Skip to main content

Advertisement

Log in

Early Behavioral Alterations and Increased Expression of Endogenous Retroviruses Are Inherited Across Generations in Mice Prenatally Exposed to Valproic Acid

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Prenatal treatment with the antiepileptic drug valproic acid (VPA) is associated with a significant risk of somatic anomalies, neurodevelopmental delays, and 7–10× increase in the incidence of autism spectrum disorders (ASD) in children. Rodents exposed to VPA in pregnancy show birth defects, deficits in neurodevelopment, and cognitive/social anomalies resembling those of ASD children. Mechanisms of VPA neurobehavioral toxicity are still unclear but as VPA is a non-selective inhibitor of histone deacetylases, epigenetic modifications are likely involved. This study was aimed to evaluate the transgenerational impact of prenatal VPA exposure on mouse early behavioral development, studying F1, F2, and F3 generations after VPA challenge on gestational day (GD) 10.5. We also analyzed in brain and in peripheral blood mononuclear cells the expression levels of different endogenous retrovirus (ERV) families, potential biomarkers of derailed brain development, since human ERVs have been implicated in the pathogenesis of neurodevelopmental disorders (NDDs) such as ASD. Somatic effects of VPA were evident only in F1 generation and more markedly in the female sex. Across F1 and F2 generations, VPA delayed righting reflex, increased motor activity, and reduced ultrasonic vocalizations. The behavioral changes in F3 are milder though in the same direction. VPA increased expression of most ERVs across the three generations in brain and blood. In utero VPA induced neurodevelopmental alterations more marked in the maternal lineage that persisted also in F3, suggesting ERVs as possible downstream effectors of the VPA epigenetic alterations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Meador KJ, Baker GA, Finnell RH, Kalayjian LA, Liporace JD, Loring DW, Mawer G, Pennell PB et al (2006) In utero antiepileptic drug exposure: fetal death and malformations. Neurology 67(3):407–412. https://doi.org/10.1212/01.wnl.0000227919.81208.b2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bromley RL, Mawer GE, Briggs M, Cheyne C, Clayton-Smith J, Garcia-Finana M, Kneen R, Lucas SB et al (2013) The prevalence of neurodevelopmental disorders in children prenatally exposed to antiepileptic drugs. J Neurol, Neurosurg,Psychiatry 84(6):637–643. https://doi.org/10.1136/jnnp-2012-304270

    Article  Google Scholar 

  3. Baker GA, Bromley RL, Briggs M, Cheyne CP, Cohen MJ, Garcia-Finana M, Gummery A, Kneen R, Loring DW, Mawer G, Meador KJ, Shallcross R, Clayton-Smith J, Liverpool, Manchester Neurodevelopment G (2015) IQ at 6 years after in utero exposure to antiepileptic drugs: a controlled cohort study. Neurology 84 (4):382–390. doi:https://doi.org/10.1212/WNL.0000000000001182

    Article  Google Scholar 

  4. Cohen MJ, Meador KJ, Browning N, Baker GA, Clayton-Smith J, Kalayjian LA, Kanner A, Liporace JD et al (2011) Fetal antiepileptic drug exposure: motor, adaptive, and emotional/behavioral functioning at age 3 years. Epilepsy Behav : E&B 22(2):240–246. https://doi.org/10.1016/j.yebeh.2011.06.014

    Article  Google Scholar 

  5. Cohen MJ, Meador KJ, Browning N, May R, Baker GA, Clayton-Smith J, Kalayjian LA, Kanner A, Liporace JD, Pennell PB, Privitera M, Loring DW, group Ns (2013) Fetal antiepileptic drug exposure: adaptive and emotional/behavioral functioning at age 6 years. Epilepsy Behav : E&B 29 (2):308–315. doi:https://doi.org/10.1016/j.yebeh.2013.08.001

    Article  Google Scholar 

  6. Christensen J, Gronborg TK, Sorensen MJ, Schendel D, Parner ET, Pedersen LH, Vestergaard M (2013) Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. Jama 309(16):1696–1703. https://doi.org/10.1001/jama.2013.2270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ornoy A, Weinstein-Fudim L, Ergaz Z (2015) Prenatal factors associated with autism spectrum disorder (ASD). Reprod Toxicol 56:155–169. https://doi.org/10.1016/j.reprotox.2015.05.007

