Skip to main content

Advertisement

Log in

Information Processing Biases in the Brain: Implications for Decision-Making and Self-Governance

  • Original Paper
  • Published:
Neuroethics Aims and scope Submit manuscript

Abstract

To make behavioral choices that are in line with our goals and our moral beliefs, we need to gather and consider information about our current situation. Most information present in our environment is not relevant to the choices we need or would want to make and thus could interfere with our ability to behave in ways that reflect our underlying values. Certain sources of information could even lead us to make choices we later regret, and thus it would be beneficial to be able to ignore that information. Our ability to exert successful self-governance depends on our ability to attend to sources of information that we deem important to our decision-making processes. We generally assume that, at any moment, we have the ability to choose what we pay attention to. However, recent research indicates that what we pay attention to is influenced by our prior experiences, including reward history and past successes and failures, even when we are not aware of this history. Even momentary distractions can cause us to miss or discount information that should have a greater influence on our decisions given our values. Such biases in attention thus raise questions about the degree to which the choices that we make may be poorly informed and not truly reflect our ability to otherwise exert self-governance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Mack, A., and Irvin Rock. 1998. Inattentional blindness. Cambridge: MIT Press.

    Google Scholar 

  2. Rensink, R.A., J. Kevin O’Regan, and James J. Clark. 1997. To see or not to see: the need for attention to perceive changes in scenes. Psychological Science 8: 368–373.

    Article  Google Scholar 

  3. Gottlieb, J., Mary Hayhoe, Okihide Hikosaka, and Antonio Rangel. 2014. Attention, reward, and information seeking. Journal of Neuroscience 34: 15497–15504.

    Article  Google Scholar 

  4. Krajbich, I., Carrie Armel, and Antonio Rangel. 2010. Visual fixations and the computation and comparison of value in simple choice. Nature Neuroscience 13: 1292–1298.

    Article  Google Scholar 

  5. Krajbich, I., and Antonio Rangel. 2011. Multialternative drift-diffusion model predicts the relationship between visual fixations and choice in value-based decisions. Proceedings of the National Academy of Sciences 108: 13852–13857.

    Article  Google Scholar 

  6. Krajbich, I., Dingchao Lu, Colin Camerer, and Antonio Rangel. 2012. The attentional drift diffusion model extends to simple purchasing decisions. Frontiers in Cognitive Science 3: 193.

    Google Scholar 

  7. Yantis, Steven, and John Jonides. 1984. Abrupt visual onsets and selective attention: evidence from visual search. Journal of Experimental Psychology: Humann Perception and Performance 10: 601–621.

    Google Scholar 

  8. Yantis, Steven, and John Jonides. 1990. Abrupt visual onsets and selective attention: voluntary versus automatic allocation. Journal of Experimental Psychology: Human Perception and Performance 16: 121–134.

    Google Scholar 

  9. Egeth, Howard E., and Steven Yantis. 1997. Visual attention: control, representation, and time course. Annual Review of Psychology 48: 269–297.

    Article  Google Scholar 

  10. Duncan, John, and Glyn W. Humphreys. 1989. Visual-search and stimulus similarity. Psychological Review 96: 433–458.

    Article  Google Scholar 

  11. Itti, Laurent, and Christof Koch. 2001. Computational modeling of visual attention. Nature Reviews Neuroscience 2: 194–203.

    Article  Google Scholar 

  12. Theeuwes, Jan. 1992. Perceptual selectivity for color and form. Perception & Psychophysics 51: 599–606.

    Article  Google Scholar 

  13. Theeuwes, Jan. 1994. Stimulus-driven capture and attentional set - selective search for color and visual abrupt onsets. Journal of Experimental Psychology: Human Perception and Performance 20: 799–806.

    Google Scholar 

  14. Folk, Charles L., Rodger W. Remington, and James C. Johnston. 1992. Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception and Performance 18: 1030–1044.

    Google Scholar 

  15. Folk, Charles L., Andrew B. Leber, and Howard E. Egeth. 2002. Made you blink! contingent attentional capture produces a spatial blink. Perception & Psychophysics 64: 741–753.

    Article  Google Scholar 

  16. Serences, John T., Sarah Shomstein, Andrew B. Leber, Xavier Golay, Howard E. Egeth, and Steven Yantis. 2005. Coordination of voluntary and stimulus-driven attentional control in human cortex. Psychological Science 16: 114–122.

    Article  Google Scholar 

  17. Wolfe, Jeremy M., Kyle R. Cave, and Susan L. Franzel. 1989. Guided search: An alternative to the feature integration model for visual search. Journal of Experimental Psychology: Human Perception and Performance 15: 419–433.

