Skip to main content
Log in

Investigation of ligament strains in lateral ankle sprain using computational simulation of accidental injury cases

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

In order to clearly understand the injury mechanism of the Lateral ankle sprain (LAS), we purposed to evaluate the ligament strains in the human ankle joint during the real accidental events of LAS. Three different accidental ankle sprain cases were selected based on their reported motions, which are rarely captured under laboratory settings. The ligament strains were investigated using a computational ankle joint model based on the kinematic data from these case reports. Our result revealed that the excessive ankle inversion coupled with slight internal rotation could lead to LAS. Therefore, the ankle inversion and internal rotation should be primarily considered in LAS studies. This study quantitatively contributes to our understanding of the LAS mechanism in sport and clinical research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Kaumeyer and T. R. Malone, Ankle injuries: anatomical and biomechanical considerations necessary for the development of an injury prevention program, J. Orthop. Sports Phys. Ther., 1 (3) (1980) 171–177.

    Article  Google Scholar 

  2. M. W. Wolfe, T. L. Uhl, C. G. Mattacola and L. C. McCluskey, Management of ankle sprains, Am. Fam. Physician, 63 (1) (2001) 93–104.

    Google Scholar 

  3. A. Anandacoomarasamy and L. Barnsley, Long term outcomes of inversion ankle injuries, Br. J. Sports Med., 39 (3) (2005) e14.

    Article  Google Scholar 

  4. D. T. Fong, Y. Y. Chan, K. M. Mok, P. Sh. Yung and K. M. Chan, Understanding acute ankle ligamentous sprain injury in sports, Sports Med. Arthrosc. Rehabil. Ther. Technol., 1 (14) (2009) Doi: 10.1186/1758-2555-1-14.

  5. T. Kobayashi and K. Gamada, Lateral ankle sprain and chronic ankle instability: A critical review, Foot Ankle Spec., 7 (4) (2014) 298–326.

    Article  Google Scholar 

  6. C. Woods, R. Hawkins, M. Hulse and A. Hodson, The football association medical research programme: an audit of injuries in professional football: An analysis of ankle sprains, Br. J. Sports Med., 37 (3) (2003) 233–238.

    Article  Google Scholar 

  7. D. T. Fong, Y. Hong, L. K. Chan, P. S. Yung and K. M. Chan, A systematic review on ankle injury and ankle sprain in sports, Sports Med., 37 (1) (2007) 73–94.

    Article  Google Scholar 

  8. J. M. Iaquinto and J. S. Wayne, Computational model of the lower leg and foot/ankle complex: application to arch stability, J. Biomech. Eng., 132 (2) (2010) 021009.

    Article  Google Scholar 

  9. J. M. Hollis, R. D. Blasier, C. M. Flahiff and O. E. Hofmann, Biomechanical comparison of reconstruction techniques in simulated lateral ankle ligament injury, Am. J. Sports Med., 23 (6) (1995) 678–682.

    Article  Google Scholar 

  10. P. C. Liacouras and J. S. Wayne, Computational modeling to predict mechanical function of joints: application to the lower leg with simulation of two cadaver studies, J. Biomech. Eng., 129 (6) (2007) 811–817.

    Article  Google Scholar 

  11. F. Wei, S. C. Hunley, J. W. Powell and R. C. Haut, Development and validation of a computational model to study the effect of foot constraint on ankle injury due to external rotation, Ann. Biomed. Eng., 39 (2) (2011) 756–765.

    Article  Google Scholar 

  12. F. Wei, J. E. Braman, B. T. Weaver and R. C. Haut, Determination of dynamic ankle ligament strains from a computational model driven by motion analysis based kinematic data, J. Biomech., 44 (15) (2011) 2636–2641.

    Article  Google Scholar 

  13. D. E. Attarian, H. J. McCrackin, D. P. DeVito, J. H. McElhaney and W. E. Garrett Jr., Biomechanical characteristics of human ankle ligaments, Foot Ankle, 6 (2) (1985) 54–58.

