Skip to main content

Advertisement

Log in

Salvage Therapy Options for Local Prostate Cancer Recurrence After Primary Radiotherapy: a Literature Review

  • Prostate Cancer (S Prasad, Section Editor)
  • Published:
Current Urology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

While recurrence after primary treatment of prostate cancer (PCa) is not uncommon, there is currently no consensus on the most appropriate management after radiation treatment failure. This article seeks to explore the currently utilized modalities for salvage treatment for radiorecurrent PCa. We focused our review on the oncologic outcomes and reported toxicity rates in the latest studies examining salvage radical prostatectomy (SRP), salvage cryotherapy (SCT), salvage high-intensity focused ultrasound (HIFU) and re-irradiation.

Recent Findings

There does not appear to be any significant difference in overall survival for more invasive salvage radical prostatectomy compared to the minimally invasive salvage approaches. Additionally, there seems to be a trend towards lower morbidity rates associated with minimally invasive and focal salvage treatment.

Summary

We are encouraged by the results presented in this review and find that there is clearly a role for emerging minimally invasive and focal therapies as durable options for salvage treatment in patients with radiorecurrent PCa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67(1):7–30.

    Article  PubMed  Google Scholar 

  2. Schymura MJ, et al. Factors associated with initial treatment and survival for clinically localized prostate cancer: results from the CDC-NPCR patterns of care study (PoC1). BMC Cancer. 2010;10:152.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wilson LS, et al. Cumulative cost pattern comparison of prostate cancer treatments. Cancer. 2007;109(3):518–27.

    Article  PubMed  Google Scholar 

  4. Agarwal PK, et al. Treatment failure after primary and salvage therapy for prostate cancer: likelihood, patterns of care, and outcomes. Cancer. 2008;112(2):307–14.

    Article  PubMed  Google Scholar 

  5. Zietman AL, et al. Randomized trial comparing conventional-dose with high-dose conformal radiation therapy in early-stage adenocarcinoma of the prostate: long-term results from proton radiation oncology group/American college of radiology 95-09. J Clin Oncol. 2010;28(7):1106–11.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tran H, et al. Underutilization of local salvage therapy after radiation therapy for prostate cancer. Urol Oncol. 2014;32(5):701–6.

    Article  PubMed  Google Scholar 

  7. Cary KC, et al. Temporal trends and predictors of salvage cancer treatment after failure following radical prostatectomy or radiation therapy: an analysis from the CaPSURE registry. Cancer. 2014;120(4):507–12.

    Article  PubMed  Google Scholar 

  8. Cox JD, et al. Consensus statement: guidelines for PSA following radiation therapy. American Society for Therapeutic Radiology and Oncology Consensus Panel. Int J Radiat Oncol Biol Phys. 1997;37(5)1035–41.

  9. Merrick GS, et al. Five-year biochemical outcome following permanent interstitial brachytherapy for clinical T1-T3 prostate cancer. Int J Radiat Oncol Biol Phys. 2001;51(1):41–8.

    Article  CAS  PubMed  Google Scholar 

  10. Hanks GE, et al. Phase III trial of long-term adjuvant androgen deprivation after neoadjuvant hormonal cytoreduction and radiotherapy in locally advanced carcinoma of the prostate: the radiation therapy oncology group protocol 92-02. J Clin Oncol. 2003;21(21):3972–8.

    Article  CAS  PubMed  Google Scholar 

  11. D'Amico AV, et al. Biochemical outcome after radical prostatectomy or external beam radiation therapy for patients with clinically localized prostate carcinoma in the prostate specific antigen era. Cancer. 2002;95(2):281–6.

    Article  PubMed  Google Scholar 

  12. Vicini FA, Kestin LL, Martinez AA. The importance of adequate follow-up in defining treatment success after external beam irradiation for prostate cancer. Int J Radiat Oncol Biol Phys. 1999;45(3):553–61.

    Article  CAS  PubMed  Google Scholar 

  13. Rosser CJ, et al. Prostate specific antigen bounce phenomenon after external beam radiation for clinically localized prostate cancer. J Urol. 2002;168(5):2001–5.

    Article  CAS  PubMed  Google Scholar 

  14. Roach M 3rd, et al. Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinically localized prostate cancer: recommendations of the RTOG-ASTRO Phoenix Consensus conference. Int J Radiat Oncol Biol Phys. 2006;65(4):965–74.

