Skip to main content

Advertisement

Log in

Neural circuitry and immunity

  • NEUROIMMUNOLOGY
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Research during the last decade has significantly advanced our understanding of the molecular mechanisms at the interface between the nervous system and the immune system. Insight into bidirectional neuro-immune communication has characterized the nervous system as an important partner of the immune system in the regulation of inflammation. Neuronal pathways, including the vagus nerve-based inflammatory reflex, are physiological regulators of immune function and inflammation. In parallel, neuronal function is altered in conditions characterized by immune dysregulation and inflammation. Here, we review these regulatory mechanisms and describe the neural circuitry modulating immunity. Understanding these mechanisms reveals possibilities to use targeted neuromodulation as a therapeutic approach for inflammatory and autoimmune disorders. These findings and current clinical exploration of neuromodulation in the treatment of inflammatory diseases define the emerging field of Bioelectronic Medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chiu IM, Heesters BA, Ghasemlou N, von Hehn CA, Zhao F, Tran J, et al. Bacteria activate sensory neurons that modulate pain and inflammation. Nature. 2013;501:52–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Tracey KJ. The inflammatory reflex. Nature. 2002;420:853–9.

    Article  CAS  PubMed  Google Scholar 

  3. Tracey KJ. Reflex control of immunity. Nat Rev Immunol. 2009;9:418–28.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Andersson U, Tracey KJ. Neural reflexes in inflammation and immunity. J Exp Med. 2012;209:1057–68.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Andersson U, Tracey KJ. Reflex principles of immunological homeostasis. Annu Rev Immunol. 2012;30:313–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Pavlov VA, Tracey KJ. The vagus nerve and the inflammatory reflex–linking immunity and metabolism. Nat Rev Endocrinol. 2012;8:743–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Koopman F, Miltjko S, Grazio S, Socolovic S, Tracey K, Levine Y, et al. First-in-human study of vagus nerve stimulation for rheumatoid arthritis: clinical and biomarker results through day 84. Ann Rheum Dis. 2013;172:245.

    Article  Google Scholar 

  8. Pavlov VA, Wang H, Czura CJ, Friedman SG, Tracey KJ. The cholinergic anti-inflammatory pathway: a missing link in neuroimmunomodulation. Mol Med. 2003;9:125–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Serhan CN, Chiang N, Dalli J. The resolution code of acute inflammation: novel pro-resolving lipid mediators in resolution. Semin Immunol. 2015;27(3):200–15.

    Article  CAS  PubMed  Google Scholar 

  10. Serhan CN. Pro-resolving lipid mediators are leads for resolution physiology. Nature. 2014;510:92–101.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Mirakaj V, Dalli J, Granja T, Rosenberger P, Serhan CN. Vagus nerve controls resolution and pro-resolving mediators of inflammation. J Exp Med. 2014;211:1037–48.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Kettenmann H, Hanisch UK, Noda M, Verkhratsky A. Physiology of microglia. Physiol Rev. 2011;91:461–553.

    Article  CAS  PubMed  Google Scholar 

  13. Farina C, Aloisi F, Meinl E. Astrocytes are active players in cerebral innate immunity. Trends Immunol. 2007;28:138–45.

    Article  CAS  PubMed  Google Scholar 

  14. Garden GA, Moller T. Microglia biology in health and disease. J Neuroimmune Pharmacol. 2006;1:127–37.

    Article  PubMed  Google Scholar 

  15. Gundersen V, Storm-Mathisen J, Bergersen LH. Neuroglial transmission. Physiol Rev. 2015;95:695–726.

    Article  PubMed  CAS  Google Scholar 

  16. Ransohoff RM, Perry VH. Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol. 2009;27:119–45.

    Article  CAS  PubMed  Google Scholar 

  17. Heneka MT, Carson MJ, Khoury JE, Landreth GE, Brosseron F, Feinstein DL, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015;14:388–405.

    Article  CAS  PubMed  Google Scholar 

  18. Sun J, Singh V, Kajino-Sakamoto R, Aballay A. Neuronal GPCR controls innate immunity by regulating noncanonical unfolded protein response genes. Science. 2011;332:729–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Chiu IM, von Hehn CA, Woolf CJ. Neurogenic inflammation and the peripheral nervous system in host defense and immunopathology. Nat Neurosci. 2012;15:1063–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH. Mechanisms underlying inflammation in neurodegeneration. Cell. 2010;140:918–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Gallowitsch-Puerta M, Pavlov VA. Neuro-immune interactions via the cholinergic anti-inflammatory pathway. Life Sci. 2007;80:2325–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Pavlov VA, Tracey KJ. Neural regulators of innate immune responses and inflammation. Cell Mol Life Sci. 2004;61:2322–31.

    Article  CAS  PubMed  Google Scholar 

  23. Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008;9:46–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Kelley KW, McCusker RH: Getting nervous about immunity. Semin Immunol. 2014;26(5):389–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Capuron L, Miller AH. Immune system to brain signaling: neuropsychopharmacological implications. Pharmacol Ther. 2011;130:226–38.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Goehler LE, Gaykema RP, Hansen MK, Anderson K, Maier SF, Watkins LR. Vagal immune-to-brain communication: a visceral chemosensory pathway. Auton Neurosci. 2000;85:49–59.

    Article  CAS  PubMed  Google Scholar 

  27. Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405:458–62.

    Article  CAS  PubMed  Google Scholar 

  28. Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature. 2003;421:384–8.

    Article  CAS  PubMed  Google Scholar 

  29. Huston JM, Ochani M, Rosas-Ballina M, Liao H, Ochani K, Pavlov VA, et al. Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis. J Exp Med. 2006;203:1623–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Rosas-Ballina M, Ochani M, Parrish WR, Ochani K, Harris YT, Huston JM, et al. Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia. Proc Natl Acad Sci USA. 2008;105:11008–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Rosas-Ballina M, Olofsson PS, Ochani M, Valdes-Ferrer SI, Levine YA, Reardon C, et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science. 2011;334:98–101.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Ji H, Rabbi MF, Labis B, Pavlov VA, Tracey KJ, Ghia JE. Central cholinergic activation of a vagus nerve-to-spleen circuit alleviates experimental colitis. Mucosal Immunol. 2013;7(2):335–47.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Arima Y, Harada M, Kamimura D, Park JH, Kawano F, Yull FE, et al. Regional neural activation defines a gateway for autoreactive T cells to cross the blood-brain barrier. Cell. 2012;148:447–57.

