Skip to main content

Advertisement

Log in

Choline Ameliorates Disease Phenotypes in Human iPSC Models of Rett Syndrome

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Rett syndrome (RTT) is a postnatal neurodevelopmental disorder that primarily affects girls. Mutations in the methyl-CpG-binding protein 2 (MECP2) gene account for approximately 95 % of all RTT cases. To model RTT in vitro, we generated induced pluripotent stem cells (iPSCs) from fibroblasts of two RTT patients with different mutations (MECP2 R306C and MECP2 1155Δ32) in their MECP2 gene. We found that these iPSCs were capable of differentiating into functional neurons. Compared to control neurons, the RTT iPSC-derived cells had reduced soma size and a decreased amount of synaptic input, evident both as fewer Synapsin 1-positive puncta and a lower frequency of spontaneous excitatory postsynaptic currents. Supplementation of the culture media with choline rescued all of these defects. Choline supplementation may act through changes in the expression of choline acetyltransferase, an important enzyme in cholinergic signaling, and also through alterations in the lipid metabolite profiles of the RTT neurons. Our study elucidates the possible mechanistic pathways for the effect of choline on human RTT cell models, thereby illustrating the potential for using choline as a nutraceutical to treat RTT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amir, R. E., Van den Veyver, I. B., Schultz, R., Malicki, D. M., Tran, C. Q., Dahle, E. J., et al. (2000). Influence of mutation type and X chromosome inactivation on Rett syndrome phenotypes. Annals of Neurology, 47, 670–679.

    Article  CAS  PubMed  Google Scholar 

  • Amir, R. E., Van den Veyver, I. B., Wan, M., Tran, C. Q., Francke, U., & Zoghbi, H. Y. (1999). Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nature Genetics, 23, 185–188.

    Article  CAS  PubMed  Google Scholar 

  • Antony, A. C. (2007). In utero physiology: Role of folic acid in nutrient delivery and fetal development. American Journal of Clinical Nutrition, 85, 598S–603S.

    CAS  PubMed  Google Scholar 

  • Armstrong, D. D. (2005). Neuropathology of Rett syndrome. Journal of Child Neurology, 20, 747–753.

    Article  PubMed  Google Scholar 

  • Baburina, I., & Jackowski, S. (1999). Cellular responses to excess phospholipid. Journal of Biological Chemistry, 274, 9400–9408.

    Article  CAS  PubMed  Google Scholar 

  • Bauman, M. L., Kemper, T. L., & Arin, D. M. (1995). Pervasive neuroanatomic abnormalities of the brain in three cases of Rett’s syndrome. Neurology, 45, 1581–1586.

    Article  CAS  PubMed  Google Scholar 

  • Bienvenu, T., Carrie, A., de Roux, N., Vinet, M. C., Jonveaux, P., Couvert, P., et al. (2000). MECP2 mutations account for most cases of typical forms of Rett syndrome. Human Molecular Genetics, 9, 1377–1384.

    Article  CAS  PubMed  Google Scholar 

  • Blue, M. E., Naidu, S., & Johnston, M. V. (1999). Altered development of glutamate and GABA receptors in the basal ganglia of girls with Rett syndrome. Experimental Neurology, 156, 345–352.

    Article  CAS  PubMed  Google Scholar 

  • Blusztajn, J. K., & Wurtman, R. J. (1983). Choline and cholinergic neurons. Science, 221, 614–620.

    Article  CAS  PubMed  Google Scholar 

  • Casanova, M. F., Buxhoeveden, D., Switala, A., & Roy, E. (2003). Rett syndrome as a minicolumnopathy. Clinical Neuropathology, 22, 163–168.

    CAS  PubMed  Google Scholar 

  • Chahrour, M., & Zoghbi, H. Y. (2007). The story of Rett syndrome: From clinic to neurobiology. Neuron, 56, 422–437.

    Article  CAS  PubMed  Google Scholar 

  • Chao, H., Zoghbi, H. Y., & Rosenmund, C. (2007). MeCP2 controls excitatory synaptic strength by regulating glutamatergic synapse number. Neuron, 56, 1–8.