    Article  PubMed  Google Scholar 

  15. Blana A, et al. High-intensity focused ultrasound for prostate cancer: comparative definitions of biochemical failure. BJU Int. 2009;104(8):1058–62.

    Article  CAS  PubMed  Google Scholar 

  16. Cookson MS, et al. Variation in the definition of biochemical recurrence in patients treated for localized prostate cancer: the American Urological Association Prostate Guidelines for Localized Prostate Cancer Update Panel report and recommendations for a standard in the reporting of surgical outcomes. J Urol. 2007;177(2):540–5.

    Article  CAS  PubMed  Google Scholar 

  17. Zagars GK, Pollack A, von Eschenbach AC. Prognostic factors for clinically localized prostate carcinoma: analysis of 938 patients irradiated in the prostate specific antigen era. Cancer. 1997;79(7):1370–80.

    Article  CAS  PubMed  Google Scholar 

  18. Mohler J, et al. NCCN clinical practice guidelines in oncology: prostate cancer. J Natl Compr Cancer Netw. 2010;8(2):162–200.

    Article  CAS  Google Scholar 

  19. Reese AC, et al. Inaccuracies in assignment of clinical stage for localized prostate cancer. Cancer. 2011;117(2):283–9.

    Article  PubMed  Google Scholar 

  20. Zietman AL, et al. Use of PSA nadir to predict subsequent biochemical outcome following external beam radiation therapy for T1-2 adenocarcinoma of the prostate. Radiother Oncol. 1996;40(2):159–62.

    Article  CAS  PubMed  Google Scholar 

  21. Crook J, et al. Postradiotherapy prostate biopsies: what do they really mean? Results for 498 patients. Int J Radiat Oncol Biol Phys. 2000;48(2):355–67.

    Article  CAS  PubMed  Google Scholar 

  22. Vance W, et al. The predictive value of 2-year posttreatment biopsy after prostate cancer radiotherapy for eventual biochemical outcome. Int J Radiat Oncol Biol Phys. 2007;67(3):828–33.

    Article  PubMed  Google Scholar 

  23. Pollack A, et al. Prostate biopsy status and PSA nadir level as early surrogates for treatment failure: analysis of a prostate cancer randomized radiation dose escalation trial. Int J Radiat Oncol Biol Phys. 2002;54(3):677–85.

    Article  PubMed  Google Scholar 

  24. • Zumsteg ZS, et al. The natural history and predictors of outcome following biochemical relapse in the dose escalation era for prostate cancer patients undergoing definitive external beam radiotherapy. Eur Urol. 2015;67(6):1009–16. An article that elucidated the preradiation characteristics that are significant predictors of oncologic outcome response to modern day radiotherapy.

    Article  PubMed  Google Scholar 

  25. Eade TN, et al. What dose of external-beam radiation is high enough for prostate cancer? Int J Radiat Oncol Biol Phys. 2007;68(3):682–9.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Beckendorf V, et al. 70 Gy versus 80 Gy in localized prostate cancer: 5-year results of GETUG 06 randomized trial. Int J Radiat Oncol Biol Phys. 2011;80(4):1056–63.

    Article  PubMed  Google Scholar 

  27. Petrongari MG, et al. Dose escalation using ultra-high dose IMRT in intermediate risk prostate cancer without androgen deprivation therapy: preliminary results of toxicity and biochemical control. J Exp Clin Cancer Res. 2013;32:103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Dearnaley D, et al. Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: 5-year outcomes of the randomised, non-inferiority, phase 3 CHHiP trial. Lancet Oncol. 2016;17(8):1047–60.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Incrocci L, et al. Hypofractionated versus conventionally fractionated radiotherapy for patients with localised prostate cancer (HYPRO): final efficacy results from a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol. 2016;17(8):1061–9.

    Article  PubMed  Google Scholar 

  30. Zelefsky MJ, et al. Pretreatment nomogram predicting ten-year biochemical outcome of three-dimensional conformal radiotherapy and intensity-modulated radiotherapy for prostate cancer. Urology. 2007;70(2):283–7.

    Article  PubMed  Google Scholar 

  31. Stoyanova R, et al. The impact of dose-escalated radiotherapy plus androgen deprivation for prostate cancer using 2 linked nomograms. Cancer. 2013;119(5):1080–8.

