Skip to main content

Advertisement

Log in

MARCKS Is Necessary for Netrin-DCC Signaling and Corpus Callosum Formation

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Axons of the corpus callosum (CC), the white matter tract that connects the left and right hemispheres of the brain, receive instruction from a number of chemoattractant and chemorepulsant cues during their initial navigation towards and across the midline. While it has long been known that the CC is malformed in the absence of Myristoylated alanine-rich C-kinase substrate (MARCKS), evidence for a direct role of MARCKS in axon navigation has been lacking. Here, we show that MARCKS is necessary for Netrin-1 (NTN1) signaling through the DCC receptor, which is critical for axon guidance decisions. Marcks null (Marcks−/−) neurons fail to respond to exogenous NTN1 and are deficient in markers of DCC activation. Without MARCKS, the subcellular distributions of two critical mediators of NTN1-DCC signaling, the tyrosine kinases PTK2 and SRC, are disrupted. Together, this work establishes a novel role for MARCKS in axon dynamics and highlights the necessity of MARCKS as an organizer of DCC signaling at the membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gobius I, Richards L (2011) Creating connections in the developing brain: mechanisms regulating corpus callosum development. Colloquium Ser Dev Brain 2(1):1–48

    Article  Google Scholar 

  2. Serafini T, Colamarino SA, Leonardo ED, Wang H, Beddington R, Skarnes WC, Tessier-Lavigne M (1996) Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system. Cell 87(6):1001–1014

    Article  CAS  Google Scholar 

  3. Fazeli A, Dickinson SL, Hermiston ML, Tighe RV, Steen RG, Small CG, Stoeckli ET, Keino-Masu K et al (1997) Phenotype of mice lacking functional deleted in colorectal cancer (Dcc) gene. Nature 386(6627):796–804

    Article  CAS  Google Scholar 

  4. Varadarajan SG, Kong JH, Phan KD, Kao TJ, Panaitof SC, Cardin J, Eltzschig H, Kania A et al (2017) Netrin1 produced by neural progenitors, not floor plate cells, is required for axon guidance in the spinal cord. Neuron 94(4):790–799.e3

    Article  CAS  Google Scholar 

  5. Dominici C, Moreno-Bravo JA, Puiggros SR, Rappeneau Q, Rama N, Vieugue P, Bernet A, Mehlen P et al (2017) Floor-plate-derived netrin-1 is dispensable for commissural axon guidance. Nature 545(7654):350–354

    Article  CAS  Google Scholar 

  6. de la Torre JR, Höpker VH, Ming GL, Poo MM, Tessier-Lavigne M, Hemmati-Brivanlou A, Holt CE (1997) Turning of retinal growth cones in a netrin-1 gradient mediated by the netrin receptor DCC. Neuron 19(6):1211–1224

    Article  Google Scholar 

  7. Manitt C, Nikolakopoulou AM, Almario DR, Nguyen SA, Cohen-Cory S (2009) Netrin participates in the development of retinotectal synaptic connectivity by modulating axon arborization and synapse formation in the developing brain. J Neurosci 29(36):11065–11077

    Article  CAS  Google Scholar 

  8. Dent EW, Barnes AM, Tang F, Kalil K (2004) Netrin-1 and semaphorin 3A promote or inhibit cortical axon branching, respectively, by reorganization of the cytoskeleton. J Neurosci 24(12):3002–3012

    Article  CAS  Google Scholar 

  9. Tang F, Kalil K (2005) Netrin-1 induces axon branching in developing cortical neurons by frequency-dependent calcium signaling pathways. J Neurosci 25(28):6702–6715

    Article  CAS  Google Scholar 

  10. Hong K, Hinck L, Nishiyama M, Poo MM, Tessier-Lavigne M, Stein E (1999) A ligand-gated association between cytoplasmic domains of UNC5 and DCC family receptors converts netrin-induced growth cone attraction to repulsion. Cell 97(7):927–941

    Article  CAS  Google Scholar 

  11. Li W, Lee J, Vikis HG, Lee SH, Liu G, Aurandt J, Shen TL, Fearon ER et al (2004) Activation of FAK and Src are receptor-proximal events required for netrin signaling. Nat Neurosci 7(11):1213–1221