    Article  CAS  PubMed  Google Scholar 

  8. Wagner GC, Reuhl KR, Cheh M, McRae P, Halladay AK (2006) A new neurobehavioral model of autism in mice: pre- and postnatal exposure to sodium valproate. J Autism Dev Disord 36(6):779–793. https://doi.org/10.1007/s10803-006-0117-y

    Article  PubMed  Google Scholar 

  9. Roullet FI, Lai JK, Foster JA (2013) In utero exposure to valproic acid and autism--a current review of clinical and animal studies. Neurotoxicol Teratol 36:47–56. https://doi.org/10.1016/j.ntt.2013.01.004

    Article  CAS  PubMed  Google Scholar 

  10. Nicolini C, Fahnestock M (2017) The valproic acid-induced rodent model of autism. Exp Neurol. https://doi.org/10.1016/j.expneurol.2017.04.017

    Article  CAS  Google Scholar 

  11. Schneider T, Przewlocki R (2005) Behavioral alterations in rats prenatally exposed to valproic acid: animal model of autism. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology 30(1):80–89. https://doi.org/10.1038/sj.npp.1300518

    Article  CAS  Google Scholar 

  12. Kataoka S, Takuma K, Hara Y, Maeda Y, Ago Y, Matsuda T (2013) Autism-like behaviours with transient histone hyperacetylation in mice treated prenatally with valproic acid. Int J Neuropsychopharmacol 16(1):91–103. https://doi.org/10.1017/S1461145711001714

    Article  CAS  PubMed  Google Scholar 

  13. Manent JB, Jorquera I, Mazzucchelli I, Depaulis A, Perucca E, Ben-Ari Y, Represa A (2007) Fetal exposure to GABA-acting antiepileptic drugs generates hippocampal and cortical dysplasias. Epilepsia 48(4):684–693. https://doi.org/10.1111/j.1528-1167.2007.01056.x

    Article  CAS  PubMed  Google Scholar 

  14. Schneider T, Roman A, Basta-Kaim A, Kubera M, Budziszewska B, Schneider K, Przewlocki R (2008) Gender-specific behavioral and immunological alterations in an animal model of autism induced by prenatal exposure to valproic acid. Psychoneuroendocrinology 33(6):728–740. https://doi.org/10.1016/j.psyneuen.2008.02.011

    Article  CAS  PubMed  Google Scholar 

  15. Kazlauskas N, Campolongo M, Lucchina L, Zappala C, Depino AM (2016) Postnatal behavioral and inflammatory alterations in female pups prenatally exposed to valproic acid. Psychoneuroendocrinology 72:11–21. https://doi.org/10.1016/j.psyneuen.2016.06.001

    Article  CAS  PubMed  Google Scholar 

  16. Kolozsi E, Mackenzie RN, Roullet FI, deCatanzaro D, Foster JA (2009) Prenatal exposure to valproic acid leads to reduced expression of synaptic adhesion molecule neuroligin 3 in mice. Neuroscience 163(4):1201–1210. https://doi.org/10.1016/j.neuroscience.2009.07.021

    Article  CAS  PubMed  Google Scholar 

  17. Fukuchi M, Nii T, Ishimaru N, Minamino A, Hara D, Takasaki I, Tabuchi A, Tsuda M (2009) Valproic acid induces up- or down-regulation of gene expression responsible for the neuronal excitation and inhibition in rat cortical neurons through its epigenetic actions. Neurosci Res 65(1):35–43. https://doi.org/10.1016/j.neures.2009.05.002

    Article  CAS  PubMed  Google Scholar 

  18. Tung EW, Winn LM (2010) Epigenetic modifications in valproic acid-induced teratogenesis. Toxicol Appl Pharmacol 248(3):201–209. https://doi.org/10.1016/j.taap.2010.08.001

    Article  CAS  PubMed  Google Scholar 

  19. Kawanai T, Ago Y, Watanabe R, Inoue A, Taruta A, Onaka Y, Hasebe S, Hashimoto H, Matsuda T, Takuma K (2016) Prenatal exposure to histone deacetylase inhibitors affects gene expression of autism-related molecules and delays neuronal maturation. Neurochem Res 41 (10):2574–2584. doi:https://doi.org/10.1007/s11064-016-1969-y

    Article  CAS  Google Scholar 

  20. Rodgers AB, Morgan CP, Leu NA, Bale TL (2015) Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress. Proc Natl Acad Sci USA 112(44):13699–13704. https://doi.org/10.1073/pnas.1508347112

