Skip to main content

Advertisement

Log in

TNF-α and its inhibitors in cancer

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Tumor necrosis factor (TNF)-α is implicated in the same time in apoptosis and in cell proliferation. TNF-α not only acts as pro-inflammatory cytokine conducing to wide spectrum of human diseases including inflammatory diseases, but can also induce tumor development. The molecular mechanisms of TNF-α functions have been intensively investigated. In this review we covered TNF-α, the molecule, its signaling pathway, and its therapeutic functions. We provide a particular insight in its paradoxical role in tumor promotion and in its use as anti-tumor agent. This review considers also the recent findings regarding TNF-α inhibitors, their pharmacokinetics, and their pharmacodynamics. Six TNF-α inhibitors have been considered here: Infliximab, Adalimumab, Golimumab, CDP870, CDP571, Etanercept, and Thalidomide. We discussed the clinical relevance of their functions in treatment of several diseases such as advanced inflammatory rheumatic and bowel disease, with a focus in cancer treatment. Targeting TNF-α by these drugs has many side effects like malignancies development, and the long-term sequels are not very well explored. Their efficacy and their safety were discussed, underscoring the necessity of close patients monitoring and of their caution use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Carswell E, et al. An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA. 1975;72:3666–70. doi:10.1073/pnas.72.9.3666.

    Article  PubMed  CAS  Google Scholar 

  2. Feldmann M, et al. Anti-TNFalpha therapy of rheumatoid arthritis: what can we learn about chronic disease? Novartis Found Symp. 2004;256:53–69. doi:10.1002/0470856734.ch5.

    Article  PubMed  CAS  Google Scholar 

  3. Locksley R, Killeen N, Lenardo M. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell. 2001;104:487–501. doi:10.1016/S0092-8674(01)00237-9.

    Article  PubMed  CAS  Google Scholar 

  4. Black RA, et al. A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature. 1997;385:729–33. doi:10.1038/385729a0.

    Article  PubMed  CAS  Google Scholar 

  5. Vandenabeele P, Declercq W, Beyaert R, Fiers W. Two tumour necrosis factor receptors: structure and function. Trends Cell Biol. 1995;5:392–9. doi:10.1016/S0962-8924(00)89088-1.

    Article  PubMed  CAS  Google Scholar 

  6. Bazzoni F, Beutler B. The tumor necrosis factor ligand and receptor families. N Engl J Med. 1996;334:1717–25. doi:10.1056/NEJM199606273342607.

    Article  PubMed  CAS  Google Scholar 

  7. Aggarwal B. Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol. 2003;3:745–56. doi:10.1038/nri1184.

    Article  PubMed  CAS  Google Scholar 

  8. Tartaglia L, Goeddel D. Two TNF receptors. Immunol Today. 1992;13:151–3. doi:10.1016/0167-5699(92)90116-O.

    Article  PubMed  CAS  Google Scholar 

  9. Varfolomeev EE, Ashkenazi A. Tumor necrosis factor: an apoptosis JuNKie? Cell. 2004;116:491–7. doi:10.1016/S0092-8674(04)00166-7.

    Article  PubMed  CAS  Google Scholar 

  10. Wertz IE, Dixit VM. Ubiquitin-mediated regulation of TNFR1 signaling. Cytokine Growth Factor Rev. 2008;19:313–24. doi:10.1016/j.cytogfr.2008.04.014.

    Article  PubMed  CAS  Google Scholar 

  11. Chen G, Goeddel D. TNF-R1 signaling: a beautiful pathway. Science. 2002;296:1634–5. doi:10.1126/science.1071924.

    Article  PubMed  CAS  Google Scholar 

  12. Chen ZJ. Ubiquitin signalling in the NF-kappaB pathway. Nat Cell Biol. 2005;7:758–65. doi:10.1038/ncb0805-758.

    Article  PubMed  CAS  Google Scholar 

  13. Basak S, Hoffmann A. Crosstalk via the NF-kappa B signaling system. Cytokine Growth Factor Rev. 2008;19:187–97. doi:10.1016/j.cytogfr.2008.04.005.

    Article  PubMed  CAS  Google Scholar 

  14. Brenner DA, O’Hara M, Angel P, Chojkier M, Karin M. Prolonged activation of JUN and collagenase genes by tumour necrosis factor-alpha. Nature. 1989;337:661–3. doi:10.1038/337661a0.

    Article  PubMed  CAS  Google Scholar 

  15. Muppidi JR, Tschopp J, Siegl RM. Life and death decisions: secondary complexes and lipid rafts in TNF receptor family signal transduction. Immunity. 2004;21:461–5. doi:10.1016/j.immuni.2004.10.001.

    Article  PubMed  CAS  Google Scholar 

  16. Kruyt FAE. TRAIL and cancer therapy. Cancer Lett. 2008;263:14–25. doi:10.1016/j.canlet.2008.02.003.

    Article  PubMed  CAS  Google Scholar 

  17. Anderson G, Nakada MT, DeWitte M. Tumor necrosis factor-alpha in the pathogenesis and treatment of cancer. Curr Opin Pharmacol. 2004;4:314–20. doi:10.1016/j.coph.2004.04.004.

    Article  PubMed  CAS  Google Scholar 

  18. Pfeffer K. Biological functions of tumor necrosis factor cytokines and their receptors. Cytokine Growth Factor Rev. 2003;14:185–91. doi:10.1016/S1359-6101(03)00022-4.