    Article  CAS  PubMed  Google Scholar 

  34. Tracey KJ. Immune cells exploit a neural circuit to enter the CNS. Cell. 2012;148:392–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Wong CH, Jenne CN, Lee WY, Leger C, Kubes P. Functional innervation of hepatic iNKT cells is immunosuppressive following stroke. Science. 2011;334:101–5.

    Article  CAS  PubMed  Google Scholar 

  36. Nakai A, Hayano Y, Furuta F, Noda M, Suzuki K. Control of lymphocyte egress from lymph nodes through beta2-adrenergic receptors. J Exp Med. 2014;211:2583–98.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Scheiermann C, Frenette PS, Hidalgo A. Regulation of leucocyte homeostasis in the circulation. Cardiovasc Res. 2015;107:340–351.

    Article  PubMed  Google Scholar 

  38. Tracey KJ. Lymphocyte called home: beta2-adreneric neurotransmission confines T cells to lymph nodes to suppress inflammation. J Exp Med. 2014;211:2483–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Guarini S, Altavilla D, Cainazzo MM, Giuliani D, Bigiani A, Marini H, et al. Efferent vagal fibre stimulation blunts nuclear factor-kappaB activation and protects against hypovolemic hemorrhagic shock. Circulation. 2003;107:1189–94.

    Article  PubMed  Google Scholar 

  40. de Jonge WJ, van der Zanden EP, The FO, Bijlsma MF, van Westerloo DJ, Bennink RJ, et al. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nat Immunol. 2005;6:844–51.

    Article  PubMed  CAS  Google Scholar 

  41. Saeed RW, Varma S, Peng-Nemeroff T, Sherry B, Balakhaneh D, Huston J, et al. Cholinergic stimulation blocks endothelial cell activation and leukocyte recruitment during inflammation. J Exp Med. 2005;201:1113–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Olofsson PS, Levine YA, Caravaca A, Chavan SS, Pavlov VA, Faltys M, et al. Single-pulse and unidirectional electrical activation of the cervical vagus nerve reduces tumor necrosis factor in endotoxemia. Bioelectron Med. 2015;2:37–42.

    Google Scholar 

  43. Czura CJ, Schultz A, Kaipel M, Khadem A, Huston JM, Pavlov VA, et al. Vagus nerve stimulation regulates hemostasis in swine. Shock. 2010;33:608–13.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Huston JM, Gallowitsch-Puerta M, Ochani M, Ochani K, Yuan R, Rosas-Ballina M, et al. Transcutaneous vagus nerve stimulation reduces serum high mobility group box 1 levels and improves survival in murine sepsis. Crit Care Med. 2007;35:2762–8.

    Article  PubMed  Google Scholar 

  45. Bonaz B, Picq C, Sinniger V, Mayol JF, Clarencon D. Vagus nerve stimulation: from epilepsy to the cholinergic anti-inflammatory pathway. Neurogastroenterol Motil. 2013;25:208–21.

    Article  CAS  PubMed  Google Scholar 

  46. Levine YA, Koopman FA, Faltys M, Caravaca A, Bendele A, Zitnik R, et al. Neurostimulation of the cholinergic anti-inflammatory pathway ameliorates disease in rat collagen-induced arthritis. PLoS One. 2014;9:e104530.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  47. Meregnani J, Clarencon D, Vivier M, Peinnequin A, Mouret C, Sinniger V, et al. Anti-inflammatory effect of vagus nerve stimulation in a rat model of inflammatory bowel disease. Auton Neurosci. 2011;160:82–9.

    Article  CAS  PubMed  Google Scholar 

  48. Ghia JE, Blennerhassett P, Collins SM. Vagus nerve integrity and experimental colitis. Am J Physiol Gastrointest Liver Physiol. 2007;293:G560–7.

    Article  CAS  PubMed  Google Scholar 

  49. Sun JJ, Chu ZJ, Zhang YM, Qi SF, Chang YC, Xin SY, et al. Beneficial effect of splanchnic nerve transection and harmful effect of vagotomy on acute necrotizing pancreatitis in the dog. Dig Dis Sci. 2015;60:118–26.

    Article  PubMed  Google Scholar 

  50. van Westerloo DJ, Giebelen IA, Florquin S, Bruno MJ, Larosa GJ, Ulloa L, et al. The vagus nerve and nicotinic receptors modulate experimental pancreatitis severity in mice. Gastroenterology. 2006;130:1822–30.

    Article  PubMed  CAS  Google Scholar 

  51. Schulte A, Lichtenstern C, Henrich M, Weigand MA, Uhle F. Loss of vagal tone aggravates systemic inflammation and cardiac impairment in endotoxemic rats. J Surg Res. 2014;188:480–8.

    Article  CAS  PubMed  Google Scholar 

  52. Su X, Matthay MA, Malik AB. Requisite role of the cholinergic alpha7 nicotinic acetylcholine receptor pathway in suppressing Gram-negative sepsis-induced acute lung inflammatory injury. J Immunol. 2010;184:401–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Berthoud HR, Powley TL. Characterization of vagal innervation to the rat celiac, suprarenal and mesenteric ganglia. J Auton Nerv Syst. 1993;42:153–69.

    Article  CAS  PubMed  Google Scholar 

  54. Berthoud HR, Powley TL. Interaction between parasympathetic and sympathetic nerves in prevertebral ganglia: morphological evidence for vagal efferent innervation of ganglion cells in the rat. Microsc Res Tech. 1996;35:80–6.