    Article  CAS  PubMed  Google Scholar 

  32. Warner A, et al. Development of ProCaRS clinical nomograms for biochemical failure-free survival following either low-dose rate brachytherapy or conventionally fractionated external beam radiation therapy for localized prostate cancer. Cureus. 2015;7(6):e276.

    PubMed  PubMed Central  Google Scholar 

  33. Ehdaie B, et al. Variation in serum prostate-specific antigen levels in men with prostate cancer managed with active surveillance. BJU Int. 2016;118(4):535–40.

    Article  CAS  PubMed  Google Scholar 

  34. Kachroo N, Warren AY, Gnanapragasam VJ. Multi-transcript profiling in archival diagnostic prostate cancer needle biopsies to evaluate biomarkers in non-surgically treated men. BMC Cancer. 2014;14:673.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Scherr DS, et al. BCL-2 and p53 expression in clinically localized prostate cancer predicts response to external beam radiotherapy. J Urol. 1999;162(1):12–6. discussion 16-7

    Article  CAS  PubMed  Google Scholar 

  36. Freedland SJ, et al. Prognostic utility of cell cycle progression score in men with prostate cancer after primary external beam radiation therapy. Int J Radiat Oncol Biol Phys. 2013;86(5):848–53.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Den RB, et al. Genomic prostate cancer classifier predicts biochemical failure and metastases in patients after postoperative radiation therapy. Int J Radiat Oncol Biol Phys. 2014;89(5):1038–46.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Klein EA, et al. A 17-gene assay to predict prostate cancer aggressiveness in the context of Gleason grade heterogeneity, tumor multifocality, and biopsy undersampling. Eur Urol. 2014;66(3):550–60.

    Article  PubMed  Google Scholar 

  39. Tonry CL, et al. Discovery and longitudinal evaluation of candidate protein biomarkers for disease recurrence in prostate cancer. J Proteome Res. 2015;14(7):2769–83.

    Article  CAS  PubMed  Google Scholar 

  40. Zumsteg ZS, et al. Anatomical patterns of recurrence following biochemical relapse in the dose escalation era of external beam radiotherapy for prostate cancer. J Urol. 2015;194(6):1624–30.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Crook J, et al. Clinical relevance of trans-rectal ultrasound, biopsy, and serum prostate-specific antigen following external beam radiotherapy for carcinoma of the prostate. Int J Radiat Oncol Biol Phys. 1993;27(1):31–7.

    Article  CAS  PubMed  Google Scholar 

  42. Menard C, et al. MR-guided prostate biopsy for planning of focal salvage after radiation therapy. Radiology. 2015;274(1):181–91.

    Article  PubMed  Google Scholar 

  43. Kane CJ, et al. Limited value of bone scintigraphy and computed tomography in assessing biochemical failure after radical prostatectomy. Urology. 2003;61(3):607–11.

    Article  PubMed  Google Scholar 

  44. Dotan ZA, et al. Pattern of prostate-specific antigen (PSA) failure dictates the probability of a positive bone scan in patients with an increasing PSA after radical prostatectomy. J Clin Oncol. 2005;23(9):1962–8.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wu LM, et al. Role of magnetic resonance imaging in the detection of local prostate cancer recurrence after external beam radiotherapy and radical prostatectomy. Clin Oncol (R Coll Radiol). 2013;25(4):252–64.

    Article  CAS  Google Scholar 

  46. Roethke M, et al. MRI-guided prostate biopsy detects clinically significant cancer: analysis of a cohort of 100 patients after previous negative TRUS biopsy. World J Urol. 2012;30(2):213–8.

    Article  CAS  PubMed  Google Scholar 

  47. Donati OF, et al. Multiparametric prostate MR imaging with T2-weighted, diffusion-weighted, and dynamic contrast-enhanced sequences: are all pulse sequences necessary to detect locally recurrent prostate cancer after radiation therapy? Radiology. 2013;268(2):440–50.

    Article  PubMed  Google Scholar 

  48. Mosavi F, et al. Whole-body diffusion-weighted MRI compared with (18)F-NaF PET/CT for detection of bone metastases in patients with high-risk prostate carcinoma. AJR Am J Roentgenol. 2012;199(5):1114–20.