    Article  PubMed  CAS  Google Scholar 

  19. Kruglov A, et al. Physiological functions of tumor necrosis factor and the consequences of its pathologic overexpression or blockade: mouse models. Cytokine Growth Factor Rev. 2008;19:231–44. doi:10.1016/j.cytogfr.2008.04.010.

    Article  PubMed  CAS  Google Scholar 

  20. Idriss HT, Naismith JH. TNF alpha and the TNF receptor superfamily: structure–function relationship(s). Microsc Res Tech. 2000;50:184–95. doi:10.1002/1097-0029(20000801)50:3<184::AID-JEMT2>3.0.CO;2-H.

    Article  PubMed  CAS  Google Scholar 

  21. Stübgen J-P. Tumor necrosis factor-alpha antagonists and neuropathy. Muscle Nerve. 2008;37:281–92. doi:10.1002/mus.20924.

    Article  PubMed  CAS  Google Scholar 

  22. Cope AP, et al. Chronic tumor necrosis factor alter T cells responses by attenuating T cell receptor signalling. J Exp Med. 1997;185:1573–84. doi:10.1084/jem.185.9.1573.

    Article  PubMed  CAS  Google Scholar 

  23. Kodama S, Davis M, Faustman D. The therapeutic potential of tumor necrosis factor for autoimmune disease: a mechanistically based hypothesis. Cell Mol Life Sci. 2005;62:1850–62. doi:10.1007/s00018-005-5022-6.

    Article  PubMed  CAS  Google Scholar 

  24. Ban L, et al. Selective death of autoreactive T cells in human diabetes by TNF or TNF receptor 2 agonism. Proc Natl Acad Sci USA. 2008;105:13644–9. doi:10.1073/pnas.0803429105.

    Article  PubMed  Google Scholar 

  25. Manusama E, et al. Synergistic antitumour effect of recombinant human tumour necrosis factor alpha with melphalan in isolated limb perfusion in the rat. Br J Surg. 1996;83:551–5. doi:10.1002/bjs.1800830438.

    Article  PubMed  CAS  Google Scholar 

  26. Eggermont A, de Wilt J, ten Hagen T. Current uses of isolated limb perfusion in the clinic and a model system for new strategies. Lancet Oncol. 2003;4:429–37. doi:10.1016/S1470-2045(03)01141-0.

    Article  PubMed  Google Scholar 

  27. Curnis F, Sacchi A, Corti A. Improving the response of tumors to chemotherapy in mice by targeted delivery of picogram doses of tumor necrosis factor-alpha to tumor vessels. J Clin Invest. 2002;110:475–82.

    PubMed  CAS  Google Scholar 

  28. Folli S, et al. Tumor-necrosis factor can enhance radio-antibody uptake in human colon carcinoma xenografts by increasing vascular permeability. Int J Cancer. 1993;53:829–36. doi:10.1002/ijc.2910530521.

    Article  PubMed  CAS  Google Scholar 

  29. van Horssen R, Ten Hagen T, Eggermont A. TNF-alpha in cancer treatment: molecular insights, antitumor effects, and clinical utility. Oncologist. 2006;11:397–408. doi:10.1634/theoncologist.11-4-397.

    Article  PubMed  Google Scholar 

  30. ten Hagen T, Seynhaeve A, Eggermont A. Tumor necrosis factor-mediated interactions between inflammatory response and tumor vascular bed. Immunol Rev. 2008;222:299–315. doi:10.1111/j.1600-065X.2008.00619.x.

    Article  PubMed  CAS  Google Scholar 

  31. Fraker DL, Alexander H, Andrich M, Rosenberg S. Treatment of patients with melanoma of the extremity using hyperthermic isolated limb perfusion with melphalan, tumor necrosis factor, and interferon gamma: results of a tumor necrosis factor dose-escalation study. J Clin Oncol. 1996;14:479–89.

    PubMed  CAS  Google Scholar 

  32. Van Horssen R, Ten Hagen TLM, Eggermont AMM. TNF-alpha in Cancer Treatment: Molecular Insights, Antitumor Effects, and Clinical Utility. The Oncologist. 2006;11:397–408. doi:10.1634/theoncologist.11-4-397.

    Article  PubMed  Google Scholar 

  33. Lejeune F, Rüegg C. Recombinant human tumor necrosis factor: an efficient agent for cancer treatment. Bull Cancer. 2006;93:E90–100.

    PubMed  CAS  Google Scholar 

  34. Fajardo L, Kwan H, Kowalski J, Prionas S, Allison A. Dual role of tumor necrosis factor-alpha in angiogenesis. Am J Pathol. 1992;140:539–44.

    PubMed  CAS  Google Scholar 

  35. Alexander HJ, et al. Isolated hepatic perfusion with tumor necrosis factor and melphalan for unresectable cancers confined to the liver. J Clin Oncol. 1998;16:1479–89.

    PubMed  CAS  Google Scholar 

  36. Borsi L, et al. Selective targeted delivery of TNF alpha to tumor blood vessels. Blood. 2003;102:4384–92. doi:10.1182/blood-2003-04-1039.