    Article  CAS  PubMed  Google Scholar 

  21. Vassoler FM, White SL, Schmidt HD, Sadri-Vakili G, Pierce RC (2013) Epigenetic inheritance of a cocaine-resistance phenotype. Nat Neurosci 16(1):42–47. https://doi.org/10.1038/nn.3280

    Article  CAS  PubMed  Google Scholar 

  22. Weber-Stadlbauer U, Richetto J, Labouesse MA, Bohacek J, Mansuy IM, Meyer U (2017) Transgenerational transmission and modification of pathological traits induced by prenatal immune activation. Mol Psychiatry 22(1):102–112. https://doi.org/10.1038/mp.2016.41

    Article  CAS  PubMed  Google Scholar 

  23. Choi CS, Gonzales EL, Kim KC, Yang SM, Kim JW, Mabunga DF, Cheong JH, Han SH et al (2016) The transgenerational inheritance of autism-like phenotypes in mice exposed to valproic acid during pregnancy. Sci Rep 6:36250. https://doi.org/10.1038/srep36250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bishop SL, Farmer C, Bal V, Robinson EB, Willsey AJ, Werling DM, Havdahl KA, Sanders SJ, Thurm A (2017) Identification of developmental and behavioral markers associated with genetic abnormalities in autism spectrum disorder. Am J Psychiatry 174 (6):576–585. doi:https://doi.org/10.1176/appi.ajp.2017.16101115

    Article  Google Scholar 

  25. Wilson RB, Enticott PG, Rinehart NJ (2018) Motor development and delay: advances in assessment of motor skills in autism spectrum disorders. Curr Opin Neurol 31(2):134–139. https://doi.org/10.1097/WCO.0000000000000541

    Article  PubMed  Google Scholar 

  26. Buja A, Volfovsky N, Krieger AM, Lord C, Lash AE, Wigler M, Iossifov I (2018) Damaging de novo mutations diminish motor skills in children on the autism spectrum. Proc Natl Acad Sci USA 115(8):E1859–E1866. https://doi.org/10.1073/pnas.1715427115

    Article  CAS  PubMed  Google Scholar 

  27. Craig F, Lorenzo A, Lucarelli E, Russo L, Fanizza I, Trabacca A (2018) Motor competency and social communication skills in preschool children with autism spectrum disorder. Autism Res : Off J Int Soc Autism Res. https://doi.org/10.1002/aur.1939

    Article  Google Scholar 

  28. Varcin KJ, Jeste SS (2017) The emergence of autism spectrum disorder: insights gained from studies of brain and behaviour in high-risk infants. Curr Opin Psychiatry 30(2):85–91. https://doi.org/10.1097/YCO.0000000000000312

    Article  PubMed  PubMed Central  Google Scholar 

  29. LeBarton ES, Iverson JM (2016) Associations between gross motor and communicative development in at-risk infants. Infant Behav Dev 44:59–67. https://doi.org/10.1016/j.infbeh.2016.05.003

    Article  PubMed  PubMed Central  Google Scholar 

  30. Martin KB, Hammal Z, Ren G, Cohn JF, Cassell J, Ogihara M, Britton JC, Gutierrez A et al (2018) Objective measurement of head movement differences in children with and without autism spectrum disorder. Mol Autism 9:14. https://doi.org/10.1186/s13229-018-0198-4

    Article  PubMed  PubMed Central  Google Scholar 

  31. Harris SR (2017) Early motor delays as diagnostic clues in autism spectrum disorder. Eur J Pediatr 176(9):1259–1262. https://doi.org/10.1007/s00431-017-2951-7

    Article  PubMed  Google Scholar 

  32. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921. https://doi.org/10.1038/35057062

    Article  CAS  PubMed  Google Scholar 

  33. Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420(6915):520–562. https://doi.org/10.1038/nature01262

    Article  CAS  PubMed  Google Scholar 

  34. Gorbunova V, Boeke JD, Helfand SL, Sedivy JM (2014) Human genomics. Sleeping dogs of the genome. Science 346 (6214):1187–1188. doi:https://doi.org/10.1126/science.aaa3177

    Article  CAS  Google Scholar 

  35. Kury P, Nath A, Creange A, Dolei A, Marche P, Gold J, Giovannoni G, Hartung HP, Perron H (2018) Human endogenous retroviruses in neurological diseases. Trends Mol Med 24 (4):379–394. doi:https://doi.org/10.1016/j.molmed.2018.02.007