    Article  Google Scholar 

  • Christian, K., Song, H., & Ming, G. (2012). Application of reprogrammed patient cells to investigate the etiology of neurological and psychiatric disorders. Frontiers in Biology, 7, 179–188.

    Article  Google Scholar 

  • Dimos, J. T., Rodolfa, K. T., Niakan, K. K., Weisenthal, L. M., Mitsumoto, H., Chung, W., et al. (2008). Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science, 321, 1218–1221.

    Article  CAS  PubMed  Google Scholar 

  • Ebert, A. D., Yu, J., Rose, F. F, Jr., Mattis, V. B., Lorson, C. L., Thomson, J. A., & Svendsen, C. N. (2009). Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature, 457, 277–280.

    Article  CAS  PubMed  Google Scholar 

  • Fischer, M. C., Zeisel, S. H., Mar, M. H., & Sadler, T. W. (2001). Inhibitors of choline uptake and metabolism cause developmental abnormalities in neurulating mouse embryos. Teratology, 64, 114–122.

    Article  Google Scholar 

  • Fisher, S. K., Heacock, A. M., Keep, R. F., & Foster, D. J. (2010). Receptor regulation of osmolyte homeostasis in neural cells. Journal of Physiology, 588, 3355–3364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukuda, T., Itoh, M., Ichikawa, T., Washiyama, K., & Goto, Y. (2005). Delayed maturation of neuronal architecture and synaptogenesis in cerebral cortex of Mecp2-deficient mice. Journal of Neuropathology and Experimental Neurology, 64, 537–544.

    Article  CAS  PubMed  Google Scholar 

  • Gallazzini, M., Ferraris, J. D., Kunin, M., Morris, R. G., & Burg, M. B. (2006). Neuropathy target esterase catalyzes osmoprotective renal synthesis of glycerophosphocholine in response to high NaCl. Proceedings of the National Academy of Sciences, USA, 103, 15260–15265.

    Article  CAS  Google Scholar 

  • Guy, J., Gan, J., Selfridge, J., Cobb, S., & Bird, A. (2007). Reversal of neurological defects in a mouse model of Rett syndrome. Science, 315, 1143–1147.

    Article  CAS  PubMed  Google Scholar 

  • Hagberg, B., Aicardi, J., Dias, K., & Ramos, O. (1983). A progressive syndrome of autism, dementia, ataxia, and loss of purposeful hand use in girls: Rett’s syndrome: Report of 35 cases. Annals of Neurology, 14, 471–479.

    Article  CAS  PubMed  Google Scholar 

  • Henneberry, A. L., Lagace, T. A., Ridgway, N. D., & McMaster, C. R. (2001). Phosphatidylcholine synthesis influences the diacylglycerol homeostasis required for Sec14p-dependent Golgi function and cell growth. Molecular Biology of the Cell, 12, 511–520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hilfiker, S., Pieribone, V. A., Czernik, A. J., Kao, H. T., Augustine, G. J., & Greengard, P. (1999). Synapsins as regulators of neurotransmitter release. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 354(1381), 269–279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huppke, P., Laccone, F., Kramer, N., Engel, W., & Hanefeld, F. (2000). Rett syndrome: Analysis of MECP2 and clinical characterization of 31 patients. Human Molecular Genetics, 9, 1369–1375.

    Article  CAS  PubMed  Google Scholar 

  • Johnston, M. V., Blue, M. E., & Naidu, S. (2005). Rett syndrome and neuronal development. Journal of Child Neurology, 20, 759–763.

    Article  PubMed  Google Scholar 

  • Kearns, B. G., McGee, T. P., Mayinger, P., Gedvilaite, A., Phillips, S. E., Kagiwada, S., & Bankaitis, V. A. (1997). Essential role for diacylglycerol in protein transport from the yeast Golgi complex. Nature (London), 387, 101–105.