    Article  PubMed  CAS  Google Scholar 

  37. Corti A, Ponzoni M. Tumor vascular targeting with tumor necrosis factor alpha and chemotherapeutic drugs. Ann NY Acad Sci. 2004;1028:104–12. doi:10.1196/annals.1322.011.

    Article  PubMed  CAS  Google Scholar 

  38. Senzer N, et al. TNFerade biologic, an adenovector with a radiation-inducible promoter, carrying the human tumor necrosis factor alpha gene: a phase I study in patients with solid tumors. J Clin Oncol. 2004;22:592–601. doi:10.1200/JCO.2004.01.227.

    Article  PubMed  CAS  Google Scholar 

  39. Chang K, et al. Endoscopic ultrasound delivery of an antitumor agent to treat a case of pancreatic cancer. Nat Clin Pract Gastroenterol Hepatol. 2008;5:107–11. doi:10.1038/ncpgasthep1033.

    Article  PubMed  Google Scholar 

  40. Mundt AJ, et al. A Phase I trial of TNFerade biologic in patients with soft tissue sarcoma in the extremities. Clin Cancer Res. 2004;10:5747–53. doi:10.1158/1078-0432.CCR-04-0296.

    Article  PubMed  CAS  Google Scholar 

  41. Chung T, et al. Tumor necrosis factor-alpha-based gene therapy enhances radiation cytotoxicity in human prostate cancer. Cancer Gene Ther. 1998;5:344–9.

    PubMed  CAS  Google Scholar 

  42. Staba M, Mauceru H, Kufe D, Hallahan D, Weichselbaum R. Adenoviral TNF-alpha gene therapy and radiation damage tumor vasculature in a human malignant glioma xenograft. Gene Ther. 1998;5:293–300. doi:10.1038/sj.gt.3300594.

    Article  PubMed  CAS  Google Scholar 

  43. McLoughlin JM, et al. TNFerade, an adenovector carrying the transgene for human tumor necrosis factor a, for patients with advanced solid tumors: surgical experience and long-term follow-up. Ann Surg Oncol. 2005;12:825–30. doi:10.1245/ASO.2005.03.023.

    Article  PubMed  Google Scholar 

  44. Asher AL, et al. Murine tumor cells transduced with the gene for tumor necrosis factor-alpha. Evidence for paracrine immune effects of tumor necrosis factor against tumors. J Immunol. 1991;146:3227–34.

    PubMed  CAS  Google Scholar 

  45. Han SK, Brody SL, Crystal RG. Suppression of in vivo tumorigenicity of human lung cancer cells by retrovirus-mediated transfer of the human tumor necrosis factor-alpha cDNA. Am J Respir Cell Mol Biol. 1994;11:270–8.

    PubMed  CAS  Google Scholar 

  46. Mizuguchi H, et al. Tumor necrosis factor alpha-mediated tumor regression by the in vivo transfer of genes into the artery that leads to tumors. Cancer Res. 1998;58:5727–30.

    Google Scholar 

  47. Larmonier N, et al. The inhibition of TNF-alpha anti-tumoral properties by blocking antibodies promotes tumor growth in a rat model. Exp Cell Res. 2007;313:2345–55. doi:10.1016/j.yexcr.2007.03.027.

    Article  PubMed  CAS  Google Scholar 

  48. Tselepsis C, et al. Tumour necrosis factor-alpha in Barrett’s oesophagus: a potential novel mechanism of action. Oncogene. 2002;21:6071–81. doi:10.1038/sj.onc.1205731.

    Article  CAS  Google Scholar 

  49. Darai E, Detchev R, Hugol D, Quang NT. Serum and cyst fluid levels of interleukin (IL)-6, IL-8 and tumour necrosis factor alpha in women with endometriomas and benign and malignant cycstic ovarian tumours. Hum Reprod. 2003;18:1681–5. doi:10.1093/humrep/deg321.

    Article  PubMed  CAS  Google Scholar 

  50. Szlosarek PW, Charles KA, Balkwill FR. Tumour necrosis factor-alpha as a tumour promoter. Eur J Cancer. 2006;42:745–50. doi:10.1016/j.ejca.2006.01.012.

    Article  PubMed  CAS  Google Scholar 

  51. Balkwill F. Tumor necrosis factor or tumor promoting factor? Cytokine Growth Factor Rev. 2002;13:135–41. doi:10.1016/S1359-6101(01)00020-X.

    Article  PubMed  CAS  Google Scholar 

  52. Shealy DJ, Visvanathan S. Anti-TNF antibodies: lessons from the past, roadmap for the future. In: Chernajovsky Y, Nissim A, editors. Therapeutic antibodies. Handbook of experimental pharmacology. 2008, p. 101–129.

  53. Huerta-Yepez SM, Vega M, Garban H, Bonavida B. Involvement of the TNF-alpha autocrine-paracrine loop via NF-kappaB and YY1, in the regulation of tumor cell resistance to Fas-induced apoptosis. Clin Immunol. 2006;120:297–309. doi:10.1016/j.clim.2006.03.015.

    Article  PubMed  CAS  Google Scholar 

  54. Mocellin S, Riccardo Rossi C, Pilati P, Nitti D. Tumor necrosis factor, cancer and anticancer therapy. Cytokine Growth Factor Rev. 2005;16:35–53. doi:10.1016/j.cytogfr.2004.11.001.