    Article  PubMed  Google Scholar 

  49. Bermejo CE, et al. Histologic confirmation of lesions identified by Prostascint scan following definitive treatment. Urol Oncol. 2003;21(5):349–52. discussion 353

    Article  PubMed  Google Scholar 

  50. • Ceci F, et al. 11C-choline PET/CT detects the site of relapse in the majority of prostate cancer patients showing biochemical recurrence after EBRT. Eur J Nucl Med Mol Imaging. 2014;41(5):878–86. A paper addressing highly sensitive radioisotope imaging to detect recurrent cancer foci in men with biochemical prostate cancer recurrence.

    Article  CAS  PubMed  Google Scholar 

  51. Ceci F, et al. Impact of 11C-choline PET/CT on clinical decision making in recurrent prostate cancer: results from a retrospective two-centre trial. Eur J Nucl Med Mol Imaging. 2014;41(12):2222–31.

    Article  PubMed  Google Scholar 

  52. Wondergem M, et al. A literature review of 18F-fluoride PET/CT and 18F-choline or 11C-choline PET/CT for detection of bone metastases in patients with prostate cancer. Nucl Med Commun. 2013;34(10):935–45.

    Article  CAS  PubMed  Google Scholar 

  53. Piccardo A, et al. Value of fused 18F-choline-PET/MRI to evaluate prostate cancer relapse in patients showing biochemical recurrence after EBRT: preliminary results. Biomed Res Int. 2014;2014:103718.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Gotto GT, et al. Impact of prior prostate radiation on complications after radical prostatectomy. J Urol. 2010;184(1):136–42.

    Article  PubMed  Google Scholar 

  55. Chade DC, et al. Salvage radical prostatectomy for radiation-recurrent prostate cancer: a multi-institutional collaboration. Eur Urol. 2011;60(2):205–10.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Heidenreich A, et al. Prognostic parameters, complications, and oncologic and functional outcome of salvage radical prostatectomy for locally recurrent prostate cancer after 21st-century radiotherapy. Eur Urol. 2010;57(3):437–43.

    Article  PubMed  Google Scholar 

  57. Pokala N, et al. Survival outcomes in men undergoing radical prostatectomy after primary radiation treatment for adenocarcinoma of the prostate. Clin Genitourin Cancer. 2016;14(3):218–25.

    Article  PubMed  Google Scholar 

  58. Leonardo C, et al. Salvage radical prostatectomy for recurrent prostate cancer after radiation therapy. Int J Urol. 2009;16(6):584–6.

    Article  PubMed  Google Scholar 

  59. Eandi JA, et al. Robotic assisted laparoscopic salvage prostatectomy for radiation resistant prostate cancer. J Urol. 2010;183(1):133–7.

    Article  PubMed  Google Scholar 

  60. Gorin MA, et al. Salvage open radical prostatectomy after failed radiation therapy: a single center experience. Cent European J Urol. 2011;64(3):144–7.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ahallal Y, et al. Pilot study of salvage laparoscopic prostatectomy for the treatment of recurrent prostate cancer. BJU Int. 2011;108(5):724–8.

    PubMed  Google Scholar 

  62. Chauhan S, et al. Preliminary analysis of the feasibility and safety of salvage robot-assisted radical prostatectomy after radiation failure: multi-institutional perioperative and short-term functional outcomes. J Endourol. 2011;25(6):1013–9.

    Article  PubMed  Google Scholar 

  63. Corcoran NM, et al. Salvage prostatectomy post-definitive radiation therapy: the Vancouver experience. Can Urol Assoc J. 2013;7(3–4):87–92.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kaffenberger SD, et al. Salvage robotic assisted laparoscopic radical prostatectomy: a single institution, 5-year experience. J Urol. 2013;189(2):507–13.

    Article  PubMed  Google Scholar 

  65. Zugor V, et al. Robot-assisted radical prostatectomy for the treatment of radiation-resistant prostate cancer: surgical, oncological and short-term functional outcomes. Urol Int. 2014;92(1):20–6.

    Article  PubMed  Google Scholar 

  66. •• Fajardo-Paneque M, et al. Salvage robotic prostatectomy after brachytherapy, Clin Oncol. 2016;1(1104) Study that demonstrated that performing robotic prostatectomy in patients with prior brachytherapy treatment is feasible and yields durable outcomes.

  67. Vilaseca Cabo A, et al. Long-term oncologic outcomes of salvage radical prostatectomy for radio-recurrent/persistent prostate cancer after radiation therapy. Eur Urol Suppl. 2016;15(3):e433.

