Skip to main content

Advertisement

Log in

Prenatal Stress, Maternal Immune Dysregulation, and Their Association With Autism Spectrum Disorders

  • Sex and Gender Issues in Behavioral Health (CN Epperson and L Hantsoo, Section Editors)
  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

While genetic factors are a major etiological contributor to autism spectrum disorder (ASD), evidence also supports a role for environmental factors. Herein, we will discuss two such factors that have been associated with a significant proportion of ASD risk: prenatal stress exposure and maternal immune dysregulation, and how sex and gender relate to these factors.

Recent Findings

Recent evidence suggests that maternal stress susceptibility interacts with prenatal stress exposure to affect offspring neurodevelopment. Additionally, understanding of the impact of maternal immune dysfunction on ASD has recently been advanced by recognition of specific fetal brain proteins targeted by maternal autoantibodies, and identification of unique mid-gestational maternal immune profiles. Animal models have been developed to explore pathophysiology targeting both of these factors, with limited sex-specific effects observed.

Summary

While prenatal stress and maternal immune dysregulation are associated with ASD, most cases of these prenatal exposures do not result in ASD, suggesting interaction with multiple other risks. We are beginning to understand the behavioral, pharmacopathological, and epigenetic effects related to these interactions, as well as potential mitigating factors. Sex differences of these risks have been understudied but are crucial for understanding the higher prevalence of ASD in boys. Continued growth in understanding of these mechanisms may ultimately allow for the identification of multiple potential points for prevention or intervention, and for a personalized medicine approach for this subset of environmental-associated ASD cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major Importance

  1. American Psychiatric Association. Diagnostic and statistical manual of mental disorders (5th edition) (DSM-V). Washington: American Psychiatric Association; 2013.

    Book  Google Scholar 

  2. Baio J, Wiggins L, Christensen DA, et al. Prevalence of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2014. MMWR Surveill Summ 2018;67(No. SS-6):1–23.

  3. The Autism Genome Project Consortium. Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nat Genet. 2007;39:319–28.

    Article  CAS  Google Scholar 

  4. Hallmayer J, Cleveland S, Torres A, Phillips J, Cohen B, Torigoe T, et al. Genetic heritability and shared environmental factors among twin pairs with autism. Arch Gen Psychiatry. 2011;68:1095–102.

    Article  PubMed  PubMed Central  Google Scholar 

  5. • Sandin S, Lichtenstein P, Kuja-Halkola R, Hultman C, Larsson H, Reichenberg A. Heritability of autism spectrum disorder. J Am Med Assoc. 2017;318:1182–4. This provides the latest assessment of heritability estimates for ASD.

    Article  Google Scholar 

  6. Peça J, Feliciano C, Ting J, Wang W, Wells MF, Venkatraman TN, et al. Shank 3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature. 2011;472:437–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Tabuchi K, Blundell J, Etherton MR, Hammer RE, Liu X, Powell CM, et al. A neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice. Science. 2007;318:71–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Blundell J, Blaiss CA, Etherton MR, Espinosa F, Tabuchi K, Walz C, et al. Neuroligin-1 deletion results in impaired spatial memory and increased repetitive behavior. J Neurosci. 2010;30:2115–29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Etherton MR, Blaiss CA, Powell CM, Südhof TC. Mouse neurexin-1α deletion causes correlated electrophysiological and behavioral changes consistent with cognitive impairments. Proc Natl Acad Sci U S A. 2009;105:17998–8003.

    Article  Google Scholar 

  10. •• Gage SH, Munafò MR, Smith GD. Causal inference in developmental origins of health and disease (DOHaD) research. Annu Rev Psychol. 2016;67:567–85. Recent review that contributed to the widespread discussion of DOHaD

    Article  PubMed  Google Scholar 

  11. • Volk HE, Kerin T, Lurmann F, Hertz-Picciotto I, McConnell R, Campbell DB. Autism spectrum disorder: interaction of air pollution with the MET receptor tyrosine kinase gene. Epidemiology. 2014;25:44–7. First gene × environment interaction identified for air pollution in ASD

    Article  PubMed  PubMed Central  Google Scholar 

  12. von Ehrenstein OS, Aralis H, Cockburn M, Ritz B. In utero exposure to toxic air pollutants and risk of childhood autism. Epidemiology. 2014;25:851–8.