    Article  PubMed  CAS  Google Scholar 

  55. Hagemann T, et al. Enhanced invasiveness of breast cancer cell lines upon co-cultivation with macrophages is due to TNF-alpha dependent up-regulation of matrix metalloproteases. Carcinogenesis. 2004;25:1543–9. doi:10.1093/carcin/bgh146.

    Article  PubMed  CAS  Google Scholar 

  56. Lee HY, et al. A small compound that inhibits tumor necrosis factor-alpha-induced matrix metalloproteinase-9 upregulation. Biochem Biophys Res Commun. 2005;336:716–22. doi:10.1016/j.bbrc.2005.08.154.

    Article  PubMed  CAS  Google Scholar 

  57. Overall CM, Kleifeld O. Tumour microenvironment-opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat Rev Cancer. 2006;6:227–39. doi:10.1038/nrc1821.

    Article  PubMed  CAS  Google Scholar 

  58. Nagai S, et al. Glil contributs to the invasiveness of pancreatic cancer through matrix metalloproteinase-9 activation. Cancer Sci. 2008;99:1377–84. doi:10.1111/j.1349-7006.2008.00822.x.

    Article  PubMed  CAS  Google Scholar 

  59. Leber TM, Balkwill FR. Regulation of monocyte MMP-9 production by TNF-alpha and a tumour-derived soluble factor (MMPSF). Br J Cancer. 1998;78:724–32.

    PubMed  CAS  Google Scholar 

  60. Szlosarek PW, Balkwill FR. Tumour necrosis factor: a potential target for the therapy of solid tumours. Lancet Oncol. 2003;4:565–73. doi:10.1016/S1470-2045(03)01196-3.

    Article  PubMed  CAS  Google Scholar 

  61. Zidi I, et al. Increase in HLA-G1 proteolytic shedding by tumor cells: a regulatory pathway controlled by NF-kappaB inducers. Cell Mol Life Sci. 2006;63:2669–81. doi:10.1007/s00018-006-6341-y.

    Article  PubMed  CAS  Google Scholar 

  62. Jang W, et al. The −238 tumor necrosis factor-alpha promoter polymorphism is associated with decreased susceptibility to cancers. Cancer Lett. 2001;166:41–6. doi:10.1016/S0304-3835(01)00438-4.

    Article  PubMed  CAS  Google Scholar 

  63. Hajeer A, et al. Preliminary evidence of an association of tumour necrosis factor microsatellites with increased risk of multiple basal cell carcinomas. Br J Dermatol. 2000;142:441–5. doi:10.1046/j.1365-2133.2000.03353.x.

    Article  PubMed  CAS  Google Scholar 

  64. Marsh H, et al. Polymorphisms in tumour necrosis factor (TNF) are associated with risk of bladder cancer and grade of tumour at presentation. Br J Cancer. 2003;89:1096–101. doi:10.1038/sj.bjc.6601165.

    Article  PubMed  CAS  Google Scholar 

  65. Scallon BJ, Arevalo Moore M, Trinh H, Knight DM, Ghrayeb J. Chimeric anti-TNF-alpha monoclonal antibody cA2 binds recombinant transmembrane TNF-alpha and activates immune effector functions. Cytokine. 1995;7:251–9. doi:10.1006/cyto.1995.0029.

    Article  PubMed  CAS  Google Scholar 

  66. Mitoma H, et al. Mechanisms for cytotoxic effects of anti-tumor necrosis factor agents on transmembrane tumor necrosis factor-alpha expressing cells comparison among Infliximab, Etanercept, and Adalimumab. Arthritis Rheum. 2008;58:1248–57. doi:10.1002/art.23447.

    Article  PubMed  CAS  Google Scholar 

  67. Daniel PT, Pezzuto A, Dörken B. Humoral immunotherapy and the use of monoclonal antibodies. In: Degos L, LDC, Löwenberg B, editors. Textbook of malignant haematology. Martin Dunitz; 1999, p. 425–46.

  68. Tracey D, Klareskog L, Sasso EH, Salfled Jg, Tak PP. Tumor necrosis factor antagonist mechanisms of action: a comprehensive review. Pharmacol Ther. 2008;117:244–79. doi:10.1016/j.pharmthera.2007.10.001.

    Article  PubMed  CAS  Google Scholar 

  69. Duclos M, et al. Retention rates of tumor necrosis factor blockers in daily practice in 770 rheumatic patients. J Rheumatol. 2006;33:2433–8.

    PubMed  CAS  Google Scholar 

  70. Schrumpf Heiberg M, et al. The comparative one-year performance of anti-tumor necrosis factor alpha drugs in patients with rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis: results from a longitudinal, observational, multicenter study. Arthritis Rheum. 2008;59:234–40. doi:10.1002/art.23333.

    Article  CAS  Google Scholar 

  71. Alonso-Ruiz A, et al. Tumor necrosis factor alpha drugs in rheumatoid arthritis: systematic review and metaanalysis of efficacy and safety. BMC Musculoskelet Disord. 2008;9:52. doi:10.1186/1471-2474-9-52.

    Article  PubMed  Google Scholar 

  72. Carmona L, Gomez-Reino JJS, Group B. Survival of TNF antagonists in spondylarthritis is better than in rheumatoid arthritis: data from the Spanish registry BIOBADASER. Arthritis Res Ther. 2006;8:R72. doi:10.1186/ar1941.