    Article  Google Scholar 

  36. Brattås PL, Jönsson ME, Fasching L, Nelander Wahlestedt J, Shahsavani M, Falk R, Falk A, Jern P, Parmar M, Jakobsson J (2017) TRIM28 Controls a gene regulatory network based on endogenous retroviruses in human neural progenitor cells. Cell Rep 18 (1):1–11. doi:https://doi.org/10.1016/j.celrep.2016.12.010

    Article  Google Scholar 

  37. Manghera M, Ferguson J, Douville R (2014) Endogenous retrovirus-K and nervous system diseases. Curr Neurol Neurosci Rep 14(10):488. https://doi.org/10.1007/s11910-014-0488-y

    Article  CAS  PubMed  Google Scholar 

  38. Perron H, Hamdani N, Faucard R, Lajnef M, Jamain S, Daban-Huard C, Sarrazin S, LeGuen E, Houenou J, Delavest M, Moins-Teisserenc H, Bengoufa D, Yolken R, Madeira A, Garcia-Montojo M, Gehin N, Burgelin I, Ollagnier G, Bernard C, Dumaine A, Henrion A, Gombert A, Le Dudal K, Charron D, Krishnamoorthy R, Tamouza R, Leboyer M (2012) Molecular characteristics of human endogenous retrovirus type-W in schizophrenia and bipolar disorder. Transl Psychiatry 2:e201. doi:https://doi.org/10.1038/tp.2012.125

    Article  CAS  Google Scholar 

  39. Slokar G, Hasler G (2015) Human endogenous retroviruses as pathogenic factors in the development of schizophrenia. Front Psychiatry 6:183. doi:https://doi.org/10.3389/fpsyt.2015.00183

  40. Douville R, Liu J, Rothstein J, Nath A (2011) Identification of active loci of a human endogenous retrovirus in neurons of patients with amyotrophic lateral sclerosis. Ann Neurol 69(1):141–151. https://doi.org/10.1002/ana.22149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Douville RN, Nath A (2017) Human endogenous retrovirus-K and TDP-43 expression bridges ALS and HIV neuropathology. Front Microbiol 8:1986. doi:https://doi.org/10.3389/fmicb.2017.01986

  42. Douville RN, Nath A (2014) Human endogenous retroviruses and the nervous system. Handb Clin Neurol 123:465–485. https://doi.org/10.1016/B978-0-444-53488-0.00022-5

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hurst TP, Magiorkinis G (2015) Activation of the innate immune response by endogenous retroviruses. J Gen Virol 96(Pt 6):1207–1218. https://doi.org/10.1099/jgv.0.000017

    Article  CAS  PubMed  Google Scholar 

  44. Hurst TP, Magiorkinis G (2017) Epigenetic control of human endogenous retrovirus expression: focus on regulation of long-terminal repeats (LTRs). Viruses 9 (6). doi:https://doi.org/10.3390/v9060130

    Article  Google Scholar 

  45. Balestrieri E, Arpino C, Matteucci C, Sorrentino R, Pica F, Alessandrelli R, Coniglio A, Curatolo P, Rezza G, Macciardi F, Garaci E, Gaudi S, Sinibaldi-Vallebona P (2012) HERVs expression in autism spectrum disorders. PloS one 7 (11):e48831. doi:https://doi.org/10.1371/journal.pone.0048831

    Article  CAS  Google Scholar 

  46. Balestrieri E, Pitzianti M, Matteucci C, D'Agati E, Sorrentino R, Baratta A, Caterina R, Zenobi R et al (2014) Human endogenous retroviruses and ADHD. World J Biol Psychiatry 15(6):499–504. https://doi.org/10.3109/15622975.2013.862345

    Article  PubMed  Google Scholar 

  47. Balestrieri E, Cipriani C, Matteucci C, Capodicasa N, Pilika A, Korca I, Sorrentino R, Argaw-Denboba A et al (2016) Transcriptional activity of human endogenous retrovirus in Albanian children with autism spectrum disorders. New Microbiol 39(3):228–231

    PubMed  Google Scholar 

  48. Nadeau MJ, Manghera M, Douville RN (2015) Inside the envelope: endogenous retrovirus-K ENV as a biomarker and therapeutic target. Front Microbiol 6:1244. doi:https://doi.org/10.3389/fmicb.2015.01244