    Article  Google Scholar 

  13. Raz R, Roberts AL, Lyall K, Hart JE, Just AC, Laden F, Weisskopf MG. Autism spectrum disorder and particulate matter air pollution before, during, and after pregnancy: a nested case-control analysis within the Nurses’ Health Study II Cohort. Environ Health Perspect 2015;123:264–270.

  14. Kalkbrenner AE, Windham GC, Serre ML, Akita Y, Wang X, Hoffman K, et al. Particulate matter exposure, prenatal and postnatal windows of susceptibility, and autism spectrum disorders. Epidemiology. 2015;26:30–42.

    Article  PubMed  Google Scholar 

  15. Ornoy A. Valproic acid in pregnancy: how much are we endangering the embryo and fetus? Reprod Toxicol. 2009;28:1–10.

    Article  PubMed  CAS  Google Scholar 

  16. Connors SL, Crowell DE, Eberhart CG, Copeland J, Newschaffer CJ, Spence SJ, Zimmerman AW. β2-adrenergic receptor activation and genetic polymorphisms in autism: data from dizygotic twins. J Child Neurol 2005;20: 876–884.

  17. • Lyall K, Schmidt RJ, Hertz-Picciotto I. Maternal lifestyle and environmental risk factors for autism spectrum disorders. Int J Epidemiol. 2014;43:443–64. Recent review of environmental factors in ASD

    Article  PubMed  PubMed Central  Google Scholar 

  18. • Rossignol DA, Genuis SJ, Frye RE. Environmental toxicants and autism spectrum disorders: a systematic review. Transl Psychiatry. 2014;4:e360. https://doi.org/10.1038/tp.2014.4. Recent review of environmental factors in ASD.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Surén P, Roth C, Bresnahan M, Haugen M, Hornig M, Hirtz D, et al. Association between maternal use of folic acid supplements and risk of autism spectrum disorders in children. J Am Med Assoc. 2013;309:570–7.

    Article  Google Scholar 

  20. D’Onofrio BM, Rickert ME, Frans E, Kuja-Halkola R, Almqvist C, Sjölander A, et al. Paternal age at childbearing and offspring psychiatric and academic morbidity. JAMA Psychiatry. 2014;71:432–8.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cheslack-Postava K, Suominen A, Jokiranta E, Lehti V, McKeague IW, Sourander A, et al. Increased risk of autism spectrum disorders at short and long interpregnancy intervals. Child Adolesc Psychiatry. 2014;53:1074–81.

    Article  Google Scholar 

  22. Abdullah MM, Ly AR, Goldberg WA, Clarke-Stewart KA, Dudgeon JV, Mull CG, et al. Heavy metal in children’s tooth enamel: related to autism and disruptive behaviors? J Autism Dev Disord. 2012;42:929–36.

    Article  PubMed  Google Scholar 

  23. Roberts AL, Lyall K, Rich-Edwards JW, Ascherio A, Weisskopf MG. Maternal exposure to childhood abuse is associated with elevated risk of autism. JAMA-Psychiatry. 2013;70:508–15.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Beversdorf DQ, Manning SE, Hillier A, Anderson SL, Nordgren RE, Walters SE, et al. Timing of prenatal stressors and autism. J Autism Dev Disord. 2005;35:471–8.

    Article  PubMed  CAS  Google Scholar 

  25. Kinney DK, Miller AM, Crowley DJ, Huang E, Gerber E. Autism prevalence following prenatal exposure to hurricanes and tropical storms in Louisiana. J Autism Devel Disord. 2008;28:481–8.

    Article  Google Scholar 

  26. Wills S, Cabanlit M, Bennett J, Ashwood P, Amaral DG, Van de Water J. Detection of autoantibodies to neural cells of the cerebellum in the plasma of subjects with autism spectrum disorders. Brain Behavi Immun 2008;23: 64–74.