    Article  PubMed  CAS  Google Scholar 

  73. Kristensen LE, Saxne T, Nilsson JA, Geborek P. Impact of concomitant DMARD therapy on adherence to treatment with Etanercept and Infliximab in rheumatoid arthritis: results from a six-year observational study in southern Sweden. Arthritis Res Ther. 2006;8:R174. doi:10.1186/ar2084.

    Article  PubMed  CAS  Google Scholar 

  74. Farrell R, et al. Clinical experience with infliximab therapy in 100 patients with Crohn’s disease. Am J Gastroenterol. 2000;95:3490–7. doi:10.1111/j.1572-0241.2000.03366.x.

    Article  PubMed  CAS  Google Scholar 

  75. St Clair E, et al. Combination of infliximab and methotrexate therapy for early rheumatoid arthritis: a randomized, controlled trial. Arthritis Rheum. 2004;50:3432–43. doi:10.1002/art.20568.

    Article  PubMed  CAS  Google Scholar 

  76. Elliott MJ, et al. Treatment of rheumatoid arthritis with chimeric monoclonal antibodies to tumor necrosis factor alpha. Arthritis Rheum. 1993;36:1681–90. doi:10.1002/art.1780361206.

    Article  PubMed  CAS  Google Scholar 

  77. Wagner C, et al. lnfliximab treatment benefits correlate with pbarmacodynamic parameters in Crohn’s disease patients. Digestion. 1998;59:124–5.

    Google Scholar 

  78. Nakada M, et al. Neutralization of TNF by the antibody cA2 reveals differential regulation of adhesion molecule expression on TNF-activated endothelial cells. Cell Adhes Commun. 1998;5:491–503. doi:10.3109/15419069809005606.

    Article  PubMed  CAS  Google Scholar 

  79. Sandborn WJ, Hanauer SB. Antitumor necrosis factor therapy for inflammatory bowel disease: a review of agents, pharmacology, clinical results, and safety. Inflamm Bowel Dis. 1999;5:119–33.

    PubMed  CAS  Google Scholar 

  80. Hommes D, et al. Beneficial effect of treatment with a monoclonal anti-tumor necrosis factor-alpha antibody on markers of coagulation and fibrinolysis in patients with active Crohn’s disease. Haemostasis. 1997;27:269–77.

    PubMed  CAS  Google Scholar 

  81. Van Dullemen H, et al. Reduction of circulating secretory phospholipase A, levels by anti-tumor necrosis factor chimeric monoclonal antibody in patients with severe Crohn’s disease. Relation between tumor necrosis factor and secretory phospholipase A, in healthy humans and active Crohn’s disease. Scand J Gastroenterol. 1998;33:1094–8. doi:10.1080/003655298750026813.

    Article  PubMed  Google Scholar 

  82. Flamant M, Bourreille A. Biothérapies et MICI: anti-TNF et nouvelles cibles thérapeutiques Biologic therapies in inflammatory bowel disease. Rev Med Interne. 2007;28:852–61. doi:10.1016/j.revmed.2007.06.008.

    Article  PubMed  CAS  Google Scholar 

  83. Baert F, et al. Influence of immunogenicity on the long-term efficacy of Infliximab in Crohn’s disease. N Engl J Med. 2003;348:601–8. doi:10.1056/NEJMoa020888.

    Article  PubMed  CAS  Google Scholar 

  84. Weinblatt M, et al. Adalimumab, a fully human antitumor necrosis factor alpha monoclonal antibody, for the treatment of rheumatoid arthritis in patients taking concomitant methotrexate: the ARMADA trial. Arthritis Rheum. 2003;48:35–45. doi:10.1002/art.10697.

    Article  PubMed  CAS  Google Scholar 

  85. Van der Heijde D, et al. Efficacy and safety of adalimumab in patients with ankylosing spondylitis: results of a multicenter, randomized, double blind, placebocontrolled trial. Arthritis Rheum. 2006;54:2136–46. doi:10.1002/art.21913.

    Article  PubMed  CAS  Google Scholar 

  86. Mease P, et al. Adalimumab for the treatment of patients with moderately to severely active psoriatic arthritis: results of a double blind, randomized, placebo-controlled trial. Arthritis Rheum. 2005;52:3279–89. doi:10.1002/art.21306.

    Article  PubMed  CAS  Google Scholar 

  87. Keystone E, Haraoui B. Adalimumab therapy in rheumatoid arthritis. Rheum Dis Clin North Am. 2004;30:349–64. doi:10.1016/j.rdc.2004.02.004.

    Article  PubMed  Google Scholar 

  88. Martin PL, Oneda S, Treacy G. Effects of an anti-TNF-alpha monoclonal antibody, administered throughout pregnancy and lactation, on the development of the Macaque immune system. Am J Reprod Immunol. 2007;58:138–49. doi:10.1111/j.1600-0897.2007.00499.x.

    Article  PubMed  CAS  Google Scholar 

  89. Kay J, et al. Golimumab in patients with active rheumatoid arthritis despite treatment with methotrexate a randomized, double-blind, placebo-controlled, dose-ranging study. Arthritis Rheum. 2008;58:964–75. doi:10.1002/art.23383.

    Article  PubMed  CAS  Google Scholar 

  90. Zhou H, et al. Pharmacokinetics and safety of golimumab, a fully human anti-TNF-alpha monoclonal antibody, in subjects with rheumatoid arthritis. J Clin Pharmacol. 2007;47:383–96. doi:10.1177/0091270006298188.