    Google Scholar 

  18. Bacon, William F., and Howard E. Egeth. 1994. Overriding stimulus-driven attentional capture. Perception & Psychophysics 55: 485–496.

    Article  Google Scholar 

  19. Leber, Andrew B., and Howard E. Egeth. 2006. It’s undercontrol: top-down search strategies can override attentional capture. Psychonomic Bulletin & Review 13: 132–138.

    Article  Google Scholar 

  20. Desimone, Robert, and John Duncan. 1995. Neural mechanisms of selective visual attention. Annual Review of Neuroscience 18: 193–222.

    Article  Google Scholar 

  21. Reynolds, John H., Leonardo Chelazzi, and Robert Desimone. 1999. Competitive mechanisms subserve attention in macaque areas V2 and V4. Journal of Neuroscience 19: 1736–1753.

  22. Cohen, Jonathan D., William M. Pearstein, Todd S. Braver, Leigh E. Nystrom, Douglas C. Noll, John Jonides, and Edward E. Smith. 1997. Temporal dynamics of brain activation during a working memory task. Nature 386: 604–608.

    Article  Google Scholar 

  23. Courtney, Susan M., Laurent Petit, José M. Maisog, Leslie G. Ungerleider, and James V. Haxby. 1998. An area specialized for spatial working memory in human frontal cortex. Science 279: 1347–1351.

  24. Courtney, Susan M., Leslie G. Ungerleider, Katrina Keil, and James V. Haxby. 1997. Transient and sustained activity in a distributed neural system for human working memory. Nature 386: 608–611.

  25. D’Esposito, Mark, Brad R. Postle, Dana Ballard, and Jessica Lease. 1999. Maintenance versus manipulation of information held in working memory: An event-related fMRI study. Brain and Cognition 41: 66–86.

    Article  Google Scholar 

  26. Miller, Earl K., Cynthia A. Erickson, and Robert Desimone. 1996. Neural mechanisms of visual working memory in prefrontal cortex of the macaque. Journal of Neuroscience 16: 5154–5167.

    Article  Google Scholar 

  27. Montojo, Caroline A., and Susan M. Courtney. 2008. Differential neural activation for updating rule versus stimulus information in working memory. Neuron 59: 173–182.

    Article  Google Scholar 

  28. Rainer, Gregor, Wael F. Asaad, and Earl K. Miller. 1998. Selective representation of relevant information by neurons in the primate prefrontal cortex. Nature 393: 577–579.

    Article  Google Scholar 

  29. Wallis, Jonathan D., Kathleen C. Anderson, and Earl K. Miller. 2001. Single neurons in prefrontal cortex encode abstract rules. Nature 411: 953–956.

    Article  Google Scholar 

  30. Goldman-Rakic, Patricia S. 1995. Cellular basis of working memory. Neuron 14: 477–485.

    Article  Google Scholar 

  31. Sala, Joseph B., and Susan M. Courtney. 2007. Binding of what and where during working memory maintenance. Cortex 43: 5–21.

    Article  Google Scholar 

  32. Fuster, Joaquin M. 2001. The prefrontal cortex – An update: time is of the essence. Neuron 30: 319–333.

    Article  Google Scholar 

  33. Jan, Gläscher, Nathaniel Daw, Peter Dayan, and John P. O'Doherty. 2010. States versus rewards: dissociable neural prediction error signals underlying model-based and model-free reinforcement learning. Neuron 66: 585–595.

    Article  Google Scholar 

  34. Badre, David, and Mark D’Esposito. 2009. Is the rostro-caudal axis of the frontal lobe hierarchical? Nature Reviews Neuroscience 10: 659–669.

    Article  Google Scholar 

  35. Michael, Desmurget, and Angela Sirigu. 2009. A parietal-premotor network for movement intention and motor awareness. Trends in Cognitive Science 13: 411–419.

    Article  Google Scholar 

  36. Miller, Earl K., and Jonathan D. Cohen. 2001. An integrative theory of prefrontal cortex function. Annual Review in Neuroscience 24: 167–202.

    Article  Google Scholar 

  37. Dixon, Matthew L., and Kalina Christoff. 2012. The decision to engage cognitive control is driven by expected reward-value: neural and behavioral evidence. PloS one 7: e51637.

    Article  Google Scholar 

  38. Braver, Todd S., Jeremy R. Gray, and C. Burgess Gregory. 2007. Explaining the many varieties of working memory variation: Dual mechanisms of cognitive control. In Variation in working memory, eds. A. Conway, C. Jarrold, M. Kane, A. Miyake, and J. Towse, 76–106. New York: Oxford University Press.