    Article  CAS  PubMed  Google Scholar 

  55. Downs AM, Bond CE, Hoover DB. Localization of alpha7 nicotinic acetylcholine receptor mRNA and protein within the cholinergic anti-inflammatory pathway. Neuroscience. 2014;266:178–85.

    Article  CAS  PubMed  Google Scholar 

  56. Nance DM, Burns J. Innervation of the spleen in the rat: evidence for absence of afferent innervation. Brain Behav Immun. 1989;3:281–90.

    Article  CAS  PubMed  Google Scholar 

  57. Bellinger DL, Felten SY, Lorton D, Felten DL. Origin of noradrenergic innervation of the spleen in rats. Brain Behav Immun. 1989;3:291–311.

    Article  CAS  PubMed  Google Scholar 

  58. Li M, Galligan J, Wang D, Fink G. The effects of celiac ganglionectomy on sympathetic innervation to the splanchnic organs in the rat. Auton Neurosci. 2010;154:66–73.

    Article  PubMed  Google Scholar 

  59. Mina-Osorio P, Rosas-Ballina M, Valdes-Ferrer SI, Al Abed Y, Tracey KJ, Diamond B. Neural signaling in the spleen controls B-cell responses to blood-borne antigen. Mol Med. 2012;18:618–27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Bratton BO, Martelli D, McKinley MJ, Trevaks D, Anderson CR, McAllen RM. Neural regulation of inflammation: no neural connection from the vagus to splenic sympathetic neurons. Exp Physiol. 2012;97:1180–5.

    Article  CAS  PubMed  Google Scholar 

  61. Felten DL, Ackerman KD, Wiegand SJ, Felten SY. Noradrenergic sympathetic innervation of the spleen: I. Nerve fibers associate with lymphocytes and macrophages in specific compartments of the splenic white pulp. J Neurosci Res. 1987;18(1):28–36, 118–21.

    PubMed  Google Scholar 

  62. Ackerman KD, Felten SY, Bellinger DL, Felten DL. Noradrenergic sympathetic innervation of the spleen: III. Development of innervation in the rat spleen. J Neurosci Res. 1987;18:49–55.

    Article  CAS  PubMed  Google Scholar 

  63. Felten SY, Olschowka J. Noradrenergic sympathetic innervation of the spleen: II. Tyrosine hydroxylase (TH)-positive nerve terminals form synapticlike contacts on lymphocytes in the splenic white pulp. J Neurosci Res. 1987;18:37–48.

    Article  CAS  PubMed  Google Scholar 

  64. Pavlov VA, Parrish WR, Rosas-Ballina M, Ochani M, Puerta M, Ochani K, et al. Brain acetylcholinesterase activity controls systemic cytokine levels through the cholinergic anti-inflammatory pathway. Brain Behav Immun. 2009;23:41–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Olofsson PS, Katz DA, Rosas-Ballina M, Levine YA, Ochani M, Valdes-Ferrer SI, et al. Alpha7 nicotinic acetylcholine receptor (alpha7nAChR) expression in bone marrow-derived non-T cells is required for the inflammatory reflex. Mol Med. 2012;18:539–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Pavlov VA, Ochani M, Yang LH, Gallowitsch-Puerta M, Ochani K, Lin X, et al. Selective alpha7-nicotinic acetylcholine receptor agonist GTS-21 improves survival in murine endotoxemia and severe sepsis. Crit Care Med. 2007;35:1139–44.

    Article  CAS  PubMed  Google Scholar 

  67. Parrish WR, Rosas-Ballina M, Gallowitsch-Puerta M, Ochani M, Ochani K, Yang LH, et al. Modulation of TNF release by choline requires alpha7 subunit nicotinic acetylcholine receptor-mediated signaling. Mol Med. 2008;14:567–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Norman GJ, Morris JS, Karelina K, Weil ZM, Zhang N, Al Abed Y, et al. Cardiopulmonary arrest and resuscitation disrupts cholinergic anti-inflammatory processes: a role for cholinergic alpha7 nicotinic receptors. J Neurosci. 2011;31:3446–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Terrando N, Eriksson LI, Ryu JK, Yang T, Monaco C, Feldmann M, et al. Resolving postoperative neuroinflammation and cognitive decline. Ann Neurol. 2011;70:986–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Pavlov VA. Cholinergic modulation of inflammation. Int J Clin Exp Med. 2008;1:203–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Bencherif M, Lippiello PM, Lucas R, Marrero MB. Alpha7 nicotinic receptors as novel therapeutic targets for inflammation-based diseases. Cell Mol Life Sci. 2011;68:931–49.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Olofsson PS, Rosas-Ballina M, Levine YA, Tracey KJ. Rethinking inflammation: neural circuits in the regulation of immunity. Immunol Rev. 2012;248:188–204.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Lu B, Kwan K, Levine YA, Olofsson PS, Yang H, Li J, et al. Alpha7 nicotinic acetylcholine receptor signaling inhibits inflammasome activation by preventing mitochondrial DNA release. Mol Med. 2014;20:350–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  74. Ulrich-Lai YM, Herman JP. Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci. 2009;10:397–409.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Woolf NJ. Cholinergic systems in mammalian brain and spinal cord. Prog Neurobiol. 1991;37:475–524.

    Article  CAS  PubMed  Google Scholar 

  76. Woolf NJ, Butcher LL. Cholinergic systems mediate action from movement to higher consciousness. Behav Brain Res. 2011;221:488–98.

    Article  CAS  PubMed  Google Scholar 

  77. Anagnostaras SG, Murphy GG, Hamilton SE, Mitchell SL, Rahnama NP, Nathanson NM, et al. Selective cognitive dysfunction in acetylcholine M1 muscarinic receptor mutant mice. Nat Neurosci. 2003;6:51–8.

    Article  CAS  PubMed  Google Scholar 

  78. Varela C, Kumar S, Yang JY, Wilson MA. Anatomical substrates for direct interactions between hippocampus, medial prefrontal cortex, and the thalamic nucleus reuniens. Brain Struct Funct. 2014;219:911–29.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Ruit KG, Neafsey EJ. Cardiovascular and respiratory responses to electrical and chemical stimulation of the hippocampus in anesthetized and awake rats. Brain Res. 1988;457:310–21.