    Article  Google Scholar 

  14. S. Siegler, J. Block and C. D. Schneck, The mechanical characteristics of the collateral ligaments of the human ankle joint, Foot Ankle, 8 (5) (1988) 234–242.

    Article  Google Scholar 

  15. J. R. Funk, G. W. Hall, J. R. Grandall and W. D. Pilkey, Linear and quasi-linear viscoelastic characterization of ankle ligaments, J. Biomech. Eng., 122 (1) (2000) 15–22.

    Article  Google Scholar 

  16. L. S. Dias, The lateral ankle sprain: an experimental study, J. Trauma., 19 (4) (1979) 266–269.

    Article  Google Scholar 

  17. C. S. Parenteau, D. C. Viano and P. Y. Petit, Biomechanical properties of human cadaveric ankle-subtalar joints in quasi-static loading, J. Biomech. Eng., 120 (1) (1998) 105–111.

    Article  Google Scholar 

  18. F. C. Wilson, H. O. Phillips and J. A. Gilbert, Plantar flexion injuries of the ankle. An experimental study, Clin. Orthop. Relat. Res., 306 (1994) 97–102.

    Google Scholar 

  19. O. Rasmussen and C. Kromann-Andersen, Experimental ankle injuries. Analysis of the traumatology of the ankle ligaments, Acta. Orthop. Scand., 54 (3) (1983) 356–362.

    Article  Google Scholar 

  20. M. R. Colville, R. A. Marder, J. J. Boyle and B. Zarins, Strain measurement in lateral ankle ligaments, Am. J. Sports Med., 18 (2) (1990) 196–200.

    Article  Google Scholar 

  21. B. P. Self, S. Harris and R. M. Greenwald, Ankle biomechanics during impact landings on uneven surfaces, Foot Ankle Int., 21 (2) (2000) 138–144.

    Article  Google Scholar 

  22. J. R. Funk, Ankle injury mechanisms: lessons learned from cadaveric studies, Clin. Anat., 24 (3) (2011) 350–361.

    Article  Google Scholar 

  23. R. Bahr, F. Pena, J. Shine, W. D. Lew and L. Engebretsen, Ligament force and joint motion in the intact ankle: A cadaveric study, Knee Surg. Sports Traumatol. Arthrosc., 6 (2) (1998) 115–121.

    Article  Google Scholar 

  24. K. M. Mok, D. T. Fong, T. Krosshaug, L. Engebretsen, A. S. Hung, P. S. Yung and K. M. Chan, Kinematics analysis of ankle inversion ligamentous sprain injuries in sports: 2 cases during the 2008 Beijing Olympics, Am. J. Sports Med., 39 (7) (2011) 1548–1552.

    Article  Google Scholar 

  25. D. T. Fong, S. C. Ha, K. M. Mok, C. W. Chan and K. M. Chan, Kinematics analysis of ankle inversion ligamentous sprain injuries in sports: Five cases from televised tennis competitions, Am. J. Sports Med., 40 (11) (2012) 2627–2632.

    Article  Google Scholar 

  26. B. P. Self and D. Paine, Ankle biomechanics during four landing techniques, Med. Sci. Sports Exerc., 33 (8) (2001) 1338–1344.

    Article  Google Scholar 

  27. J. B. Myers, B. L. Riemann, J. H. Hwang, F. H. Fu and S. M. Lephart, Effect of peripheral afferent alteration of the lateral ankle ligaments on dynamic stability, Am. J. Sports Med., 31 (4) (2003) 498–506.

    Article  Google Scholar 

  28. A. Mitchell, R. Dyson, T. Hale and C. Abraham, Biomechanics of ankle instability. Part 1: Reaction time to simulated ankle sprain, Med. Sci. Sports Exerc., 40 (8) (2008) 1515–1521.