    Google Scholar 

  39. Anderson, Brian A. 2014. On the precision of goal-directed attentional selection. Journal of Experimental Psychology: Human Perception and Performance 40: 1755–1762.

  40. Anderson, Brian A., and Charles L. Folk. 2010. Variations in the magnitude of attentional capture: testing a two-process model. Attention, Perception, & Psychophysics 72: 342–352.

  41. Serences, John T. 2008. Value-based modulations in human visual cortex. Neuron 60: 1169–1181.

    Article  Google Scholar 

  42. Serences, John T., and Sameer Saproo. 2010. Population response profile in early visual cortex are biased in favor of more valuable stimuli. Journal of Neurophysiology 104: 76–87.

    Article  Google Scholar 

  43. Kiss, Monica, Jon Driver, and Martin Eimer. 2009. Reward priority of visual target singletons modulates event-related potential signatures of attentional selection. Psychological Science 20: 245–251.

    Article  Google Scholar 

  44. Navalpakkam, Vidhya, Christof Koch, Antonio Rangel, and Pietro Perona. 2010. Optimal reward harvesting in complex perceptual environments. Proceedings of the National Academy of Sciences of the United States of America 107: 5232–5237.

    Article  Google Scholar 

  45. Woodman, Geoffrey F., and Steven J. Luck. 1999. Electrophysiological measurement of rapid shifts of attention during visual search. Nature 400: 867–869.

    Article  Google Scholar 

  46. Maljkovic, Vera, and Ken Nakayama. 1994. Priming of pop-out: I. role of features. Memory and Cognition 22: 657–672.

    Article  Google Scholar 

  47. Kristjansson, Árni, Ólafía Sigurjonsdottir, and Jon Driver. 2010. Fortune and reversals of fortune in visual search: reward contingencies for pop-out targets affect search efficiency and target repetition effects. Attention, Perception, & Psychophysics 72: 1229–1236.

    Article  Google Scholar 

  48. C., Della Libera, and Leonardo Chelazzi. 2009. Learning to attend and to ignore is a matter of gains and losses. Psychological Science 20: 778–784.

    Article  Google Scholar 

  49. Raymond, Jane E., and Jennifer L. O’Brien. 2009. Selective visual attention and motivation: the consequences of value learning in an attentional blink task. Psychological Science 20: 981–988.

    Article  Google Scholar 

  50. Krebs, Ruth M., Carsten N. Boehler, and Marty G. Woldorff. 2010. The influence of reward associations on conflict processing in the stroop task. Cognition 117: 341–347.

    Article  Google Scholar 

  51. Krebs, Ruth M., Carsten N. Boehler, Tobias Egner, and Marty G. Woldorff. 2011. The neural underpinnings of how reward associations can both guide and misguide attention. Journal of Neuroscience 31: 9752–9759.

    Article  Google Scholar 

  52. Anderson, Brian A., Patryk A. Laurent, and Steven Yantis. 2011a. Learned value magnifies salience-based attentional capture. PloS One 6: e27926.

    Article  Google Scholar 

  53. Anderson, Brian A., Patryk A. Laurent, and Steven Yantis. 2011b. Value-driven attentional capture. Proceedings of the National Academy of Sciences of the United States of America 108: 10367–10371.

    Article  Google Scholar 

  54. Anderson, Brian A. 2013. A value-driven mechanism of attentional selection. Journal of Vision 13: 1–16.

    Google Scholar 

  55. Anderson, Brian A., Patryk A. Laurent, and Steven Yantis. 2012. Generalization of value-based attentional priority. Visual Cognition 20: 647–658.

    Article  Google Scholar 

  56. Failing, Michael F., and Jan Theeuwes. 2014. Exogenous visual orienting by reward. Journal of Vision 14: 1–9.

    Article  Google Scholar 

  57. Anderson, Brian A., and Steven Yantis. 2012. Value-driven attentional and oculomotor capture during goal-directed, unconstrained viewing. Attention, Perception, & Psychophysics 74: 1644–1653.

    Article  Google Scholar 

  58. Theeuwes, Jan, and Artem V. Belopolsky. 2012. Reward grabs the eye: oculomotor capture by rewarding stimuli. Vision Research 74: 80–85.

    Article  Google Scholar 

  59. Anderson, Brian A., and Steven Yantis. 2013. Persistence of value-driven attentional capture. Journal of Experimental Psychology: Human Perception and Performance 39: 6–9.