    Article  CAS  PubMed  Google Scholar 

  80. Akert K, Gernandt BE. Neurophysiological study of vestibular and limbic influences upon vagal outflow. Electroencephalogr Clin Neurophysiol. 1962;14:904–14.

    Article  CAS  PubMed  Google Scholar 

  81. Pavlov VA, Ochani M, Gallowitsch-Puerta M, Ochani K, Huston JM, Czura CJ, et al. Central muscarinic cholinergic regulation of the systemic inflammatory response during endotoxemia. Proc Natl Acad Sci USA. 2006;103:5219–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Bernik TR, Friedman SG, Ochani M, DiRaimo R, Ulloa L, Yang H, et al. Pharmacological stimulation of the cholinergic antiinflammatory pathway. J Exp Med. 2002;195:781–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Munyaka P, Rabbi MF, Pavlov VA, Tracey KJ, Khafipour E, Ghia JE. Central muscarinic cholinergic activation alters interaction between splenic dendritic cell and CD4+. PLoS One. 2014;9:e109272.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  84. Guarini S, Cainazzo MM, Giuliani D, Mioni C, Altavilla D, Marini H, et al. Adrenocorticotropin reverses hemorrhagic shock in anesthetized rats through the rapid activation of a vagal anti-inflammatory pathway. Cardiovasc Res. 2004;63:357–65.

    Article  CAS  PubMed  Google Scholar 

  85. Lee ST, Chu K, Jung KH, Kang KM, Kim JH, Bahn JJ, et al. Cholinergic anti-inflammatory pathway in intracerebral hemorrhage. Brain Res. 2010;1309:164–71.

    Article  CAS  PubMed  Google Scholar 

  86. Song JG, Li HH, Cao YF, Lv X, Zhang P, Li YS, et al. Electroacupuncture improves survival in rats with lethal endotoxemia via the autonomic nervous system. Anesthesiology. 2012;116:406–14.

    Article  PubMed  Google Scholar 

  87. Rosas-Ballina M, Valdes-Ferrer SI, Dancho ME, Ochani M, Katz D, Cheng KF, et al. Xanomeline suppresses excessive pro-inflammatory cytokine responses through neural signal-mediated pathways and improves survival in lethal inflammation. Brain Behav Immun. 2015;44:19–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bodick NC, Offen WW, Levey AI, Cutler NR, Gauthier SG, Satlin A, et al. Effects of xanomeline, a selective muscarinic receptor agonist, on cognitive function and behavioral symptoms in Alzheimer disease. Arch Neurol. 1997;54:465–73.

    Article  CAS  PubMed  Google Scholar 

  89. Bodick NC, Offen WW, Shannon HE, Satterwhite J, Lucas R, van Lier R, et al. The selective muscarinic agonist xanomeline improves both the cognitive deficits and behavioral symptoms of Alzheimer disease. Alzheimer Disord Assoc Disord. 1997;11(Suppl 4):S16–22.

    CAS  Google Scholar 

  90. Shekhar A, Potter WZ, Lightfoot J, Lienemann J, Dube S, Mallinckrodt C, et al. Selective muscarinic receptor agonist xanomeline as a novel treatment approach for schizophrenia. Am J Psychiatry. 2008;165:1033–9.

    Article  PubMed  Google Scholar 

  91. Jones CK, Byun N, Bubser M. Muscarinic and nicotinic acetylcholine receptor agonists and allosteric modulators for the treatment of schizophrenia. Neuropsychopharmacology. 2012;37:16–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Ma L, Seager MA, Wittmann M, Jacobson M, Bickel D, Burno M, et al. Selective activation of the M1 muscarinic acetylcholine receptor achieved by allosteric potentiation. Proc Natl Acad Sci USA. 2009;106:15950–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Meyer U, Schwarz MJ, Muller N. Inflammatory processes in schizophrenia: a promising neuroimmunological target for the treatment of negative/cognitive symptoms and beyond. Pharmacol Ther. 2011;132:96–110.

    Article  CAS  PubMed  Google Scholar 

  94. Kirkpatrick B, Miller BJ. Inflammation and schizophrenia. Schizophr Bull. 2013;39:1174–9.

    Article  PubMed Central  PubMed  Google Scholar 

  95. Yoshiyama Y, Kojima A, Itoh K, Uchiyama T, Arai K. Anticholinergics boost the pathological process of neurodegeneration with increased inflammation in a tauopathy mouse model. Neurobiol Dis. 2012;45:329–36.

    Article  CAS  PubMed  Google Scholar 

  96. Yoshiyama Y, Kojima A, Itoh K, Isose S, Koide M, Hori K, et al. Does anticholinergic activity affect neuropathology? Implication of neuroinflammation in Alzheimer’s disease. Neurodegener Dis. 2015;15:140–8.

    Article  CAS  PubMed  Google Scholar 

  97. Dinan TG, Clarke G, Quigley EM, Scott LV, Shanahan F, Cryan J, et al. Enhanced cholinergic-mediated increase in the pro-inflammatory cytokine IL-6 in irritable bowel syndrome: role of muscarinic receptors. Am J Gastroenterol. 2008;103:2570–6.

    Article  CAS  PubMed  Google Scholar 

  98. Kawashima K, Fujii T, Moriwaki Y, Misawa H. Critical roles of acetylcholine and the muscarinic and nicotinic acetylcholine receptors in the regulation of immune function. Life Sci. 2012;91:1027–32.

    Article  CAS  PubMed  Google Scholar 

  99. Waldburger JM, Boyle DL, Edgar M, Sorkin LS, Levine YA, Pavlov VA, et al. Spinal p38 MAP kinase regulates peripheral cholinergic outflow. Arthritis Rheumatol. 2008;58:2919–21.