    Article  Google Scholar 

  68. Pisters LL, et al. Locally recurrent prostate cancer after initial radiation therapy: a comparison of salvage radical prostatectomy versus cryotherapy. J Urol. 2009;182(2):517–25. discussion 525-7

    Article  PubMed  Google Scholar 

  69. Siddiqui KM, et al. Comparative morbidity of ablative energy-based salvage treatments for radio-recurrent prostate cancer. Can Urol Assoc J. 2015;9(9–10):325–9.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Ahmad I, et al. Prostate gland lengths and iceball dimensions predict micturition functional outcome following salvage prostate cryotherapy in men with radiation recurrent prostate cancer. PLoS One. 2013;8(8):e69243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Spiess PE, et al. A pretreatment nomogram predicting biochemical failure after salvage cryotherapy for locally recurrent prostate cancer. BJU Int. 2010;106(2):194–8.

    Article  PubMed  Google Scholar 

  72. Williams AK, et al. Disease-free survival following salvage cryotherapy for biopsy-proven radio-recurrent prostate cancer. Eur Urol. 2011;60(3):405–10.

    Article  PubMed  Google Scholar 

  73. Ng CK, et al. The pattern of prostate cancer local recurrence after radiation and salvage cryoablation. Can Urol Assoc J. 2011;5(6):E125–8.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Spiess PE, Given RW, Jones JS. Achieving the ‘bifecta’ using salvage cryotherapy for locally recurrent prostate cancer: analysis of the Cryo on-line data (COLD) registry data. BJU Int. 2012;110(2):217–20.

    Article  PubMed  Google Scholar 

  75. Philippou P, Yap T, Chinegwundoh F. Third-generation salvage cryotherapy for radiorecurrent prostate cancer: a centre's experience. Urol Int. 2012;88(2):137–44.

    Article  PubMed  Google Scholar 

  76. •• Wenske S, Quarrier S, Katz AE. Salvage cryosurgery of the prostate for failure after primary radiotherapy or cryosurgery: long-term clinical, functional, and oncologic outcomes in a large cohort at a tertiary referral centre. Eur Urol. 2013;64(1):1–7. Study examining a large cohort of patients followed for a long period of time demonstrating survival and functional outcomes after salvage cryotherapy.

    Article  PubMed  Google Scholar 

  77. Kvorning Ternov K, et al. Salvage cryotherapy for local recurrence after radiotherapy for prostate cancer. Scand J Urol. 2015;49(2):115–9.

    Article  CAS  PubMed  Google Scholar 

  78. Li YH, et al. Salvage focal prostate cryoablation for locally recurrent prostate cancer after radiotherapy: initial results from the cryo on-line data registry. Prostate. 2015;75(1):1–7.

    Article  PubMed  Google Scholar 

  79. Li R, et al. The effect of androgen deprivation therapy before salvage whole-gland cryoablation after primary radiation failure in prostate cancer treatment. Urology. 2015;85(5):1137–42.

    Article  PubMed  Google Scholar 

  80. Siddiqui KM, et al. Long-term oncologic outcomes of salvage cryoablation for radio-recurrent prostate cancer. J Urol. 2016;196(4):1105–11.

    Article  PubMed  Google Scholar 

  81. Spiess PE, et al. Outcomes of salvage prostate cryotherapy stratified by pre-treatment PSA: update from the COLD registry. World J Urol. 2013;31(6):1321–5.

    Article  CAS  PubMed  Google Scholar 

  82. Kovac E, et al. Five-year biochemical progression-free survival following salvage whole-gland prostate cryoablation: defining success with nadir prostate-specific antigen. J Endourol. 2016;30(6):624–31.

    Article  PubMed  Google Scholar 

  83. Berge V, Baco E, Karlsen SJ. A prospective study of salvage high-intensity focused ultrasound for locally radiorecurrent prostate cancer: early results. Scand J Urol Nephrol. 2010;44(4):223–7.

    Article  PubMed  Google Scholar 

  84. Uchida T, et al. High-intensity focused ultrasound as salvage therapy for patients with recurrent prostate cancer after external beam radiation, brachytherapy or proton therapy. BJU Int. 2011;107(3):378–82.

    Article  PubMed  Google Scholar 

  85. Crouzet S, et al. Locally recurrent prostate cancer after initial radiation therapy: early salvage high-intensity focused ultrasound improves oncologic outcomes. Radiother Oncol. 2012;105(2):198–202.