    Article  PubMed  CAS  Google Scholar 

  91. Inman RD, et al. Efficacy and safety of Golimumab in patients with ankylosing spondylitis results of a randomized, double-blind, placebo-controlled, phase III trial. Arthritis Rheum. 2008;58:3402–12. doi:10.1002/art.23969.

    Article  PubMed  CAS  Google Scholar 

  92. Hutas G. Golimumab, a fully human monoclonal antibody against TNF-alpha. Curr Opin Mol Ther. 2008;10:393–406.

    PubMed  CAS  Google Scholar 

  93. Sandborn WJ, et al. Certolizumab pegol for the treatment of Crohn’s disease. N Engl J Med. 2007;357:228–38. doi:10.1056/NEJMoa067594.

    Article  PubMed  CAS  Google Scholar 

  94. Schreiber S, et al. Maintenance therapy with Certolizumab pegol for Crohn’s disease. N Engl J Med. 2007;357:239–50. doi:10.1056/NEJMoa062897.

    Article  PubMed  CAS  Google Scholar 

  95. Winter G, Harris W. Humanized antibodies. Immunol Today. 1993;14:243–6. doi:10.1016/0167-5699(93)90039-N.

    Article  PubMed  CAS  Google Scholar 

  96. Stack WA, et al. Randomised controlled trial of CDP571 antibody to tumor necrosis factor in Crohn’s disease. Lancet. 1997;349:521–4. doi:10.1016/S0140-6736(97)80083-9.

    Article  PubMed  CAS  Google Scholar 

  97. Sandborn WJ, et al. An open-label study of the human anti-TNF monoclonal antibody Adalimumab in subjects with prior loss of response or intolerance to Infliximab for Crohn’s disease. Am J Gastroenterol. 2004;99:1984–9. doi:10.1111/j.1572-0241.2004.40462.x.

    Article  PubMed  CAS  Google Scholar 

  98. Feagan BG, et al. CDP571, a humanized monoclonal antibody to tumour necrosis factor-alpha, for steroid-dependent Crohn’s disease: a randomized, double-blind, placebo-controlled trial. Aliment Pharmacol Ther. 2006;23:617–28. doi:10.1111/j.1365-2036.2006.02791.x.

    Article  PubMed  CAS  Google Scholar 

  99. Sandborn W, et al. Etanercept for active Crohn’s disease: a randomized, double blind, placebo-controlled trial. Gastroenterology. 2001;121:1088–94. doi:10.1053/gast.2001.28674.

    Article  PubMed  CAS  Google Scholar 

  100. Nanda S, Bathon J. Etanercept: a clinical review of current and emerging indications. Expert Opin Pharmacother. 2004;5:1175–86. doi:10.1517/14656566.5.5.1175.

    Article  PubMed  CAS  Google Scholar 

  101. Speirs A. Thalidomide and congenital abnormalities. Lancet. 1962;1:303–5. doi:10.1016/S0140-6736(62)91248-5.

    Article  PubMed  CAS  Google Scholar 

  102. Kumar S, Witzig TE, Rajkumar SV. Thalidomide as an anti-cancer agent. J Cell Mol Med. 2002;6:160–74. doi:10.1111/j.1582-4934.2002.tb00184.x.

    Article  PubMed  CAS  Google Scholar 

  103. Combe B. Le thalidomide: vers de nouvelles indications ? Rev Rhum. 2001;68:951–7. doi:10.1016/S1169-8330(01)00208-3.

    Article  Google Scholar 

  104. Moreira AL, et al. Thalidomide exerts its inhibitory action on tumor necrosis factor alpha by enhancing mRNA degradation. J Exp Med. 1993;177:1675–80. doi:10.1084/jem.177.6.1675.

    Article  PubMed  CAS  Google Scholar 

  105. Niwayama S, Turk BE, Liu JO. Potent inhibition of tumor necrosis factor-alpha production by tetrafluorothalidomide and tetrafluorophthalimides. J Med Chem. 1996;39:3044–5. doi:10.1021/jm960284r.

    Article  PubMed  CAS  Google Scholar 

  106. Corral LG, et al. Differential cytokine modulation and T cell activation by two distinct classes of Thalidomide analogues that are potent inhibitors of TNF-alpha. J Immunol. 1999;163:380–6.

    PubMed  CAS  Google Scholar 

  107. D’Amato RJ, Loughnan MS, Flynn E, Folkman J. Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA. 1994;91:4082–5. doi:10.1073/pnas.91.9.4082.

    Article  PubMed  Google Scholar 

  108. Keifer JA, Guttridge DC, Ashburner BP, Baldwin ASJ. Inhibition of NF-kappa B activity by thalidomide through suppression of Ikappa B kinase activity. J Biol Chem. 2001;276:22382–7. doi:10.1074/jbc.M100938200.

    Article  PubMed  CAS  Google Scholar 

  109. Teo Steven K. Properties of Thalidomide and its analogues: implications for anticancer therapy. AAPS J. 2005;7:E14–9. doi:10.1208/aapsj070103.