  49. Cipriani C, Ricceri L, Matteucci C, De Felice A, Tartaglione AM, Argaw-Denboba A, Pica F, Grelli S, Calamandrei G, Sinibaldi Vallebona P, Balestrieri E (2018) High expression of endogenous retroviruses from intrauterine life to adulthood in two mouse models of autism spectrum disorders. Sci Rep 8 (1):629. doi:https://doi.org/10.1038/s41598-017-19035-w

  50. Brunelli SA, Hofer MA (2007) Selective breeding for infant rat separation-induced ultrasonic vocalizations: developmental precursors of passive and active coping styles. Behav Brain Res 182(2):193–207. https://doi.org/10.1016/j.bbr.2007.04.014

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zimmerberg B, Rosenthal AJ, Stark AC (2003) Neonatal social isolation alters both maternal and pup behaviors in rats. Dev Psychobiol 42(1):52–63. https://doi.org/10.1002/dev.10086

    Article  PubMed  Google Scholar 

  52. Scattoni ML, Gandhy SU, Ricceri L, Crawley JN (2008) Unusual repertoire of vocalizations in the BTBR T+tf/J mouse model of autism. PloS one 3(8):e3067. https://doi.org/10.1371/journal.pone.0003067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. De Felice A, Scattoni ML, Ricceri L, Calamandrei G (2015) Prenatal exposure to a common organophosphate insecticide delays motor development in a mouse model of idiopathic autism. PloS one 10(3):e0121663. https://doi.org/10.1371/journal.pone.0121663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. De Filippis B, Ricceri L, Laviola G (2010) Early postnatal behavioral changes in the Mecp2-308 truncation mouse model of Rett syndrome. Genes, Brain, Behav 9(2):213–223. https://doi.org/10.1111/j.1601-183X.2009.00551.x

    Article  Google Scholar 

  55. Ricceri L, Markina N, Valanzano A, Fortuna S, Cometa MF, Meneguz A, Calamandrei G (2003) Developmental exposure to chlorpyrifos alters reactivity to environmental and social cues in adolescent mice. Toxicol Appl Pharmacol 191(3):189–201

    Article  CAS  Google Scholar 

  56. Chiarotti F, Alleva E, Bignami G (1987) Problems of test choice and data analysis in behavioral teratology: the case of prenatal benzodiazepines. Neurotoxicol Teratol 9(2):179–186

    Article  CAS  Google Scholar 

  57. Misic B, Sporns O (2016) From regions to connections and networks: new bridges between brain and behavior. Curr Opin Neurobiol 40:1–7. https://doi.org/10.1016/j.conb.2016.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Podgorac J, Pesic V, Pavkovic Z, Martac L, Kanazir S, Filipovic L, Sekulic S (2016) Early physical and motor development of mouse offspring exposed to valproic acid throughout intrauterine development. Behav Brain Res 311:99–109. https://doi.org/10.1016/j.bbr.2016.05.023

    Article  CAS  PubMed  Google Scholar 

  59. Kim P, Park JH, Kwon KJ, Kim KC, Kim HJ, Lee JM, Kim HY, Han SH et al (2013) Effects of Korean red ginseng extracts on neural tube defects and impairment of social interaction induced by prenatal exposure to valproic acid. Food Chem Toxy: Int J Publ Br Ind Biol Res Assoc 51:288–296. https://doi.org/10.1016/j.fct.2012.10.011

    Article  CAS  Google Scholar 

  60. Kim JW, Seung H, Kwon KJ, Ko MJ, Lee EJ, Oh HA, Choi CS, Kim KC et al (2014) Subchronic treatment of donepezil rescues impaired social, hyperactive, and stereotypic behavior in valproic acid-induced animal model of autism. PloS one 9(8):e104927. https://doi.org/10.1371/journal.pone.0104927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Barrett CE, Hennessey TM, Gordon KM, Ryan SJ, McNair ML, Ressler KJ, Rainnie DG (2017) Developmental disruption of amygdala transcriptome and socioemotional behavior in rats exposed to valproic acid prenatally. Mol Autism 8:42. https://doi.org/10.1186/s13229-017-0160-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Servadio M, Melancia F, Manduca A, di Masi A, Schiavi S, Cartocci V, Pallottini V, Campolongo P et al (2016) Targeting anandamide metabolism rescues core and associated autistic-like symptoms in rats prenatally exposed to valproic acid. Transl Psychiatry 6(9):e902. https://doi.org/10.1038/tp.2016.182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Servadio M, Manduca A, Melancia F, Leboffe L, Schiavi S, Campolongo P, Palmery M, Ascenzi P et al (2017) Impaired repair of DNA damage is associated with autistic-like traits in rats prenatally exposed to valproic acid. Eur Neuropsychopharmacol: J Eur Coll Neuropsychopharmacol. https://doi.org/10.1016/j.euroneuro.2017.11.014