    Article  Google Scholar 

  100. Gowayed MA, Refaat R, Ahmed WM, El Abhar HS. Effect of galantamine on adjuvant-induced arthritis in Rats. Eur J Pharmacol. 2015;764:547–53.

    Article  CAS  PubMed  Google Scholar 

  101. Shifrin H, Nadler-Milbauer M, Shoham S, Weinstock M. Rivastigmine alleviates experimentally induced colitis in mice and rats by acting at central and peripheral sites to modulate immune responses. PLoS One. 2013;8:e57668.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Miceli PC, Jacobson K. Cholinergic pathways modulate experimental dinitrobenzene sulfonic acid colitis in rats. Auton Neurosci. 2003;105:16–24.

    Article  CAS  PubMed  Google Scholar 

  103. Akinci SB, Ulu N, Yondem OZ, Firat P, Guc MO, Kanbak M, et al. Effect of neostigmine on organ injury in murine endotoxemia: missing facts about the cholinergic antiinflammatory pathway. World J Surg. 2005;29:1483–9.

    Article  PubMed  Google Scholar 

  104. Kox M, Pompe JC, Peters E, Vaneker M, van der Laak JW, van der Hoeven JG, et al. Alpha7 nicotinic acetylcholine receptor agonist GTS-21 attenuates ventilator-induced tumour necrosis factor-alpha production and lung injury. Br J Anaesth. 2011;107:559–66.

    Article  CAS  PubMed  Google Scholar 

  105. Lataro RM, Silva CA, Tefe-Silva C, Prado CM, Salgado HC. Acetylcholinesterase inhibition attenuates the development of hypertension and inflammation in spontaneously hypertensive rats. Am J Hypertens. 2015.

  106. Gambi F, Reale M, Iarlori C, Salone A, Toma L, Paladini C, et al. Alzheimer patients treated with an AchE inhibitor show higher IL-4 and lower IL-1 beta levels and expression in peripheral blood mononuclear cells. J Clin Psychopharmacol. 2004;24:314–21.

    Article  CAS  PubMed  Google Scholar 

  107. Reale M, Iarlori C, Gambi F, Lucci I, Salvatore M, Gambi D. Acetylcholinesterase inhibitors effects on oncostatin-M, interleukin-1 beta and interleukin-6 release from lymphocytes of Alzheimer’s disease patients. Exp Gerontol. 2005;40:165–71.

    Article  CAS  PubMed  Google Scholar 

  108. Blasko I, Knaus G, Weiss E, Kemmler G, Winkler C, Falkensammer G, et al. Cognitive deterioration in Alzheimer’s disease is accompanied by increase of plasma neopterin. J Psychiatr Res. 2007;41:694–701.

    Article  PubMed  Google Scholar 

  109. Hoogland IC, Houbolt C, van Westerloo DJ, van Gool WA, van de Beek D. Systemic inflammation and microglial activation: systematic review of animal experiments. J Neuroinflammation. 2015;12:114.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  110. Silverman HA, Dancho M, Regnier-Golanov A, Nasim M, Ochani M, Olofsson PS, et al. Brain region-specific alterations in the gene expression of cytokines, immune cell markers and cholinergic system components during peripheral endotoxin-induced inflammation. Mol Med. 2014;20:601–11.

    PubMed Central  Google Scholar 

  111. Sankowski R, Mader S, Valdes-Ferrer SI. Systemic inflammation and the brain: novel roles of genetic, molecular, and environmental cues as drivers of neurodegeneration. Front Cell Neurosci. 2015;9:28.

    Article  PubMed Central  PubMed  Google Scholar 

  112. Lampa J, Westman M, Kadetoff D, Agreus AN, Le Maitre E, Gillis-Haegerstrand C, et al. Peripheral inflammatory disease associated with centrally activated IL-1 system in humans and mice. Proc Natl Acad Sci USA. 2012;109:12728–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  113. Diamond B, Tracey KJ. Mapping the immunological homunculus. Proc Natl Acad Sci USA. 2011;108:3461–2.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  114. Gofton TE, Young GB. Sepsis-associated encephalopathy. Nat Rev Neurol. 2012;8:557–66.

    Article  CAS  PubMed  Google Scholar 

  115. Lemstra AW, Groen in’t Woud JC, Hoozemans JJ, van Haastert ES, Rozemuller AJ, Eikelenboom P, et al. Microglia activation in sepsis: a case-control study. J Neuroinflammation. 2007;4:4.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  116. Coltart I, Tranah TH, Shawcross DL. Inflammation and hepatic encephalopathy. Arch Biochem Biophys. 2013;536:189–96.

    Article  CAS  PubMed  Google Scholar 

  117. Felipo V. Hepatic encephalopathy: effects of liver failure on brain function. Nat Rev Neurosci. 2013;14:851–8.

    Article  CAS  PubMed  Google Scholar 

  118. Thaler JP, Yi CX, Schur EA, Guyenet SJ, Hwang BH, Dietrich MO, et al. Obesity is associated with hypothalamic injury in rodents and humans. J Clin Investig. 2012;122:153–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  119. Stranahan AM. Models and mechanisms for hippocampal dysfunction in obesity and diabetes. Neuroscience. 2015. doi:10.1016/j.neuroscience.2015.04.045.

    PubMed  Google Scholar 

  120. Miller AH, Haroon E, Raison CL, Felger JC. Cytokine targets in the brain: impact on neurotransmitters and neurocircuits. Depression Anxiety. 2013;30:297–306.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  121. Sato A, Sato Y, Uchida S. Activation of the intracerebral cholinergic nerve fibers originating in the basal forebrain increases regional cerebral blood flow in the rat’s cortex and hippocampus. Neurosci Lett. 2004;361:90–3.

    Article  CAS  PubMed  Google Scholar 

  122. Kolisnyk B, Al Onaizi MA, Hirata PH, Guzman MS, Nikolova S, Barbash S, et al. Forebrain deletion of the vesicular acetylcholine transporter results in deficits in executive function, metabolic, and RNA splicing abnormalities in the prefrontal cortex. J Neurosci. 2013;33:14908–20.