    Article  PubMed  CAS  Google Scholar 

  110. Haslett P, Corral L, Albert M, Kaplan G. Thalidomide costimulates primary human T lymphocytes, preferentially inducing proliferation, cytokine production, and cytotoxic responses in the CD8+ subset. J Exp Med. 1998;187:1885–92. doi:10.1084/jem.187.11.1885.

    Article  PubMed  CAS  Google Scholar 

  111. Laber DA, et al. A phase I study of Thalidomide, Capecitabine and Temozolomide in advanced cancer. Cancer Biol Ther. 2007;6:840–5.

    PubMed  CAS  Google Scholar 

  112. Joshua DE. Multiple myeloma: the present and the future. Med J Aust. 2005;183:344.

    PubMed  Google Scholar 

  113. Alessandri C, et al. Autoantibody production in anti-TNF-alpha-treated patients. Ann NY Acad Sci. 2007;1110:319–29. doi:10.1196/annals.1423.034.

    Article  PubMed  CAS  Google Scholar 

  114. Wallis RS. Tumour necrosis factor antagonists: structure, function, and tuberculosis risks. Lancet Infect Dis. 2008;8:601–11. doi:10.1016/S1473-3099(08)70227-5.

    Article  PubMed  CAS  Google Scholar 

  115. Nash PT, Florin TH. Tumour necrosis factor inhibitors. Med J Aust. 2005;183:205–8.

    PubMed  Google Scholar 

  116. Ozorio G, et al. Autoimmune hepatitis following Infliximab therapy for ankylosing spondylitis. Med J Aust. 2007;187:524–6.

    PubMed  Google Scholar 

  117. Yazisiz V, Avci AB, Erbasan F, Yildirim B, Terzioglu E. Development of Crohn’s disease following anti-tumour necrosis factor therapy (etanercept). Colorectal Dis. 2008;10:953–4.

    PubMed  CAS  Google Scholar 

  118. Chung ES, Packer M, Lo KH, Fasanmade AA, Willerson JT. Randomized, double-blind, placebo-controlled, pilot trial of Infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: results of the anti-TNF therapy against congestive heart failure (ATTACH) trial. Circulation. 2003;107:3133–40. doi:10.1161/01.CIR.0000077913.60364.D2.

    Article  PubMed  CAS  Google Scholar 

  119. Keystone EC. Advances in targeted therapy: safety of biological agents. Ann Rheum Dis. 2003;62:ii34–6. doi:10.1136/ard.62.suppl_2.ii34.

    Article  PubMed  Google Scholar 

  120. Askling J, et al. Haematopoietic malignancies in rheumatoid arthritis: lymphoma risk and characteristics after exposure to tumour necrosis factor antagonists. Ann Rheum Dis. 2005;64:1414–20. doi:10.1136/ard.2004.033241.

    Article  PubMed  CAS  Google Scholar 

  121. Bongartz T, et al. Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies : systematic review and meta-analysis of rare harmful effects in randomized controlled trials. JAMA. 2006;295:2275–85. doi:10.1001/jama.295.19.2275.

    Article  PubMed  CAS  Google Scholar 

  122. Okada S, Siegel J. Risk of serious infections and malignancies with anti-TNF antibody therapy in rheumatoid arthritis. JAMA. 2006;296:2201–2. doi:10.1001/jama.296.18.2201-b.

    Article  PubMed  CAS  Google Scholar 

  123. Mackey AC, Green L, Liang LC, Dinndorf P, Avigan M. Hepatosplenic T cell lymphoma associated with Infliximab use in young patients treated for inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2007;44:265–7. doi:10.1097/MPG.0b013e31802f6424.

    Article  PubMed  Google Scholar 

  124. Zeidan A, Sham R, Shapiro J, Baratta A, Kouides P. Hepatosplenic T-cell lymphoma in a patient with Crohn’s disease who received infliximab therapy. Leuk Lymphoma. 2007;48:1410–3. doi:10.1080/10428190701345433.

    Article  PubMed  Google Scholar 

  125. Drini M, Prichard PJ, Brown GJ, Macrae FA. Hepatosplenic T-cell lymphoma following Infliximab therapy for Crohn’s disease. Med J Aust. 2008;189:464–5.

    PubMed  Google Scholar 

  126. Geborek P, et al. Tumour necrosis factor blockers do not increase overall tumour risk in patients with rheumatoid arthritis, but may be associated with an increased risk of lymphomas. Ann Rheum Dis. 2005;64:699–703. doi:10.1136/ard.2004.030528.

    Article  PubMed  CAS  Google Scholar 

  127. Nair B, Raval G, Mehta P. TNF-alpha inhibitor Etanercept and hematologic malignancies: report of a case and review of the literature. Am J Hematol. 2007;82:1022–4. doi:10.1002/ajh.20926.

    Article  PubMed  CAS  Google Scholar 

  128. Bakland G, Nossent H. Acute myelogenous leukaemia following Etanercept therapy. Rheumatology. 2003;42:900–1. doi:10.1093/rheumatology/keg128.

    Article  PubMed  CAS  Google Scholar 

  129. Brown SL, Greene MH, Gershon SK, Edwards ET, Braun MMT. Tumor necrosis factor antagonist therapy and lymphoma development twenty-six cases reported to the Food and Drug Administration. Arthritis Rheum. 2002;46:3151–8. doi:10.1002/art.10679.

    Article  PubMed  CAS  Google Scholar 

  130. Stone JH, et al. Solid malignancies among patients in the Wegener’s Granulomatosis Etanercept trial. Arthritis Rheum. 2006;54:1608–18. doi:10.1002/art.21869.

