Skip to main content

Advertisement

Log in

Serum albumin protects from cytokine-induced pancreatic β cell death by a phosphoinositide 3-kinase-dependent mechanism

  • Original Paper
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

The present study was undertaken to investigate the biological activity of serum albumin when pancreatic β cells were challenged by cytokines and pro-apoptotic reactive oxygen species like H2O2. Culture of mouse islets or INS-1E β cells for 24 h in the presence of H2O2 (25 μmol/l) increased cell death. This demise was prevented by serum albumin, dependent on its free sulfhydryl group, emphasizing that albumin may scavenge H2O2 due to its antioxidant properties. Culture for 48 h with a cytokine mixture of IL-1β (160 pg/ml), IFN-γ (200 ng/ml), and TNF-α (2 ng/ml) revealed that albumin, also protected against cytokine-induced death of both mouse islets and INS-1E β cells. This protective effect against cytokine-induced β cell death was, however, not dependent on albumins free sulfhydryl group, but was inhibited by the phosphoinositide 3-kinase (PI3K) inhibitors LY294002 (25 μmol/l) and wortmannin (1 μmol/l), suggesting that albumin may rescue β cells from cytokine-induced cell death by activation of PI3K. In accordance, albumin stimulated phosphorylation of Akt, a down-stream target for PI3K. In conclusion, it is suggested that albumin may be a survival factor for pancreatic β cells through scavenging of reactive oxygen species and by PI3K-dependent activation of Akt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Hotta, E. Yamamato, J.I. Miyazaki, in Antioxidants and Diabetes Management, ed. by L. Packer, P. Rosen, H. Tritschler, G.L. King, A. Azzi (Marcel Dekker, New York, 2000)

    Google Scholar 

  2. M.Y. Donath, J. Storling, K. Maedler, T. Mandrup-Poulsen, J. Mol. Med. 81, 455–470 (2003)

    Article  CAS  PubMed  Google Scholar 

  3. J.L. Evans, I.D. Goldfine, B.A. Maddux, G.M. Grodsky, Endocr. Rev. 23, 599–622 (2002)

    Article  CAS  PubMed  Google Scholar 

  4. R.P. Robertson, J. Harmon, P.O.T. Tran, V. Poitout, Diabetes 53(Suppl 1), S119–S124 (2004)

    Article  CAS  PubMed  Google Scholar 

  5. T. Mandrup-Poulsen, Biochem. Pharmacol. 66, 1433–1440 (2003)

    Article  CAS  PubMed  Google Scholar 

  6. M. Kashiba-Iwatsuki, M. Miyamoto, M. Inoue, Arch. Biochem. Biophys. 345, 237–242 (1997)

    Article  CAS  PubMed  Google Scholar 

  7. G.J. Quinlan, G.S. Martin, T.W. Evans, Hepatology 41, 1211–1219 (2005)

    Article  CAS  PubMed  Google Scholar 

  8. J. Iglesias, V.E. Abernethy, Z. Wang, W. Lieberthal, J.S. Koh, J.S. Levine, Am. J. Physiol. 277, F711–F722 (1999)

    CAS  PubMed  Google Scholar 

  9. E.T. Gum, R.A. Swanson, C. Alano, J. Lui, S. Hong, P.R. Wienstein, S.S. Panter, Stroke 35, 590–595 (2004)

    Article  CAS  PubMed  Google Scholar 

  10. B.H. Prinsen, M.G. de Sain-van der Velden, Clin. Chim. Acta 347, 1–14 (2004)

    Article  CAS  PubMed  Google Scholar 

  11. H. Wiig, L. Sibley, M. DeCarlo, E.M. Renkin, Am. J. Physiol. 261, H155–H165 (1991)

    CAS  PubMed  Google Scholar 

  12. N.J. Brunskill, N. Cockcroft, S. Nahorski, J. Walls, Am. J. Physiol. 271, F356–F364 (1996)

    CAS  PubMed  Google Scholar 

  13. N.J. Brunskill, J. Stuart, A.B. Tobin, J. Walls, S. Nahorski, J. Clin. Invest. 101, 2140–2150 (1998)

    Article  CAS  PubMed  Google Scholar 

  14. A. Tabernora, A. Velasco, B. Granda, E.M. Lavado, J.M. Medina, J. Biol. Chem. 277, 4240–4246 (2002)

    Article  Google Scholar 

  15. C. Bolitho, P. Bayl, J.Y. Hou, G. Lynch, A.J. Hassel, A.J. Wall, H. Zoellner, J. Vasc. Res. 44, 313–324 (2007)

    Article  CAS  PubMed  Google Scholar 

  16. D.T. Jones, K. Ganeshaguru, R.J. Anderson, T.R. Jackson, K.R. Bruckdorfer, S.Y. Low, L. Palmqvist, H.G. Prentice, A.V. Hoffbrand, A.B. Mehta, R.G. Wickremasinghe, Blood 101, 3174–3180 (2003)