    Article  CAS  Google Scholar 

  64. May T, Cornish K, Rinehart NJ (2016) Gender profiles of behavioral attention in children with autism spectrum disorder. J Atten Disord 20 (7):627–635. doi:https://doi.org/10.1177/1087054712455502

    Article  Google Scholar 

  65. Teitelbaum P, Teitelbaum O, Nye J, Fryman J, Maurer RG (1998) Movement analysis in infancy may be useful for early diagnosis of autism. Proc Natl Acad Sci USA 95(23):13982–13987

    Article  CAS  Google Scholar 

  66. Esposito G, Venuti P, Maestro S, Muratori F (2009) An exploration of symmetry in early autism spectrum disorders: analysis of lying. Brain Dev 31(2):131–138. https://doi.org/10.1016/j.braindev.2008.04.005

    Article  PubMed  Google Scholar 

  67. Eggleston JD, Harry JR, Hickman RA, Dufek JS (2017) Analysis of gait symmetry during over-ground walking in children with autism spectrum disorder. Gait Posture 55:162–166. https://doi.org/10.1016/j.gaitpost.2017.04.026

    Article  PubMed  Google Scholar 

  68. Fox WM (1965) Reflex-ontogeny and behavioural development of the mouse. Anim Behav 13(2):234–241

    Article  CAS  Google Scholar 

  69. Roullet FI, Wollaston L, Decatanzaro D, Foster JA (2010) Behavioral and molecular changes in the mouse in response to prenatal exposure to the anti-epileptic drug valproic acid. Neuroscience 170(2):514–522. https://doi.org/10.1016/j.neuroscience.2010.06.069

    Article  CAS  PubMed  Google Scholar 

  70. Konopko MA, Densmore AL, Krueger BK (2017) Sexually dimorphic epigenetic regulation of brain-derived neurotrophic factor in fetal brain in the valproic acid model of autism spectrum disorder. Dev Neurosci. https://doi.org/10.1159/000481134

    Article  CAS  Google Scholar 

  71. Rasalam AD, Hailey H, Williams JH, Moore SJ, Turnpenny PD, Lloyd DJ, Dean JC (2005) Characteristics of fetal anticonvulsant syndrome associated autistic disorder. Dev Med Child Neurol 47(8):551–555

    Article  CAS  Google Scholar 

  72. Fujimura K, Mitsuhashi T, Takahashi T (2017) Adverse effects of prenatal and early postnatal exposure to antiepileptic drugs: validation from clinical and basic researches. Brain Dev 39 (8):635–643. doi:https://doi.org/10.1016/j.braindev.2017.03.026

    Article  Google Scholar 

  73. Gotlib D, Ramaswamy R, Kurlander JE, DeRiggi A, Riba M (2017) Valproic acid in women and girls of childbearing age. Curr Psychiatry Rep 19 (9):58. doi:https://doi.org/10.1007/s11920-017-0809-3

  74. Moldrich RX, Leanage G, She D, Dolan-Evans E, Nelson M, Reza N, Reutens DC (2013) Inhibition of histone deacetylase in utero causes sociability deficits in postnatal mice. Behav Brain Res 257:253–264. https://doi.org/10.1016/j.bbr.2013.09.049

    Article  CAS  PubMed  Google Scholar 

  75. Yang EJ, Ahn S, Lee K, Mahmood U, Kim HS (2016) Early behavioral abnormalities and perinatal alterations of PTEN/AKT pathway in valproic acid autism model mice. PloS one 11 (4):e0153298. doi:https://doi.org/10.1371/journal.pone.0153298

    Article  Google Scholar 

  76. Zhang R, Zhou J, Ren J, Sun S, Di Y, Wang H, An X, Zhang K et al (2018) Transcriptional and splicing dysregulation in the prefrontal cortex in valproic acid rat model of autism. Reprod Toxicol 77:53–61. https://doi.org/10.1016/j.reprotox.2018.01.008