    Article  CAS  PubMed  Google Scholar 

  123. Shytle RD, Mori T, Townsend K, Vendrame M, Sun N, Zeng J, et al. Cholinergic modulation of microglial activation by alpha 7 nicotinic receptors. J Neurochem. 2004;89:337–43.

    Article  CAS  PubMed  Google Scholar 

  124. Terrando N, Yang T, Ryu JK, Newton PT, Monaco C, Feldmann M, et al. Stimulation of the alpha7 nicotinic acetylcholine receptor protects against neuroinflammation after tibia fracture and endotoxemia in mice. Mol Med. 2014;20:667–75.

    PubMed Central  Google Scholar 

  125. van Gool WA, van de Beek D, Eikelenboom P. Systemic infection and delirium: when cytokines and acetylcholine collide. Lancet. 2010;375:773–5.

    Article  PubMed  CAS  Google Scholar 

  126. Gnatek Y, Zimmerman G, Goll Y, Najami N, Soreq H, Friedman A. Acetylcholinesterase loosens the brain’s cholinergic anti-inflammatory response and promotes epileptogenesis. Front Mol Neurosci. 2012;5:66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  127. Scherer EB, Loureiro SO, Vuaden FC, da Cunha AA, Schmitz F, Kolling J, et al. Mild hyperhomocysteinemia increases brain acetylcholinesterase and proinflammatory cytokine levels in different tissues. Mol Neurobiol. 2014;50:589–96.

    Article  CAS  PubMed  Google Scholar 

  128. Ullrich C, Pirchl M, Humpel C. Hypercholesterolemia in rats impairs the cholinergic system and leads to memory deficits. Mol Cell Neurosci. 2010;45:408–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  129. Semmler A, Frisch C, Debeir T, Ramanathan M, Okulla T, Klockgether T, et al. Long-term cognitive impairment, neuronal loss and reduced cortical cholinergic innervation after recovery from sepsis in a rodent model. Exp Neurol. 2007;204:733–40.

    Article  PubMed  Google Scholar 

  130. Deutschman CS, Tracey KJ. Sepsis: current dogma and new perspectives. Immunity. 2014;40:463–75.

    Article  CAS  PubMed  Google Scholar 

  131. Maldonado JR. Neuropathogenesis of delirium: review of current etiologic theories and common pathways. Am J Geriatr Psychiatry. 2013;21:1190–222.

    Article  PubMed  Google Scholar 

  132. Hshieh TT, Fong TG, Marcantonio ER, Inouye SK. Cholinergic deficiency hypothesis in delirium: a synthesis of current evidence. J Gerontol Ser A Biol Sci Med Sci. 2008;63:764–72.

    Article  Google Scholar 

  133. Valdes-Ferrer SI, Rosas-Ballina M, Olofsson PS, Lu B, Dancho ME, Ochani M, et al. HMGB1 mediates splenomegaly and expansion of splenic CD11b+ Ly-6C(high) inflammatory monocytes in murine sepsis survivors. J Intern Med. 2013;274:381–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  134. Chavan SS, Huerta PT, Robbiati S, Valdes-Ferrer SI, Ochani M, Dancho M, et al. HMGB1 mediates cognitive impairment in sepsis survivors. Mol Med. 2012;18:930–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Garcia-Ayllon MS, Cauli O, Silveyra MX, Rodrigo R, Candela A, Compan A, et al. Brain cholinergic impairment in liver failure. Brain. 2008;131:2946–56.

    Article  PubMed Central  PubMed  Google Scholar 

  136. Barron HV, Alam I, Lesh MD, Strunk A, Bass NM. Autonomic nervous system tone measured by baroreflex sensitivity is depressed in patients with end-stage liver disease. Am J Gastroenterol. 1999;94:986–9.

    Article  CAS  PubMed  Google Scholar 

  137. Mani AR, Montagnese S, Jackson CD, Jenkins CW, Head IM, Stephens RC, et al. Decreased heart rate variability in patients with cirrhosis relates to the presence and degree of hepatic encephalopathy. Am J Physiol Gastrointest Liver Physiol. 2009;296:G330–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  138. Basu PP, Shah NJ, Aloysius MM, Brown RS. Randomized, placebo-controlled trial of transdermal rivastigmine for the treatment of encephalopathy in liver cirrhosis (TREC trial). Open J Gastroenterol. 2014;4(No. 6):255–64.

    Article  CAS  Google Scholar 

  139. Castanon N, Lasselin J, Capuron L. Neuropsychiatric comorbidity in obesity: role of inflammatory processes. Front Endocrinol (Lausanne). 2014;5:74.

    Google Scholar 

  140. Strachan MW, Reynolds RM, Marioni RE, Price JF. Cognitive function, dementia and type 2 diabetes mellitus in the elderly. Nat Rev Endocrinol. 2011;7:108–14.

    Article  CAS  PubMed  Google Scholar 

  141. McCrimmon RJ, Ryan CM, Frier BM. Diabetes and cognitive dysfunction. Lancet. 2012;379:2291–9.

    Article  PubMed  Google Scholar 

  142. Schmatz R, Mazzanti CM, Spanevello R, Stefanello N, Gutierres J, Correa M, et al. Resveratrol prevents memory deficits and the increase in acetylcholinesterase activity in streptozotocin-induced diabetic rats. Eur J Pharmacol. 2009;610:42–8.

    Article  CAS  PubMed  Google Scholar 

  143. Bhutada P, Mundhada Y, Bansod K, Tawari S, Patil S, Dixit P, et al. Protection of cholinergic and antioxidant system contributes to the effect of berberine ameliorating memory dysfunction in rat model of streptozotocin-induced diabetes. Behav Brain Res. 2011;220:30–41.

    Article  CAS  PubMed  Google Scholar 

  144. Diamond B, Huerta PT, Mina-Osorio P, Kowal C, Volpe BT. Losing your nerves? Maybe it’s the antibodies. Nat Rev Immunol. 2009;9:449–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  145. Diamond B, Volpe BT. A model for lupus brain disease. Immunol Rev. 2012;248:56–67.