    Article  CAS  Google Scholar 

  12. Moore SW, Zhang X, Lynch CD, Sheetz MP (2012) Netrin-1 attracts axons through FAK-dependent mechanotransduction. J Neurosci 32(34):11574–11585

    Article  CAS  Google Scholar 

  13. Zhou J, Bronowska A, le Coq J, Lietha D, Gräter F (2015) Allosteric regulation of focal adhesion kinase by PIP(2) and ATP. Biophys J 108(3):698–705

    Article  CAS  Google Scholar 

  14. Meriane M, Tcherkezian J, Webber CA, Danek EI, Triki I, McFarlane S, Bloch-Gallego E, Lamarche-Vane N (2004) Phosphorylation of DCC by Fyn mediates Netrin-1 signaling in growth cone guidance. J Cell Biol 167(4):687–698

    Article  CAS  Google Scholar 

  15. Shekarabi M, Moore SW, Tritsch NX, Morris SJ, Bouchard JF, Kennedy TE (2005) Deleted in colorectal cancer binding netrin-1 mediates cell substrate adhesion and recruits Cdc42, Rac1, Pak1, and N-WASP into an intracellular signaling complex that promotes growth cone expansion. J Neurosci 25(12):3132–3141

    Article  CAS  Google Scholar 

  16. Gambhir A, Hangyás-Mihályné G, Zaitseva I, Cafiso DS, Wang J, Murray D, Pentyala SN, Smith SO et al (2004) Electrostatic sequestration of PIP2 on phospholipid membranes by basic/aromatic regions of proteins. Biophys J 86(4):2188–2207

    Article  CAS  Google Scholar 

  17. Yamaguchi H et al (2009) MARCKS regulates lamellipodia formation induced by IGI-I via association with PIP2 and beta-actin at membrane microdomains. J Cell Physiol 220(3):748–755

    Article  CAS  Google Scholar 

  18. Weimer JM, Yokota Y, Stanco A, Stumpo DJ, Blackshear PJ, Anton ES (2009) MARCKS modulates radial progenitor placement, proliferation and organization in the developing cerebral cortex. Development 136(17):2965–2975

    Article  CAS  Google Scholar 

  19. Stumpo DJ, Bock CB, Tuttle JS, Blackshear PJ (1995) MARCKS deficiency in mice leads to abnormal brain development and perinatal death. Proc Natl Acad Sci U S A 92(4):944–948

    Article  CAS  Google Scholar 

  20. Shu T, Richards LJ (2001) Cortical axon guidance by the glial wedge during the development of the corpus callosum. J Neurosci 21(8):2749–2758

    Article  CAS  Google Scholar 

  21. Tran TS, Phelps PE (2000) Axons crossing in the ventral commissure express L1 and GAD65 in the developing rat spinal cord. Dev Neurosci 22(3):228–236

    Article  CAS  Google Scholar 

  22. Muthusamy N, Sommerville LJ, Moeser AJ, Stumpo DJ, Sannes P, Adler K, Blackshear PJ, Weimer JM et al (2015) MARCKS-dependent mucin clearance and lipid metabolism in ependymal cells are required for maintenance of forebrain homeostasis during aging. Aging Cell 14(5):764–773

    Article  CAS  Google Scholar 

  23. Goebbels S, Bormuth I, Bode U, Hermanson O, Schwab MH, Nave KA (2006) Genetic targeting of principal neurons in neocortex and hippocampus of NEX-Cre mice. Genesis 44(12):611–621

    Article  CAS  Google Scholar 

  24. Boisvert FM et al (2012) A quantitative spatial proteomics analysis of proteome turnover in human cells. Mol Cell Proteomics 11(3):M111 011429

    Article  Google Scholar 

  25. Zhuo L, Theis M, Alvarez-Maya I, Brenner M, Willecke K, Messing A (2001) hGFAP-cre transgenic mice for manipulation of glial and neuronal function in vivo. Genesis 31(2):85–94

    Article  CAS  Google Scholar 

  26. Roux KJ, Kim DI, Raida M, Burke B (2012) A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J Cell Biol 196(6):801–810