    Google Scholar 

  60. Hickey, Clayton, Leonardo Chelazzi, and Jan Theeuwes. 2010a. Reward changes salience in human vision via the anterior cingulate. Journal of Neuroscience 30: 11096–11103.

    Article  Google Scholar 

  61. Hickey, Clayton, Leonardo Chelazzi, and Jan Theeuwes. 2010b. Reward guides vision when it’s your thing: trait reward-seeking in reward-mediated visual priming. PloS One 5: e14087.

    Article  Google Scholar 

  62. Kyllingsbaek, Søren, Werner X. Schneider, and Claus Bundesen. 2001. Automatic attraction of attention to former targets in visual displays of letters. Perception & Psychophysics 12: 763–764.

    Google Scholar 

  63. Roelfsema, Pieter R., Arjen van Ooyen, and Takeo Watanabe. 2010. Perceptual learning rules based on reinforcers and attention. Trends in Cognitive Sciences 14: 64–71.

    Article  Google Scholar 

  64. Shiffrin, Richard M., and Walter Schneider. 1977. Controlled and automatic human information processing: II. perceptual learning, automatic attending, and a general theory. Psychological Review 84: 127–190.

    Article  Google Scholar 

  65. Watanabe, Takeo, José E. Náñez, and Yuka Sasaki. 2001. Perceptual learning without perception. Nature 413: 844–848.

    Article  Google Scholar 

  66. Jimura, Koji, Hannah S. Locke, and Todd S. Braver. 2010. Prefrontal cortex mediation of cognitive enhancement in rewarding motivational contexts. Proceedings of the National Academy of Sciences of the United States of America 107: 8871–8876.

    Article  Google Scholar 

  67. Pessoa, Luiz, and Jan B. Engelmann. 2010. Embedding reward signals into perception and cognition. Frontiers in Neuroscience 4: 1–8.

    Article  Google Scholar 

  68. Sali, Anthony W., Brian A. Anderson, and Steven Yantis. 2014. The role of reward prediction in the control of attention. Journal of Experimental Psychology: Human Perception and Performance 40: 1654–1664.

    Google Scholar 

  69. Kamin, Leon J. (1969). Punishment and aversive behavior. B. A. Campbell, R. M. Church Appleton-Century-Crofts, New York. 279–296.

  70. Pearce, John M., and Geoffrey Hall. 1980. A model for pavlovian learning: variations in the effectiveness of conditioned but not of unconditioned stimuli. Psychological Review 87: 532–552.

    Article  Google Scholar 

  71. Pelley, Le, E. Mike, Daniel Pearson, Oren Griffiths, and Tom Beesley. 2015. When goals conflict with values: counterproductive attentional and oculomotor capture by reward-related stimuli. Journal of Experimental Psychology: General 144: 158–171.

    Article  Google Scholar 

  72. Buckner, Berno, Artem V. Belopolsky, and Jan Theeuwes. 2014. Distractors that signal reward attract the eyes. Visual Cognition 23: 1–24.

    Article  Google Scholar 

  73. Mine, Chisato, and Jun Saiki. 2015. Task-irrelevant stimulus-reward association induces value-driven attentional capture. Attention, Perception, & Psychophysics 77: 1896–1907.

    Article  Google Scholar 

  74. Pearson, Daniel, Chris Donkin, Sophia C. Tran, Steven B. Most, and Michael E. Le Pelley. 2015. Cognitive control and counterproductive oculomotor capture by reward-related stimuli. Visual Cognition 23: 41–66.

    Article  Google Scholar 

  75. Anderson, Brian A. 2015. Value-driven attentional priority is context specific. Psychonomic Bulletin and Review 22: 750–756.

    Article  Google Scholar 

  76. Anderson, Brian A., Monica L. Faulkner, Jessica J. Rilee, Steven Yantis, and Cherie L. Marvel. 2013. Attentional bias for non-drug reward is magnified in addiction. Experimental and Clinical Psychopharmacology 21: 499–506.

    Article  Google Scholar 

  77. Anderson, Brian A., Sharif I. Kronemer, Jessica J. Rilee, Ned Sacktor, and Cherie L. Marvel. In press. Reward, attention, and HIV-related risk in HIV+ individuals. Neurobiology of Disease doi:10.1016/j.nbd.2015.10.018.

  78. Gluth, Sebastian, Tobias Sommer, Jörg Rieskamp, and Christian Büchel. 2015. Effective connectivity between hippocampus and ventromedial prefrontal cortex control preferential choices from memory. Neuron 86: 1078–1090.

    Article  Google Scholar 

  79. Gong, M., and Sheng Li. 2014. Learned reward association improves visual working memory. Journal of Experimental Psychology: Human Perception and Performance 40: 841–856.