    Article  PubMed Central  PubMed  Google Scholar 

  146. Diamond B, Honig G, Mader S, Brimberg L, Volpe BT. Brain-reactive antibodies and disease. Annu Rev Immunol. 2013;31:345–85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  147. Chang EH, Volpe BT, Mackay M, Aranow C, Watson P, Kowal C, et al. Selective impairment of spatial cognition caused by autoantibodies to the N-methyl-d-aspartate receptor. EBioMedicine. 2015;2:755–64.

    Article  PubMed Central  PubMed  Google Scholar 

  148. Saito K, Yoshioka M, Kohya T, Kitabatake A. Involvement of muscarinic M1 receptor in the central pathway of the serotonin-induced Bezold-Jarisch reflex in rats. J Auton Nerv Syst. 1994;49:61–8.

    Article  CAS  PubMed  Google Scholar 

  149. Matsushita H, Ishikawa K, Shimazu T. Chemical coding of the hypothalamic neurons in metabolic control I. Acetylcholine-sensitive neurons and glycogen synthesis in liver. Brain Res. 1979;163:253–61.

    Article  CAS  PubMed  Google Scholar 

  150. Shimazu T, Matsushita H, Ishikawa K. Cholinergic stimulation of the rat hypothalamus: effects of liver glycogen synthesis. Science. 1976;194:535–6.

    Article  CAS  PubMed  Google Scholar 

  151. Li Y, Wu X, Zhu J, Yan J, Owyang C. Hypothalamic regulation of pancreatic secretion is mediated by central cholinergic pathways in the rat. J Physiol. 2003;552:571–87.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  152. Cabrera LY, Evans EL, Hamilton RH. Ethics of the electrified mind: defining issues and perspectives on the principled use of brain stimulation in medical research and clinical care. Brain Topogr. 2014;27:33–45.

    Article  PubMed  Google Scholar 

  153. Fregni F, Pascual-Leone A. Technology insight: noninvasive brain stimulation in neurology-perspectives on the therapeutic potential of rTMS and tDCS. Nat Clin Pract Neurol. 2007;3:383–93.

    Article  PubMed  Google Scholar 

  154. Gallagher EJ, LeRoith D. Obesity and diabetes: the increased risk of cancer and cancer-related mortality. Physiol Rev. 2015;95:727–48.

    Article  PubMed  CAS  Google Scholar 

  155. Olefsky JM, Glass CK. Macrophages, inflammation, and insulin resistance. Annu Rev Physiol. 2010;72:219–46.

    Article  CAS  PubMed  Google Scholar 

  156. Bastard JP, Maachi M, Lagathu C, Kim MJ, Caron M, Vidal H, et al. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur Cytokine Netw. 2006;17:4–12.

    CAS  PubMed  Google Scholar 

  157. Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity. Annu Rev Immunol. 2011;29:415–45.

    Article  CAS  PubMed  Google Scholar 

  158. Tilg H, Moschen AR. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol. 2006;6:772–83.

    Article  CAS  PubMed  Google Scholar 

  159. Cheung GW, Kokorovic A, Lam CK, Chari M, Lam TK. Intestinal cholecystokinin controls glucose production through a neuronal network. Cell Metab. 2009;10:99–109.

    Article  CAS  PubMed  Google Scholar 

  160. Lam TK, Pocai A, Gutierrez-Juarez R, Obici S, Bryan J, Aguilar-Bryan L, et al. Hypothalamic sensing of circulating fatty acids is required for glucose homeostasis. Nat Med. 2005;11:320–7.

    Article  CAS  PubMed  Google Scholar 

  161. Richter WO, Geiss HC, Aleksic S, Schwandt P. Cardiac autonomic nerve function and insulin sensitivity in obese subjects. Int J Obes Relat Metab Disord. 1996;20:966–9.

    CAS  PubMed  Google Scholar 

  162. Ziegler D, Zentai C, Perz S, Rathmann W, Haastert B, Meisinger C, et al. Selective contribution of diabetes and other cardiovascular risk factors to cardiac autonomic dysfunction in the general population. Exp Clin Endocrinol Diabetes. 2006;114:153–9.

    Article  CAS  PubMed  Google Scholar 

  163. Pardo JV, Sheikh SA, Kuskowski MA, Surerus-Johnson C, Hagen MC, Lee JT, et al. Weight loss during chronic, cervical vagus nerve stimulation in depressed patients with obesity: an observation. Int J Obes (Lond). 2007;31:1756–9.

    Article  CAS  Google Scholar 

  164. Satapathy SK, Ochani M, Dancho M, Hudson LK, Rosas-Ballina M, Valdes-Ferrer SI, et al. Galantamine alleviates inflammation and other obesity-associated complications in high-fat diet-fed mice. Mol Med. 2011;17:599–606.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  165. Marrero MB, Lucas R, Salet C, Hauser TA, Mazurov A, Lippiello PM, et al. An alpha7 nicotinic acetylcholine receptor-selective agonist reduces weight gain and metabolic changes in a mouse model of diabetes. J Pharmacol Exp Ther. 2010;332:173–80.

    Article  CAS  PubMed  Google Scholar 

  166. Wang X, Yang Z, Xue B, Shi H. Activation of the cholinergic antiinflammatory pathway ameliorates obesity-induced inflammation and insulin resistance. Endocrinology. 2011;152:836–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  167. Ali MA, El Abhar HS, Kamel MA, Attia AS. Antidiabetic effect of galantamine: novel effect for a known centrally acting drug. PLoS One. 2015;10:e0134648.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  168. Lin WW, Karin M. A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Investig. 2007;117:1175–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  169. Magnon C, Hall SJ, Lin J, Xue X, Gerber L, Freedland SJ, et al. Autonomic nerve development contributes to prostate cancer progression. Science. 2013;341:1236361.