    Article  CAS  PubMed  Google Scholar 

  77. Anshu K, Nair AK, Kumaresan UD, Kutty BM, Srinath S, Laxmi TR (2017) Altered attentional processing in male and female rats in a prenatal valproic acid exposure model of autism spectrum disorder. Autism Res: Off J Int Soc Autism Res 10(12):1929–1944. https://doi.org/10.1002/aur.1852

    Article  Google Scholar 

  78. Perez-Pouchoulen M, Miquel M, Saft P, Brug B, Toledo R, Hernandez ME, Manzo J (2016) Prenatal exposure to sodium valproate alters androgen receptor expression in the developing cerebellum in a region and age specific manner in male and female rats. Int J Dev Neurosci: Off J Int Soc Dev Neurosci 53:46–52. https://doi.org/10.1016/j.ijdevneu.2016.07.001

    Article  CAS  Google Scholar 

  79. Kim KC, Choi CS, Kim JW, Han SH, Cheong JH, Ryu JH, Shin CY (2016) MeCP2 modulates sex differences in the postsynaptic development of the valproate animal model of autism. Mol Neurobiol 53 (1):40–56. doi:https://doi.org/10.1007/s12035-014-8987-z

    Article  Google Scholar 

  80. Finsterer J, Scorza FA (2017) Effects of antiepileptic drugs on mitochondrial functions, morphology, kinetics, biogenesis, and survival. Epilepsy Res 136:5–11. https://doi.org/10.1016/j.eplepsyres.2017.07.003

    Article  CAS  PubMed  Google Scholar 

  81. Chen H, Dzitoyeva S, Manev H (2012) Effect of valproic acid on mitochondrial epigenetics. Eur J Pharmacol 690(1–3):51–59. https://doi.org/10.1016/j.ejphar.2012.06.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Komulainen T, Lodge T, Hinttala R, Bolszak M, Pietila M, Koivunen P, Hakkola J, Poulton J et al (2015) Sodium valproate induces mitochondrial respiration dysfunction in HepG2 in vitro cell model. Toxicology 331:47–56. https://doi.org/10.1016/j.tox.2015.03.001

    Article  CAS  PubMed  Google Scholar 

  83. Pei L, Wallace DC. Mitochondrial etiology of neuropsychiatric disorders. Biological Psychiatry 83 (9):722–730. doi:https://doi.org/10.1016/j.biopsych.2017.11.018

    Article  CAS  Google Scholar 

  84. Maksakova IA, Romanish MT, Gagnier L, Dunn CA, van de Lagemaat LN, Mager DL (2006) Retroviral elements and their hosts: insertional mutagenesis in the mouse germ line. PLoS genetics 2(1):e2. https://doi.org/10.1371/journal.pgen.0020002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang Y, Maksakova IA, Gagnier L, van de Lagemaat LN, Mager DL (2008) Genome-wide assessments reveal extremely high levels of polymorphism of two active families of mouse endogenous retroviral elements. PLoS genetics 4(2):e1000007. https://doi.org/10.1371/journal.pgen.1000007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bannert N, Kurth R (2006) The evolutionary dynamics of human endogenous retroviral families. Ann Rev Genomics Hum Genet 7:149–173. https://doi.org/10.1146/annurev.genom.7.080505.115700

    Article  CAS  Google Scholar 

  87. Marchi E, Kanapin A, Magiorkinis G, Belshaw R (2014) Unfixed endogenous retroviral insertions in the human population. J Virol 88(17):9529–9537. https://doi.org/10.1128/JVI.00919-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wildschutte JH, Williams ZH, Montesion M, Subramanian RP, Kidd JM, Coffin JM (2016) Discovery of unfixed endogenous retrovirus insertions in diverse human populations. Proc Nat Acad Sci USAm 113(16):E2326–E2334. https://doi.org/10.1073/pnas.1602336113

    Article  CAS  Google Scholar 

  89. Burmeister T, Ebert AD, Pritze W, Loddenkemper C, Schwartz S, Thiel E (2004) Insertional polymorphisms of endogenous HERV-K113 and HERV-K115 retroviruses in breast cancer patients and age-matched controls. AIDS Res Hum Retrovir 20(11):1223–1229. https://doi.org/10.1089/aid.2004.20.1223