    Article  CAS  Google Scholar 

  27. Zhu Y, Romero MI, Ghosh P, Ye Z, Charnay P, Rushing EJ, Marth JD, Parada LF (2001) Ablation of NF1 function in neurons induces abnormal development of cerebral cortex and reactive gliosis in the brain. Genes Dev 15(7):859–876

    Article  CAS  Google Scholar 

  28. Roux KJ, Kim DI, Burke B (2013) BioID: a screen for protein-protein interactions. Curr Protoc Protein Sci 74:Unit 19 23

    PubMed  Google Scholar 

  29. Ren XR, Ming GL, Xie Y, Hong Y, Sun DM, Zhao ZQ, Feng Z, Wang Q et al (2004) Focal adhesion kinase in netrin-1 signaling. Nat Neurosci 7(11):1204–1212

    Article  CAS  Google Scholar 

  30. Patwardhan P, Resh MD (2010) Myristoylation and membrane binding regulate c-Src stability and kinase activity. Mol Cell Biol 30(17):4094–4107

    Article  CAS  Google Scholar 

  31. Li X, Saint-Cyr-Proulx E, Aktories K, Lamarche-Vane N (2002) Rac1 and Cdc42 but not RhoA or Rho kinase activities are required for neurite outgrowth induced by the Netrin-1 receptor DCC (deleted in colorectal cancer) in N1E-115 neuroblastoma cells. J Biol Chem 277(17):15207–15214

    Article  CAS  Google Scholar 

  32. Llambi F, Causeret F, Bloch-Gallego E, Mehlen P (2001) Netrin-1 acts as a survival factor via its receptors UNC5H and DCC. EMBO J 20(11):2715–2722

    Article  CAS  Google Scholar 

  33. Brudvig JJ, Weimer JM (2015) X MARCKS the spot: myristoylated alanine-rich C kinase substrate in neuronal function and disease. Front Cell Neurosci 9:407

    Article  Google Scholar 

  34. Guan JL (1997) Role of focal adhesion kinase in integrin signaling. Int J Biochem Cell Biol 29(8–9):1085–1096

    Article  CAS  Google Scholar 

  35. Sheats MK, Pescosolido KC, Hefner EM, Sung EJ, Adler KB, Jones SL (2014) Myristoylated alanine rich C kinase substrate (MARCKS) is essential to beta2-integrin dependent responses of equine neutrophils. Vet Immunol Immunopathol 160(3–4):167–176

    Article  CAS  Google Scholar 

  36. Gatlin JC, Estrada-Bernal A, Sanford SD, Pfenninger KH (2006) Myristoylated, alanine-rich C-kinase substrate phosphorylation regulates growth cone adhesion and pathfinding. Mol Biol Cell 17(12):5115–5130

    Article  CAS  Google Scholar 

  37. Franco M, Tamagnone L (2008) Tyrosine phosphorylation in semaphorin signalling: shifting into overdrive. EMBO Rep 9(9):865–871

    Article  CAS  Google Scholar 

  38. Trovo L et al (2013) Low hippocampal PI(4,5)P(2) contributes to reduced cognition in old mice as a result of loss of MARCKS. Nat Neurosci 16(4):449–455

    Article  CAS  Google Scholar 

  39. Swierczynski SL, Siddhanti SR, Tuttle JS, Blackshear PJ (1996) Nonmyristoylated MARCKS complements some but not all of the developmental defects associated with MARCKS deficiency in mice. Dev Biol 179(1):135–147

    Article  CAS  Google Scholar 

  40. Scarlett CO, Blackshear PJ (2003) Neuroanatomical development in the absence of PKC phosphorylation of the myristoylated alanine-rich C-kinase substrate (MARCKS) protein. Brain Res Dev Brain Res 144(1):25–42

    Article  CAS  Google Scholar 

  41. Swierczynski SL, Blackshear PJ (1995) Membrane association of the myristoylated alanine-rich C kinase substrate (MARCKS) protein. Mutational analysis provides evidence for complex interactions. J Biol Chem 270(22):13436–13445

    Article  CAS  Google Scholar 

  42. Podjaski C, Alvarez JI, Bourbonniere L, Larouche S, Terouz S, Bin JM, Lécuyer MA, Saint-Laurent O et al (2015) Netrin 1 regulates blood-brain barrier function and neuroinflammation. Brain 138(Pt 6):1598–1612