    Google Scholar 

  80. Infanti, E., Clayton Hickey, and Massimo Turatto. 2015. Reward associations impact both iconic and visual working memory. Vision Research 107: 22–29.

    Article  Google Scholar 

  81. Doallo, S., Eva Z. Patai, and Anna C. Nobre. 2013. Reward associations magnify memory-based biases on perception. Journal of Cognitive Neurosicnece 25: 245–257.

    Article  Google Scholar 

  82. Thomas, P. M. J., Lily FitzGibbon, and Jane E. Raymond. 2016. Value conditioning modulates visual working memory processes. Journal of Experimental Psychology: Human Perception and Performance 42:6–10

    Google Scholar 

  83. Field, Matt, and W. Miles Cox. 2008. Attentional bias in addictive behaviors: A review of its development, causes, and consequences. Drug and Alcohol Dependence 97: 1–20.

    Article  Google Scholar 

  84. Carpenter, Kenneth M., Elizabeth Schreiber, Sarah Church, and David McDowell. 2006. Drug stroop performance: relationships with primary substance of use and treatment outcome in a drug-dependent outpatient sample. Addictive Behaviors 31: 174–181.

    Article  Google Scholar 

  85. Marissen, Marlies A.E., Ingmar H.A. Franken, Andrew J. Waters, Peter Blanken, Wim van den Brink, and Vincent M. Hendriks. 2006. Attentional bias predicts heroin relapse following treatment. Addiction 101: 1306–1312.

    Article  Google Scholar 

  86. Robinson, T.E., and Kent C. Berridge. 1993. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Research Reviews 18: 247–291.

    Article  Google Scholar 

  87. Roper, Zachary J.J., Shaun P. Vecera, and Jatin G. Vaidya. 2014. Value-driven attentional capture in adolescence. Psychological Science 25: 1987–1993.

    Article  Google Scholar 

  88. Sali, Anthony W., Brian A. Anderson, and Steven Yantis. 2015. Learned states of preparatory attentional control. Journal of Experimental Psychology: Learning, Memory, and Cognition 41: 1790–1805.

    Google Scholar 

  89. McNab Fiona, Peter Zeidman, Robb B. Rutledge, Peter Smittenaar, Harriet R. Brown, Rick A. Adams, and Raymond J. Dolan. 2015. Age-related changes in working memory and the ability to ignore distraction. Proceedings of the National Academy of Sciences of the United States of America 112: 6515–6518.

  90. Arnsten Amy, F.T. 2009. Stress signalling pathways that impair prefrontal cortex structure and function. Nature Reviews Neuroscience 10: 410–422.

    Article  Google Scholar 

  91. Anderson, Brian A., Patryk A. Laurent, and Steven Yantis. 2014. Value-driven attentional priority signals in human basal ganglia and visual cortex. Brain Research 1587: 88–96.

    Article  Google Scholar 

  92. Anderson, Brian A., Hiroto Kuwabara, Dean F. Wong, Emily G. Gean, Rahmim Arman, James R. Brasic, Noble George, Boris Frolov, Susan M. Courtney, and Steven Yantis. 2016. The role of dopamine in value-based attentional orienting. Current Biology. 26: 550–555.

    Article  Google Scholar 

  93. Hikosaka, Okihide, Shinya Yamamoto, Masaharu Yasuda, and Hyoung F. Kim. 2013. Why skill matters. Trends in Cognitive Sciences 17: 434–441.

    Article  Google Scholar 

  94. Vijayraghavan, Susheel, Min Wang, Shari G. Birbaum, Graham V. Williams, and Amy F.T. Arnsten. 2007. Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory. Nature Neuroscience 10: 376–384.

    Article  Google Scholar 

  95. Kohno, Milky, Erika L. Nurmi, Christopher P. Laughlin, Angelica M. Morales, Emma H. Gail, Gerhard S. Hellemann, and Edythe D. London. 2016. Functional genetic variation in dopamine signaling moderates prefrontal cortical activity during risky decision making. Neuropsychopharmacology 41: 695–703.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony W. Sali.

Ethics declarations

Funding

This work was supported by U.S. National Institutes of Health grant R01-DA013165 and National Endowment for the Humanities grant RZ-50892-08 to S.M.C.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sali, A.W., Anderson, B.A. & Courtney, S.M. Information Processing Biases in the Brain: Implications for Decision-Making and Self-Governance. Neuroethics 11, 259–271 (2018). https://doi.org/10.1007/s12152-016-9251-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12152-016-9251-1

Keywords

Navigation