    Article  CAS  PubMed  Google Scholar 

  90. Cakmak Guner B, Karlik E, Marakli S, Gozukirmizi N (2018) Detection of HERV-K6 and HERV-K11 transpositions in the human genome. Biomed Rep 9(1):53–59. https://doi.org/10.3892/br.2018.1096

    Article  PubMed  PubMed Central  Google Scholar 

  91. Guliyev M, Yilmaz S, Sahin K, Marakli S, Gozukirmizi N (2013) Human endogenous retrovirus-H insertion screening. Mol Med Rep 7(4):1305–1309. https://doi.org/10.3892/mmr.2013.1295

    Article  CAS  PubMed  Google Scholar 

  92. Lucchina L, Depino AM (2014) Altered peripheral and central inflammatory responses in a mouse model of autism. Autism Res: Off J Int Soc Autism Res 7(2):273–289. https://doi.org/10.1002/aur.1338

    Article  Google Scholar 

  93. Tai AK, Lin M, Chang F, Chen G, Hsiao F, Sutkowski N, Huber BT (2006) Murine Vbeta3+ and Vbeta7+ T cell subsets are specific targets for the HERV-K18 Env superantigen. J Immunol 177(5):3178–3184

    Article  CAS  Google Scholar 

  94. Perron H, Dougier-Reynaud HL, Lomparski C, Popa I, Firouzi R, Bertrand JB, Marusic S, Portoukalian J et al (2013) Human endogenous retrovirus protein activates innate immunity and promotes experimental allergic encephalomyelitis in mice. PloS one 8(12):e80128. https://doi.org/10.1371/journal.pone.0080128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Firouzi R, Rolland A, Michel M, Jouvin-Marche E, Hauw JJ, Malcus-Vocanson C, Lazarini F, Gebuhrer L et al (2003) Multiple sclerosis-associated retrovirus particles cause T lymphocyte-dependent death with brain hemorrhage in humanized SCID mice model. J Neurovirol 9(1):79–93. https://doi.org/10.1080/13550280390173328

    Article  CAS  PubMed  Google Scholar 

  96. Perron H, Jouvin-Marche E, Michel M, Ounanian-Paraz A, Camelo S, Dumon A, Jolivet-Reynaud C, Marcel F et al (2001) Multiple sclerosis retrovirus particles and recombinant envelope trigger an abnormal immune response in vitro, by inducing polyclonal Vbeta16 T-lymphocyte activation. Virology 287(2):321–332. https://doi.org/10.1006/viro.2001.1045

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Luigia Cancemi for expert animal care and Cosimo Curianò for his assistance in graphical editing. This work was supported by ISS 13/cal 508 “Identification of early markers in mouse models of autism spectrum disorders: role of endogenous retroviruses.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gemma Calamandrei.

Ethics declarations

All studies were carried out in accordance with the European and Italian legislation (2010/63/EU, Dl 26/2014, specific authorization 223/2011-B to GC).

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

ESM 1

(DOCX 25 kb)

Supplementary Fig. 4

F1 generation: a) body weight and b) body temperature shown by VPA- and VEH pups at different postnatal days of testing; c) Mean duration of USVs: VPA females showed shorter duration of calls than VEH at pnd 10. (PDF 882 kb)

Supplementary Fig. 5

Left panel: Scatterplots of first component obtained by PCA from two behavioral variables, locomotion and USVs (1st PCA comp Behaviour, y axis) and first component obtained by PCA from four ERV families, ETnII-β, ETnII-γ, MusD and IAP (1st PCA comp ERVs, x axis) across generations when all data are included in the analysis (i.e. both ML and PL datasets for F2 and F3); Right panel: Scatterplots of the same behavioural and ERV PCA components across generations after excluding PL datasets (from both F2 and F3 generations). Note how PL values were those closer to VEH ones: excluding them it makes treatment groups more distinguishable. (PDF 55 kb)

ESM 2

(PDF 5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tartaglione, A.M., Cipriani, C., Chiarotti, F. et al. Early Behavioral Alterations and Increased Expression of Endogenous Retroviruses Are Inherited Across Generations in Mice Prenatally Exposed to Valproic Acid. Mol Neurobiol 56, 3736–3750 (2019). https://doi.org/10.1007/s12035-018-1328-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1328-x

Keywords

Navigation