    Article  Google Scholar 

  43. Xie Z, Enkhjargal B, Reis C, Huang L, Wan W, Tang J, Cheng Y, Zhang JH (2017) Netrin-1 preserves blood-brain barrier integrity through deleted in colorectal cancer/focal adhesion kinase/RhoA signaling pathway following subarachnoid hemorrhage in rats. J Am Heart Assoc 6(5):e005198

    Article  Google Scholar 

  44. Mehlen P, Rabizadeh S, Snipas SJ, Assa-Munt N, Salvesen GS, Bredesen DE (1998) The DCC gene product induces apoptosis by a mechanism requiring receptor proteolysis. Nature 395(6704):801–804

    Article  CAS  Google Scholar 

  45. Walters MC, Fiering S, Bouhassira EE, Scalzo D, Goeke S, Magis W, Garrick D, Whitelaw E et al (1999) The chicken beta-globin 5'HS4 boundary element blocks enhancer-mediated suppression of silencing. Mol Cell Biol 19(5):3714–3726

    Article  CAS  Google Scholar 

  46. Matsuda T, Cepko CL (2007) Controlled expression of transgenes introduced by in vivo electroporation. Proc Natl Acad Sci U S A 104(3):1027–1032

    Article  CAS  Google Scholar 

  47. Pear WS, Nolan GP, Scott ML, Baltimore D (1993) Production of high-titer helper-free retroviruses by transient transfection. Proc Natl Acad Sci U S A 90(18):8392–8396

    Article  CAS  Google Scholar 

  48. Birendra K et al (2017) VRK2A is an A-type lamin-dependent nuclear envelope kinase that phosphorylates BAF. Mol Biol Cell 28(17):2241–2250

    Article  CAS  Google Scholar 

  49. Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, Fridman WH, Pagès F et al (2009) ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25(8):1091–1093

    Article  CAS  Google Scholar 

  50. Durkin ME et al (2013) Isolation of mouse embryo fibroblasts. Bio Protoc 3(18)

  51. Polleux F, Ghosh A (2002) The slice overlay assay: a versatile tool to study the influence of extracellular signals on neuronal development. Sci STKE 2002(136):pl9

    PubMed  Google Scholar 

  52. Holden P, Horton WA (2009) Crude subcellular fractionation of cultured mammalian cell lines. BMC Res Notes 2:243

    Article  Google Scholar 

  53. Mahmood T, Yang PC (2012) Western blot: technique, theory, and trouble shooting. N Am J Med Sci 4(9):429–434

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a Department of Defense National Defense Science & Engineering Graduate (NDSEG) fellowship for J.J.B., a University of South Dakota Center for Brain and Behavior Research (CBBRe) trainee research grant for J.J.B., the Intramural Research Program of the National Institute of Environmental Health Sciences, National Institutes of Health (D.J.S. and P.J.B.), and a grant from the National Institutes of Health to J.M.W. (R01NS082283). This work also received support from the Sanford Research Imaging Core and the Sanford Research Protein Biochemistry Core, both within the Sanford Research Center for Pediatric Research (National Institutes of Health P20GM103620).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Weimer.

Ethics declarations

Animal protocols were approved by the Sanford Research Institutional Animal Care and Use Committee (USDA License 46-R-0009) with all procedures carried out in strict accordance with National Institutes of Health guidelines and the Sanford Research Institutional Animal Care and Use Committee guidelines.

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Online Resource 1

(DOCX 4496 kb)

Online Resource 2

(DOCX 1391 kb)

Online Resource 3

(DOCX 1263 kb)

Online Resource 4

(DOCX 2242 kb)

Online Resource 5

(DOCX 3644 kb)

Online Resource 6

(DOCX 1974 kb)

Online Resource 7

(DOCX 22 kb)

Online Resource 8

(DOCX 530 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brudvig, J.J., Cain, J.T., Schmidt-Grimminger, G.G. et al. MARCKS Is Necessary for Netrin-DCC Signaling and Corpus Callosum Formation. Mol Neurobiol 55, 8388–8402 (2018). https://doi.org/10.1007/s12035-018-0990-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-0990-3

Keywords

Navigation