    Article  PubMed  Google Scholar 

  86. Ahmed HU, et al. Focal salvage therapy for localized prostate cancer recurrence after external beam radiotherapy: a pilot study. Cancer. 2012;118(17):4148–55.

    Article  PubMed  Google Scholar 

  87. Yutkin V, et al. Salvage high-intensity focused ultrasound for patients with recurrent prostate cancer after brachytherapy. Urology. 2014;84(5):1157–62.

    Article  PubMed  Google Scholar 

  88. Song W, et al. High-intensity focused ultrasound as salvage therapy for patients with recurrent prostate cancer after radiotherapy. Korean J Urol. 2014;55(2):91–6.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Shah TT, et al. PSA nadir as a predictive factor for biochemical disease-free survival and overall survival following whole-gland salvage HIFU following radiotherapy failure. Prostate Cancer Prostatic Dis. 2016;19(3):311–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. •• Siddiqui KM, et al. Pathological, oncologic and functional outcomes of a prospective registry of salvage high intensity focused ultrasound ablation for radiorecurrent prostate cancer. J Urol. 2017;197(1):97–102. Large prospective trial looking at biopsies, quality of life, and oncologic outcomes following salvage high-intensity focused ultrasound.

    Article  PubMed  Google Scholar 

  91. Cornford, P., et al. EAU-ESTRO-SIOG guidelines on prostate cancer. Part II: treatment of relapsing, metastatic, and castration-resistant prostate cancer. Eur Urol. 2016.

  92. Rutenberg MS, et al. Salvage external beam radiotherapy for locally recurrent prostate cancer after definitive brachytherapy. Brachytherapy. 2016;15(6):722–9.

    Article  PubMed  Google Scholar 

  93. Fuller DB, et al. High-dose-rate stereotactic body radiation therapy for postradiation therapy locally recurrent prostatic carcinoma: preliminary prostate-specific antigen response, disease-free survival, and toxicity assessment. Pract Radiat Oncol. 2015;5(6):e615–23.

    Article  PubMed  Google Scholar 

  94. Moman MR, et al. Treatment outcome and toxicity after salvage 125-I implantation for prostate cancer recurrences after primary 125-I implantation and external beam radiotherapy. Brachytherapy. 2010;9(2):119–25.

    Article  PubMed  Google Scholar 

  95. Burri RJ, et al. Long-term outcome and toxicity of salvage brachytherapy for local failure after initial radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys. 2010;77(5):1338–44.

    Article  PubMed  Google Scholar 

  96. Chen CP, et al. Salvage HDR brachytherapy for recurrent prostate cancer after previous definitive radiation therapy: 5-year outcomes. Int J Radiat Oncol Biol Phys. 2013;86(2):324–9.

    Article  PubMed  Google Scholar 

  97. Lahmer G, et al. Protocol-based image-guided salvage brachytherapy. Early results in patients with local failure of prostate cancer after radiation therapy. Strahlenther Onkol. 2013;189(8):668–74.

    Article  CAS  PubMed  Google Scholar 

  98. Rouviere O, et al. Salvage high-intensity focused ultrasound ablation for prostate cancer local recurrence after external-beam radiation therapy: prognostic value of prostate MRI. Clin Radiol. 2013;68(7):661–7.

    Article  CAS  PubMed  Google Scholar 

  99. Uddin Ahmed H, et al. Whole-gland salvage high-intensity focused ultrasound therapy for localized prostate cancer recurrence after external beam radiation therapy. Cancer. 2012;118(12):3071–8.

    Article  PubMed  Google Scholar 

  100. Hsu CC, et al. Feasibility of MR imaging/MR spectroscopy-planned focal partial salvage permanent prostate implant (PPI) for localized recurrence after initial PPI for prostate cancer. Int J Radiat Oncol Biol Phys. 2013;85(2):370–7.

    Article  PubMed  Google Scholar 

  101. Bomers JG, et al. MR imaging-guided focal cryoablation in patients with recurrent prostate cancer. Radiology. 2013;268(2):451–60.

    Article  PubMed  Google Scholar 

  102. de Castro Abreu AL, et al. Salvage focal and salvage total cryoablation for locally recurrent prostate cancer after primary radiation therapy. BJU Int. 2013;112(3):298–307.