    Article  CAS  PubMed  Google Scholar 

  17. M. Lampinen, L.D. Håkansson, P. Venge, Int. Arch. Allergy Immunol. 140, 113–120 (2006)

    Article  CAS  PubMed  Google Scholar 

  18. C. Caruso-Neves, A.A. Pinheiro, H. Cai, J. Souza-Menezes, W.B. Guggino, Proc. Natl. Acad. Sci. 103, 18810–18815 (2006)

    Article  CAS  PubMed  Google Scholar 

  19. R. Dixon, N.J. Brunskill, Clin. Sci. (Lond) 98, 295–301 (2000)

    Article  CAS  Google Scholar 

  20. K.L. Souza, M. Elsner, P.C. Mathias, S. Lenzen, M. Tiedge, Diabetologia 47, 1292–1302 (2004)

    Article  CAS  PubMed  Google Scholar 

  21. H.E. Hohmeier, A. Thigpen, V.V. Tran, R. Davis, C.B. Newgard, J. Clin. Invest. 101, 1811–1820 (1998)

    Article  CAS  PubMed  Google Scholar 

  22. S. Lortz, M. Tiedge, T. Nachtwey, A.E. Karlsen, J. Nerup, S. Lenzen, Diabetes 49, 1123–1130 (2000)

    Article  CAS  PubMed  Google Scholar 

  23. N. Welsh, B. Margulis, K. Bendtzen, S. Sandler, J. Endocrinol. 143, 151–156 (1994)

    Article  CAS  PubMed  Google Scholar 

  24. H. Chen, X. Li, P.N. Epstein, Diabetes 54, 1437–1446 (2005)

    Article  CAS  PubMed  Google Scholar 

  25. G. Song, G. Ouyang, S. Bao, J. Cell. Mol. Med. 9, 59–71 (2005)

    Article  CAS  PubMed  Google Scholar 

  26. D.R. Alessi, C.P. Downes, Biochim. Biophys. Acta 1436, 151–164 (1998)

    CAS  PubMed  Google Scholar 

  27. S. Bregenholt, A. Møldrup, N. Blume, A.E. Karlsen, B. Nissen Friedrichsen, D. Tornhave, L.B. Knudsen, J.S. Petersen, Biochem. Biophys. Res. Commun. 330, 577–584 (2005)

    Article  CAS  PubMed  Google Scholar 

  28. C.M. Larsen, K.A. Wadt, L.F. Juhl, H.U. Andersen, A.E. Karlsen, M.S. Su, K. Seedorf, L. Shapiro, C.A. Dinarello, T. Mandrup-Poulsen, J. Biol. Chem. 273, 15294–15300 (1998)

    Article  CAS  PubMed  Google Scholar 

  29. J. Saldeen, J.C. Lee, N. Welsh, Biochem. Pharmacol. 61, 1561–1569 (2001)

    Article  CAS  PubMed  Google Scholar 

  30. H. Hui, A. Nourparvar, X. Zhao, R. Perfetti, Endocrinology 144, 1444–1455 (2003)

    Article  CAS  PubMed  Google Scholar 

  31. H. Maeda, K. Gopalrao Rajesh, H. Maeda, R. Suzuki, S. Sasaguri, Transplant. Proc. 36, 1163–1165 (2004)

    Google Scholar 

  32. S. Srinivasan, M. Ohsugi, Z. Liu, S. Fatrai, E. Bernal-Mizrachi, M.A. Permutt, Diabetes 54, 968–975 (2005)

    Article  CAS  PubMed  Google Scholar 

  33. R. Aikin, S. Hanley, D. Maysinger, M. Lipsett, M. Castellarin, S. Paraskevas, L. Rosenberg, Diabetologia 49, 2900–2909 (2006)

    Article  CAS  PubMed  Google Scholar 

  34. M. Aarnes, S. Schønberg, V. Grill, Biochem. Biophys. Res. Commun. 296, 189–193 (2002)

    Article  CAS  PubMed  Google Scholar 

  35. S.G. Straub, G.W.G. Sharp, Diabetes 53, 3152–3158 (2004)

    Article  CAS  PubMed  Google Scholar 

  36. T. Mosmann, J. Immunol. Methods 65, 55–63 (1983)

    Article  CAS  PubMed  Google Scholar 

  37. G. Ellman, H. Lysko, Anal. Biochem. 93, 98–102 (1979)

    Article  CAS  PubMed  Google Scholar 

  38. P.W. Riddles, R.L. Blakeley, B. Zemer, Methods Enzymol. 91, 49–60 (1983)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Danish Diabetes Association, the Novo Nordic Foundation, the Medical Research Council, and the A. P. Møller Foundation for the Advancement of Medical Science. The skilful technical assistance of Bente Vinther and Susanne Johannessen is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Thams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiaer, C., Thams, P. Serum albumin protects from cytokine-induced pancreatic β cell death by a phosphoinositide 3-kinase-dependent mechanism. Endocr 35, 325–332 (2009). https://doi.org/10.1007/s12020-009-9161-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-009-9161-7

Keywords

Navigation