubMed  Google Scholar 

  54. Sachs, F. (1999). Practical limits on the maximal speed of solution exchange for patch clamp experiments. Biophys J, 1999(77), 682–690.

    Article  Google Scholar 

  55. Sata, M., & Ikebe, M. (1996). Functional analysis of the mutations in the human cardiac beta-myosin that are responsible for familial hypertrophic cardiomyopathy. Implication for the clinical outcome. J Clin Invest, 98, 2866–2873.

    Article  CAS  PubMed  Google Scholar 

  56. Satoh, M., Takahashi, M., Sakamoto, T., Hiroe, M., Marumo, F., & Kimura, A. (1999). Structural analysis of the titin gene in hypertrophic cardiomyopathy: identification of a novel disease gene. Biochem Biophys Res Commun, 262, 411–417.

    Article  CAS  PubMed  Google Scholar 

  57. Seidman, J. G., & Seidman, C. (2001). The genetic basis for cardiomyopathy: from mutation identification to mechanistic paradigms. Cell, 104, 557–567.

    Article  CAS  PubMed  Google Scholar 

  58. Spindler, M., Saupe, K. W., Christe, M. E., Sweeney, H. L., Seidman, C. E., Seidman, J. G., et al. (1998). Diastolic dysfunction and altered energetics in the alphaMHC403/+ mouse model of familial hypertrophic cardiomyopathy. J Clin Invest, 101, 1775–1783.

    Article  CAS  PubMed  Google Scholar 

  59. Stehle, R., Solzin, J., Iorga, B., & Poggesi, C. (2009). Insights into the kinetics of Ca2+-regulated contraction and relaxation from myofibril studies. Pflügers Arch, 458, 337–357.

    Article  CAS  PubMed  Google Scholar 

  60. Sweeney, H. L., Feng, H. S., Yang, Z., & Watkins, H. (1998). Functional analyses of troponin T mutations that cause hypertrophic cardiomyopathy: insights into disease pathogenesis and troponin function. Proc Natl Acad Sci USA, 95, 14406–14410.

    Article  CAS  PubMed  Google Scholar 

  61. Sweeney, H. L., Straceski, A. J., Leinwand, L. A., Tikunov, B. A., & Faust, L. (1994). Heterologous expression of a cardiomyopathic myosin that is defective in its actin interaction. J Biol Chem, 269, 1603–1605.

    CAS  PubMed  Google Scholar 

  62. Tardiff, J. C., Hewett, T. E., Palmer, B. M., Olsson, C., Factor, S. M., Moore, R. L., et al. (1999). Cardiac troponin T mutations result in allele-specific phenotypes in a mouse model for hypertrophic cardiomyopathy. J Clin Invest, 104, 469–481.

    Article  CAS  PubMed  Google Scholar 

  63. Tesi, C., Colomo, F., Nencini, S., Piroddi, N., & Poggesi, C. (2000). The effect of inorganic phosphate on force generation in single myofibrils from rabbit skeletal muscle. Biophys J, 78, 3081–3092.

    Article  CAS  PubMed  Google Scholar 

  64. Tesi, C., Piroddi, N., Colomo, F., & Poggesi, C. (2002). Relaxation kinetics following sudden Ca2+ reduction in single myofibrils from skeletal muscle. Biophys J, 83, 2142–2151.

    Article  CAS  PubMed  Google Scholar 

  65. Thierfelder, L., Watkins, H., MacRae, C., Lamas, R., McKenna, W., Vosberg, H. P., et al. (1994). Alpha-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: a disease of the sarcomere. Cell, 77, 701–712.

    Article  PubMed  Google Scholar 

  66. Tyska, M. J., Hayes, E., Giewat, M., Seidman, C. E., Seidman, J. G., & Warshaw, D. M. (2000). Single molecule mechanics of R403Q cardiac myosin isolated from the mouse model of familial hypertrophic cardiomyopathy. CircRes, 86, 737–744.

    CAS  Google Scholar 

  67. van der Velden, J., Klein, L. J., Zaremba, R., Boontje, N. M., Huybregts, M. A., Stooker, W., et al. (2001). Effects of calcium, inorganic phosphate, and pH on isometric force in single skinned cardiomyocytes from donor and failing human hearts. Circulation, 104, 1140–1146.

    Article  Google Scholar 

  68. van Dijk, S. J., Dooijes, D., dos Remedios, C., Michels, M., Lamers, J. M., Winegrad, S., et al. (2009). Cardiac myosin-binding protein C mutations and hypertrophic cardiomyopathy: haploin sufficiency, deranged phosphorylation, and cardiomyocyte dysfunction. Circulation, 119(11), 1473–1483.

    Article  PubMed  CAS  Google Scholar 

  69. Vignier, N., Schlossarek, S., Fraysse, B., Mearini, G., Krämer, E., Pointu, H., et al. (2009). Nonsense-mediated mRNA decay and ubiquitin-proteasome system regulate cardiac myosin-binding protein C mutant levels in cardiomyopathic mice. Circ Res, 105, 239–248.

    Article  CAS  PubMed  Google Scholar 

  70. Watkins, H., Conner, D., Thierfelder, L., Jarcho, J. A., MacRae, C., McKenna, W. J., et al. (1995). Mutations in the cardiac myosin binding protein-C gene on chromosome 11 cause familial hypertrophic cardiomyopathy. Nat Genet, 11, 434–437.

    Article  CAS  PubMed  Google Scholar 

  71. Wolff, M. R., Buck, S. H., Stoker, S. W., Greaser, M. L., & Mentzer, R. M. (1996). Myofibrillar calcium sensitivity of isometric tension is increased in human dilated cardiomyopathies: role of altered beta-adrenergically mediated protein phosphorylation. J Clin Invest, 98, 167–176.

    Article  CAS  PubMed  Google Scholar 

  72. Yamashita, H., Tyska, M. J., Warshaw, D. M., Lowey, S., & Trybus, K. M. (2000). Functional consequences of mutations in the smooth muscle myosin heavy chain at sites implicated in familial hypertrophic cardiomyopathy. J Biol Chem, 275, 28045–28052.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support by Telethon-Italy (grant # GGP07133), Ente Cassa di Risparmio di Firenze, and European Union (FP7-HEALTH-2009-single-stage, BIG-HEART 241577) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corrado Poggesi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrantini, C., Belus, A., Piroddi, N. et al. Mechanical and Energetic Consequences of HCM-Causing Mutations. J. of Cardiovasc. Trans. Res. 2, 441–451 (2009). https://doi.org/10.1007/s12265-009-9131-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-009-9131-8

Keywords

Navigation