    Article  PubMed  Google Scholar 

  103. •• Baco E, et al. Hemi salvage high-intensity focused ultrasound (HIFU) in unilateral radiorecurrent prostate cancer: a prospective two-centre study. BJU Int. 2014;114(4):532–40. First prospective study demonstrating outcomes for focal salvage ablation using high-intensity focused ultrasound.

    Article  PubMed  Google Scholar 

  104. •• Peters M, et al. Focal salvage iodine-125 brachytherapy for prostate cancer recurrences after primary radiotherapy: a retrospective study regarding toxicity, biochemical outcome and quality of life. Radiother Oncol. 2014;112(1):77–82. First paper demonstrating that focal salvage ablation can be performed by implanting the prostate with radioactive seeds.

    Article  PubMed  Google Scholar 

  105. Henriquez I, et al. Salvage brachytherapy in prostate local recurrence after radiation therapy: predicting factors for control and toxicity. Radiat Oncol. 2014;9:102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Chang L, Buyyounouski MK. Salvage low-dose-rate (125)I partial prostate brachytherapy after dose-escalated external beam radiotherapy. J Contemp Brachytherapy. 2014;6(3):304–10.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Yamada Y, et al. A phase II study of salvage high-dose-rate brachytherapy for the treatment of locally recurrent prostate cancer after definitive external beam radiotherapy. Brachytherapy. 2014;13(2):111–6.

    Article  PubMed  Google Scholar 

  108. Vargas C, et al. Salvage brachytherapy for recurrent prostate cancer. Brachytherapy. 2014;13(1):53–8.

    Article  PubMed  Google Scholar 

  109. Kukielka AM, et al. Salvage prostate HDR brachytherapy combined with interstitial hyperthermia for local recurrence after radiation therapy failure. Strahlenther Onkol. 2014;190(2):165–70.

    Article  CAS  PubMed  Google Scholar 

  110. •• Lacy JM, et al. Salvage brachytherapy for biochemically recurrent prostate cancer following primary brachytherapy. Prostate Cancer. 2016;2016:9561494. A study showing that additional seed implantation can be performed with minimal morbidity and acceptable quality of life in patients that failed primary brachytherapy.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Ward JF 3rd, et al. Focal therapy for the treatment of localized prostate cancer: a potential therapeutic paradigm shift awaiting better imaging. Curr Opin Urol. 2012;22(2):104–8.

    Article  PubMed  Google Scholar 

  112. Dickinson C.L, e.a., Early clinical experience of focal therapy for localised prostate cancer using irreversive electroporation, in Eur Urol Suppl. 2013. p. e584.

  113. Fernandes PC, Pereira BJ. Focal therapies for the treatment of localized prostate cancer: the role of irreversible electroporation—present or future? ACTA Urol Port. 2016;33(3):104–8.

    Article  Google Scholar 

  114. Neal RE 2nd, et al. The effects of metallic implants on electroporation therapies: feasibility of irreversible electroporation for brachytherapy salvage. Cardiovasc Intervent Radiol. 2013;36(6):1638–45.

    Article  PubMed  Google Scholar 

  115. Valerio M, et al. Initial assessment of safety and clinical feasibility of irreversible electroporation in the focal treatment of prostate cancer. Prostate Cancer Prostatic Dis. 2014;17(4):343–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ting F, et al. Focal irreversible electroporation for prostate cancer: functional outcomes and short-term oncological control. Prostate Cancer Prostatic Dis. 2016;19(1):46–52.

    Article  CAS  PubMed  Google Scholar 

  117. Wendler JJ, et al. Why we should not routinely apply irreversible electroporation as an alternative curative treatment modality for localized prostate cancer at this stage. World J Urol. 2017;35(1):11–20.

    Article  CAS  PubMed  Google Scholar 

  118. Alme AK, et al. Blocking immune checkpoints in prostate, kidney, and urothelial cancer: an overview. Urol Oncol. 2016;34(4):171–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron E. Katz.

Ethics declarations

Conflict of Interest

Nicole M. Golbari and Aaron E. Katz each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Prostate Cancer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golbari, N.M., Katz, A.E. Salvage Therapy Options for Local Prostate Cancer Recurrence After Primary Radiotherapy: a Literature Review. Curr Urol Rep 18, 63 (2017). https://doi.org/10.1007/s11934-017-0709-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11934-017-0709-4

Keywords

Navigation