    Article  PubMed  Google Scholar 

  170. Larrivee B, Freitas C, Trombe M, Lv X, Delafarge B, Yuan L, et al. Activation of the UNC5B receptor by Netrin-1 inhibits sprouting angiogenesis. Genes Dev. 2007;21:2433–47.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  171. Erin N, Akdas BG, Harms JF, Clawson GA. Vagotomy enhances experimental metastases of 4THMpc breast cancer cells and alters substance P level. Regul Pept. 2008;151:35–42.

    Article  CAS  PubMed  Google Scholar 

  172. Erin N, Barkan GA, Clawson GA. Vagus nerve regulates breast cancer metastasis to the adrenal gland. Anticancer Res. 2013;33:3675–82.

    PubMed  Google Scholar 

  173. Giese-Davis J, Wilhelm FH, Tamagawa R, Palesh O, Neri E, Taylor CB, et al. Higher vagal activity as related to survival in patients with advanced breast cancer: an analysis of autonomic dysregulation. Psychosom Med. 2015;77:346–55.

    Article  PubMed  Google Scholar 

  174. Ogawa T, Makino T, Mizumoto K, Nakayama F. Promoting effect of truncal vagotomy on pancreatic carcinogenesis initiated with N-nitrosobis(2-oxopropyl)amine in Syrian golden hamsters. Carcinogenesis. 1991;12:1227–30.

    Article  CAS  PubMed  Google Scholar 

  175. Tatsuta M, Yamamura H, Iishi H, Ichii M, Noguchi S, Baba M, et al. Promotion by vagotomy of gastric carcinogenesis induced by N-methyl-N’-nitro-N-nitrosoguanidine in Wistar rats. Cancer Res. 1985;45:194–7.

    CAS  PubMed  Google Scholar 

  176. Tatsuta M, Iishi H, Yamamura H, Baba M, Taniguchi H. Effects of bilateral and unilateral vagotomy on gastric carcinogenesis induced by N-methyl-N’-nitro-N-nitrosoguanidine in Wistar rats. Int J Cancer. 1988;42:414–8.

    Article  CAS  PubMed  Google Scholar 

  177. Zhao CM, Hayakawa Y, Kodama Y, Muthupalani S, Westphalen CB, Andersen GT, et al. Denervation suppresses gastric tumorigenesis. Sci Transl Med. 2014;6:250ra115.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  178. Watt PC, Patterson CC, Kennedy TL. Late mortality after vagotomy and drainage for duodenal ulcer. Br Med J (Clin Res Ed). 1984;288:1335–8.

    Article  CAS  Google Scholar 

  179. Caygill CP, Hill MJ, Hall CN, Kirkham JS, Northfield TC. Increased risk of cancer at multiple sites after gastric surgery for peptic ulcer. Gut. 1987;28:924–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  180. Houghton PW, Leaper DJ. Gastric cancer following highly selective vagotomy. Postgrad Med J. 1987;63:47–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  181. Caygill CP, Knowles RL, Hall R. Increased risk of cancer mortality after vagotomy for peptic ulcer: a preliminary analysis. Eur J Cancer Prev. 1991;1:35–7.

    Article  CAS  PubMed  Google Scholar 

  182. Chiang JK, Kuo TB, Fu CH, Koo M. Predicting 7-day survival using heart rate variability in hospice patients with non-lung cancers. PLoS One. 2013;8:e69482.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  183. De Couck M, Gidron Y. Norms of vagal nerve activity, indexed by heart rate variability, in cancer patients. Cancer Epidemiol. 2013;37:737–41.

    Article  PubMed  Google Scholar 

  184. Mravec B, Gidron Y, Hulin I. Neurobiology of cancer: interactions between nervous, endocrine and immune systems as a base for monitoring and modulating the tumorigenesis by the brain. Semin Cancer Biol. 2008;18:150–63.

    Article  CAS  PubMed  Google Scholar 

  185. Ondicova K, Mravec B. Role of nervous system in cancer aetiopathogenesis. Lancet Oncol. 2010;11:596–601.

    Article  PubMed  Google Scholar 

  186. Gidron Y, Perry H, Glennie M. Does the vagus nerve inform the brain about preclinical tumours and modulate them? Lancet Oncol. 2005;6:245–8.

    Article  PubMed  Google Scholar 

  187. Steinman L. A century of pavlovian experiments forming a circuit from the elucidation of neural reflexes to pharmaceuticals and electroceuticals to treat diseases. Brain Behav Immun. 2015;44:17–8.

    Article  PubMed  Google Scholar 

  188. Tracey KJ. Physiology and immunology of the cholinergic antiinflammatory pathway. J Clin Investig. 2007;117:289–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  189. Kitagawa H, Takenouchi T, Azuma R, Wesnes KA, Kramer WG, Clody DE, et al. Safety, pharmacokinetics, and effects on cognitive function of multiple doses of GTS-21 in healthy, male volunteers. Neuropsychopharmacology. 2003;28:542–51.

    Article  CAS  PubMed  Google Scholar 

  190. Kox M, Pompe JC, Gordinou de Gouberville MC, van der Hoeven JG, Hoedemaekers CW, Pickkers P. Effects of the alpha7 nicotinic acetylcholine receptor agonist GTS-21 on the innate immune response in humans. Shock. 2011;36:5–11.

    Article  CAS  PubMed  Google Scholar 

  191. Mehta AK, Singh BP, Arora N, Gaur SN. Choline attenuates immune inflammation and suppresses oxidative stress in patients with asthma. Immunobiology. 2010;215:527–34.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the following Grants from the National Institute of General Medical Sciences, National Institutes of Health: R01GM089807 (to VA Pavlov and KJ Tracey) and R01GM057226 (to KJ Tracey). The authors would like to thank Mauricio Rosas-Ballina, Christine Metz, Carter Somerville and Marc Symons  for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin A. Pavlov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlov, V.A., Tracey, K.J. Neural circuitry and immunity. Immunol Res 63, 38–57 (2015). https://doi.org/10.1007/s12026-015-8718-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-015-8718-1

Keywords

Navigation