    Article  CAS  Google Scholar 

  • Kerr, A. M., & Stephenson, J. B. (1985). Rett’s syndrome in the west of Scotland. British Medical Journal (Clinical Research Ed.), 291, 579–582.

    Article  CAS  Google Scholar 

  • Kitt, C. A., & Wilcox, B. J. (1995). Preliminary evidence for neurodegenerative changes in the substantia nigra of Rett syndrome. Neuropediatrics, 26, 114–118.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S. S., Wan, M., & Francke, U. (2001). Spectrum of MECP2 mutations in Rett syndrome. Brain Development, 23(Suppl 1), S138–S143.

    PubMed  Google Scholar 

  • Ma, D., Yoon, S.-I., Yang, C.-H., Marcy, G., Zhao, N., Leong, W.-Y., et al. (2015). Rescue of methyl-CpG binding protein 2 dysfunction-induced defects in newborn neurons by pentobarbital. Neurotherapeutics, 12(2), 477–490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchetto, M. C. N., Carromeu, C., Acab, A., Yu, D., Yeo, G. W., Mu, Y., et al. (2010a). A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell, 143, 527–539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchetto, M. C., Winner, B., & Gage, F. H. (2010b). Pluripotent stem cells in neurodegenerative and neurodevelopmental diseases. Human Molecular Genetics, 19(R1), R71–R76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McMaster, C. R. (2001). Lipid metabolism and vesicle trafficking: More than just greasing the transport machinery. Biochemistry and Cell Biology, 79, 681–692.

    Article  CAS  PubMed  Google Scholar 

  • Medrihan, L., Tantalaki, E., Aramuni, G., Sargsyan, V., Dudanova, I., Missler, M., & Zhang, W. (2008). Early defects of GABAergic synapses in the brainstem of a MeCP2 mouse model of Rett syndrome. Journal of Neurophysiology, 99(1), 112–121.

    Article  CAS  PubMed  Google Scholar 

  • Muotri, A. R. (2008). Modeling epilepsy with pluripotent human cells. Epilepsy & Behavior, 14((Suppl.)), 81–85.

    Google Scholar 

  • Nag, N., Mellott, T. J., & Berger-Sweeney, J. E. (2008). Effects of postnatal dietary choline supplementation on motor regional brain volume and growth factor expression in a mouse model of Rett syndrome. Brain Research, 1237, 101–109.

    Article  CAS  PubMed  Google Scholar 

  • Oda, Y. (1999). Choline acetyltransferase: The structure, distribution and pathologic changes in the central nervous system. Pathology International, 49(11), 921–937.

    Article  CAS  PubMed  Google Scholar 

  • Siddique, M. M., Li, Y., Wang, L., Ching, J., Mal, M., Ilkayeva, O., et al. (2013). Ablation of dihydroceramide desaturase 1, a therapeutic target for the treatment of metabolic diseases, simultaneously stimulates anabolic and catabolic signaling. Molecular and Cellular Biology, 33(11), 2353–2369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinha, R. A., Farah, B. L., Singh, B. K., Siddique, M. M., Li, Y., Wu, Y., et al. (2014). Caffeine stimulates hepatic lipid metabolism by the autophagy-lysosomal pathway in mice. Hepatology, 59(4), 1366–1380.

    Article  CAS  PubMed  Google Scholar 

  • Soldner, F., Hockemeyer, D., Beard, C., Gao, Q., Bell, G. W., Cook, E. G., et al. (2009). Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell, 136, 964–977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su, C. T. E., Yoon, S. I., Marcy, G., Chin, E. W. M., Augustine, G. J., & Goh, E. L. K. (2015). An optogenetic approach for assessing formation of neuronal connections in a co-culture system. Journal of Visualized Experiments, 96, e52408.

    PubMed  Google Scholar 

  • Verpelli, C., Carlessi, L., Bechi, G., Poli, E. F., Orellana, D., Heise, C., et al. (2013). Comparative neuronal differentiation of self-renewing neural progenitor cell lines obtained from human induced pluripotent stem cells. Frontiers in Cellular Neuroscience, 7, 175.