    Article  Google Scholar 

  29. D. T. Fong, Y. Hong, Y. Shima, T. Krosshaug, P. S. Yung and K. M. Chan, Biomechanics of supination ankle sprain: a case report of an accidental injury event in the laboratory, Am. J. Sports Med., 37 (4) (2009) 822–827.

    Article  Google Scholar 

  30. E. Kristianslund, R. Bahr and T. Krosshaug, Kinematics and kinetics of an accidental lateral ankle sprain, J. Biomech., 44 (14) (2011) 2576–2578.

    Article  Google Scholar 

  31. D. Gehring, D. Wissler, G. Mornieux and A. Gollhofer, How to sprain your ankle -a biomechanical case report of an inversion trauma, J. Biomech., 46 (1) (2013) 175–178.

    Article  Google Scholar 

  32. M. Batbaatar, T. Purevsuren, K. Kim and Y. H. Kim, The effect of ankle plantar and dorsi flexion to the mechanism of lateral ankle sprain, Proc. of Korean Society of Mechanical Engineering, Busan, Korea 2015 76–77.

    Google Scholar 

  33. T. Marqueen, J. Owen, G. Nicandri, J. Wayne and J. Carr, Comparison of the syndesmotic staple to the transsyndesmotic screw: A biomechanical study, Foot Ankle Int., 26 (3) (2005) 224–230.

    Article  Google Scholar 

  34. F. H. Netter and J. T. Hansen, Atlas of human anatomy, Third Ed., Icon learning systems, LLC (2003).

    Google Scholar 

  35. J. W. Rohen, C. Yokochi and E. Lutjen-Drecoll, Color atlas of anatomy: a photographic study of the human body, Seventh Ed., Schattauer GmbH (2011).

    Google Scholar 

  36. F. Wei, D. T. Fong, K. M. Chan and R. C. Haut, Estimation of ligament strains and joint moments in the ankle during a supination sprain injury, Comput. Methods Biomech. Biomed. Engin., 18 (3) (2015) 243–248.

    Article  Google Scholar 

  37. K. D. Button, F. Wei, E. G. Meyer and R. C. Haut, Specimen-specific computational models of ankle sprains produced in a laboratory setting, J. Biomech. Eng., 135 (4) (2013) 041001.

    Article  Google Scholar 

  38. G. Wu, S. Siegler, P. Allard, C. Kirtley, A. Leardini, D. Rosenbaum, M. Whittle, D. D. D’Lima, L. Cristofolini, H. Witte, O. Schmid and I. Stokes, Standardization and terminology committee of the international society of biomechanics, ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine, International Society of Biomechanics, J. Biomech., 35 (4) (2002) 543–548.

    Article  Google Scholar 

  39. F. Wei, M. R. Willwock, E. G. Meyer, J. W. Powell and R. C. Haut, A biomechanical investigation of ankle injury under excessive external foot rotation in the human cadaver, J. Biomech. Eng., 132 (9) (2010) 091001.

    Article  Google Scholar 

  40. W. M. Park, K. Kim and Y. H. Kim, Changes in range of motion, intradiscal pressure, and facet joint force after intervertebral disc and facet joint degeneration in the cervical spine, J. Mech. Sci. Eng., 29 (7) (2015) 3031–3038.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoon Hyuk Kim.

Additional information

Recommended by Associate Editor Seungbum Koo

Yoon Hyuk Kim received his B.S., M.S. and Ph.D. in mechanical engineering from Korea Advanced Institute of Science and Technology (KAIST) in 1992, 1994, and 2000, respectively. He is a Professor in the Department of Mechanical Engineering, Kyung Hee University, Korea. His research interests include biomechanical and biomedical engineering.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Purevsuren, T., Batbaatar, M., Kim, K. et al. Investigation of ligament strains in lateral ankle sprain using computational simulation of accidental injury cases. J Mech Sci Technol 31, 3627–3632 (2017). https://doi.org/10.1007/s12206-017-0650-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-017-0650-y

Keywords

Navigation