    Article  PubMed  CAS  Google Scholar 

  131. Humira™ (Adalimumab), DN0735V7 CR22-05126. December 20, 2002:16p.

  132. Solomon DH. The comparative safety and effectiveness of TNF-alpha antagonists. J Manag Care Pharm. 2007;13:S7–18.

    PubMed  Google Scholar 

  133. Curnis F, et al. Enhancement of tumor necrosis factor alpha antitumor immunotherapeutic properties by targeted delivery to aminopeptidase N (CD13). Nat Biotechnol. 2000;18:1185–90. doi:10.1038/81183.

    Article  PubMed  CAS  Google Scholar 

  134. Kianmanesh A, et al. Intratumoral administration of low doses of an adenovirus vector encoding tumor necrosis factor alpha together with naïve dendritic cells elicits significant suppression of tumor growth without toxicity. Hum Gene Ther. 2001;12:2035–49. doi:10.1089/10430340152677395.

    Article  PubMed  CAS  Google Scholar 

  135. Manusama ER, et al. Tumor necrosis factor-alpha in isolated perfusion systems in the treatment of cancer: the Rotterdam Preclinical-Clinical Program. Semin Surg Oncol. 1998;14:232–7. doi:10.1002/(SICI)1098-2388(199804/05)14:3<232::AID-SSU7>3.0.CO;2-9.

    Article  PubMed  CAS  Google Scholar 

  136. Lewis JD. Anti-TNF antibodies for Crohn’s disease- In pursuit of the perfect clinical trial. N Engl J Med. 2007;357:296–8. doi:10.1056/NEJMe078111.

    Article  PubMed  CAS  Google Scholar 

  137. Graves JE, Nunley K, Heffernan MP. Off-label uses of biologics in dermatology: Rituximab, Omalizumab, Infliximab, Etanercept, Adalimumab, Efalizumab, and Alefacept (Part 2 of 2). J Am Acad Dermatol. 2007;56:e55–79. doi:10.1016/j.jaad.2006.07.019.

    Article  PubMed  Google Scholar 

  138. Hochberg MC, Tracy JK, Hawkins-Holt M, Flores RH. Comparison of the efficacy of the tumour necrosis factor blocking agents Adalimumab, Etanercept, and Infliximab when added to methotrexate in patients with active rheumatoid arthritis. Ann Rheum Dis. 2003;62(Suppl II):ii13–6. doi:10.1136/ard.62.suppl_2.ii13.

    PubMed  CAS  Google Scholar 

  139. Doan QV, Chiou C-F, Dubois RW. Review of eight pharmacoeconomic studies of the value of biologic DMARDs (Adalimumab, Etanercept, and Infliximab) in the management of rheumatoid arthritis. J Manag Care Pharm. 2006;12:555–69.

    PubMed  Google Scholar 

  140. Chen Y-F, et al. A systematic review of the effectiveness of Adalimumab, Etanercept and Infliximab for the treatment of rheumatoid arthritis in adults and an economic evaluation of their cost-effectiveness. Health Technol Assess 2006;10:iii–iv, xi–xiii, 1–229.

    Google Scholar 

  141. Thiéfin G, Morelet A, Heurgué A, Diebold M-D, Eschard J-P. Infliximab-induced hepatitis: absence of cross-toxicity with Etanercept. Joint Bone Spine. 2008;75:737–9. doi:10.1016/j.jbspin.2007.12.009.

    Article  PubMed  Google Scholar 

  142. Chang J, Girgis L. Clinical use of anti-TNF-alpha biological agents: A guide for GPs. Aust Fam Physician. 2007;36:1035–8.

    PubMed  Google Scholar 

  143. Fonseca JE, et al. Recommendations for the diagnosis and treatment of latent and active tuberculosis in inflammatory joint diseases candidates for therapy with tumor necrosis factor alpha inhibitors—March 2008 update. Acta Reumatol Port. 2008;33:77–85.

    PubMed  Google Scholar 

  144. Theis VS, Rhodes JM. Minimizing tuberculosis during anti-tumour necrosis factor-alpha treatment of inflammatory bowel disease. Aliment Pharmacol Ther. 2008;27:19–30.

    Article  PubMed  CAS  Google Scholar 

  145. Gupta A, Street AC, Macrae FA. Tumour necrosis factor alpha inhibitors: screening for tuberculosis infection in inflammatory bowel disease. MJA. 2008;188:168–70.

    PubMed  Google Scholar 

  146. Tayal V, Kalra B. Cytokines and anti-cytokines as therapeutics—an update. Eur J Pharmacol. 2008;579:1–12. doi:10.1016/j.ejphar.2007.10.049.

    Article  PubMed  CAS  Google Scholar 

  147. Schreiber S, et al. A randomized, placebo-controlled trial of Certolizumab pegol (CDP870) for treatment of Crohn’s disease. Gastroenterology. 2005;129:807–18. doi:10.1053/j.gastro.2005.06.064.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inès Zidi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zidi, I., Mestiri, S., Bartegi, A. et al. TNF-α and its inhibitors in cancer. Med Oncol 27, 185–198 (2010). https://doi.org/10.1007/s12032-009-9190-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12032-009-9190-3

Keywords

Navigation