    Article  PubMed  PubMed Central  Google Scholar 

  • Viola, A., Saywell, V., Villard, L., Cozzone, P. J., & Lutz, N. W. (2007). Metabolic fingerprints of altered brain growth, osmoregulation and neurotransmission in a Rett syndrome model. PLoS One, 2(1), e157.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wan, M., Lee, S. S., Zhang, X., Houwink-Manville, I., Song, H. R., Amir, R. E., et al. (1999). Rett syndrome and beyond: Recurrent spontaneous and familial MECP2 mutations at CpG hotspots. American Journal of Human Genetics, 65, 1520–1529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weick, J. P., Liu, Y., & Zhang, S.-C. (2011). Human embryonic stem cell-derived neurons adopt and regulate the activity of an established neural network. Proceedings of National Academy of Sciences, 108(50), 20189–20194.

    Article  CAS  Google Scholar 

  • Wenk, G. L. (1995). Alterations in dopaminergic function in Rett syndrome. Neuropediatrics, 26, 123–125.

    Article  CAS  PubMed  Google Scholar 

  • Wenk, G. L., & Hauss-Wegrzyniak, B. (1999). Altered cholinergic function in the basal forebrain of girls with Rett syndrome. Neuropediatrics, 30, 125–129.

    Article  CAS  PubMed  Google Scholar 

  • Wenk, G. L., Naidu, S., Casanova, M. F., Kitt, C. A., & Moser, H. (1991). Altered neurochemical markers in Rett’s syndrome. Neurology, 41, 1753–1756.

    Article  CAS  PubMed  Google Scholar 

  • Woolf, N. J. (1991). Cholinergic systems in mammalian brain and spinal cord. Progress in Neurobiology, 37, 475–524.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X. H., Zhao, C., Seleznev, K., Song, K., Manfredi, J. J., et al. (2006). Disruption of G1-phase phospholipid turnover by inhibition of Ca2+ -independent phospholipase A2 induces a p53-dependent cell-cycle arrest in G1 phase. Journal of Cell Science, 119, 1005–1015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank W. Y. Leong for technical support and members of the Goh and Augustine labs for sharing reagents and expertise, and J. Ching and K. T. Fridianto from the Duke-NUS Metabolomics Facility for processing the samples and assistance in curating the data for lipid metabolomics.

Funding

This work was primarily supported by Abbott Nutrition, Cognition Center of Excellence, Singapore R&D, and also partially supported by the Academic Center of Excellence (ACE) research award from GlaxoSmithKline (GSK), the National Research Foundation Singapore under its Competitive Research Program (NRF 2008 NRF-CRP 002-082), the National Research Medical Council (NMRC)—Collaborative Research Programme Grant (CBRG)—(NMRC/CBRG/0094/2015) and the Ministry of Education (MOE) TiER 2 (MOE2015-T2-1-022) to EG.

Author Contributions

EC characterized the iPSC-derived NPCs and neurons, performed lipid-profiling experiments and analysis, Western blots, and analysis for ChAT, prepared all figures, and wrote the manuscript. GM reprogrammed and characterized the iPSCs and the iPSC-derived NPCs and neurons. SY did all electrophysiological recordings and analyses. DM characterized differentiation properties of iPSCs and did Western blots and analysis for ChAT. FR provided critical inputs to the design of the project. GA designed electrophysiology experiments and provided critical input to data analysis and manuscript. EG initiated and directed the entire study, designed experiments, analyzed data, and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to George J. Augustine or Eyleen L. K. Goh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Eunice W. M. Chin, Guillaume Marcy, Su-In Yoon have contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chin, E.W.M., Marcy, G., Yoon, SI. et al. Choline Ameliorates Disease Phenotypes in Human iPSC Models of Rett Syndrome. Neuromol Med 18, 364–377 (2016). https://doi.org/10.1007/s12017-016-8421-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-016-8421-y

Keywords

Navigation