  27. •• Braunschweig D, Krakowiak P, Duncanson P, Boyce R, Hansen RL, Ashwood P, et al. Autism-specific maternal autoantibodies recognize critical proteins in developing brain. Transl Psychiatry. 2013;3:e277. First identification of the targets of the antibodies to fetal brain

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Dawson G, Ashman SB, Carver LJ. The role of early experience in shaping behavioral and brain development and its implications for social policy. Dev Psychopathol. 2000;12:695–712.

    Article  PubMed  CAS  Google Scholar 

  29. Niederhofer H, Reiter A. Maternal stress during pregnancy, its objectivation by ultrasound observation of fetal intrauterine movements and child’s temperament at 6 months and 6 years of age: a pilot study. Psychol Rep. 2000;86:526–8.

    Article  PubMed  CAS  Google Scholar 

  30. Van Os J, Selten JP. Prenatal exposure to maternal stress and subsequent schizophrenia—the May 1940 invasion of The Netherlands. Br J Psychiatry. 1998;172:324–6.

    Article  PubMed  Google Scholar 

  31. Ward AJ. Prenatal stress and child psychopathology. Child Psychiatry Hum Devel. 1991;22:97–110.

    Article  CAS  Google Scholar 

  32. Ward AJ. A comparison and analysis of the presence of family problems during pregnancy of mothers of “autistic” children and mothers of typically developing children. Child Psychiatry Hum Devel. 1990;20:279–88.

    Article  CAS  Google Scholar 

  33. Ward HE, Johnson EA, Salm AK, Birkle DL. Effects of prenatal stress on defensive withdrawal behavior and corticotropin releasing factor systems in rat brain. Physiol Behav. 2000;70:359–66.

    Article  PubMed  CAS  Google Scholar 

  34. Weinstock M. Does prenatal stress impair coping and regulation of hypothalamic-pituitary-adrenal axis? Neurosci Biobehav Rev. 1997;21:1–10.

    Article  PubMed  CAS  Google Scholar 

  35. Li J, Vestergaard M, Obel C, Christensen J, Precht DH, Lu M,Olsen J. A nationwide study on the risk of autism after prenatal stress exposure to maternal bereavement. Pediatrics 2009;123:1102–1107.

  36. Larsson JH, Eaton WW, Madsen KM, Vestergaard M, Olesen AV, Agerbo E, et al. Risk factors for autism: perinatal factors, parental psychiatric history, and socioeconomic status. Am J Epidemiology. 2005;161:916–25.

    Article  Google Scholar 

  37. •• Class QA, Abel KM, Khashan AS, Rickert ME, Dalman C, Larsson H, et al. Offspring psychopathology following preconception, prenatal and postnatal maternal bereavement stress. Psychol Med. 2014;44:71–84. The largest population study examining prenatal stress as a risk for ASD

    Article  PubMed  CAS  Google Scholar 

  38. •• Roberts AL, Lyall K, Rich-Edwards JW, Ascherio A, Weisskopf MG. Maternal exposure to intimate partner abuse before birth is associated with risk of autism spectrum disorder in offspring. Autism. 2016;20:26–36. A study of a large, well-characterized group where the association between stress and ASD was assessed.

    Article  PubMed  Google Scholar 

  39. Adelman M: In utero exposure to maternal stress: effects of the September 11th terrorist attacks in New York City on birth and early schooling outcomes. Dissertation: Harvard University; 2012.

  40. • Walder DJ, Laplante DP, Sousa-Pires A, Veru F, Brunet A, King S. Prenatal maternal stress predicts autism traits in 6½ year-old children: Project Ice Storm. Psychiatry Res. 2014;219:353–60. Recent study showing effects of a natural diaster during pregnancy on autism traits in offspring

    Article  PubMed  Google Scholar 

  41. •• Vacrin KJ, Alvares GA, Uljarević M, Whitehouse AJO. Prenatal maternal stress and phenotypic outcomes in autism spectrum disorder. Autism Res. 2017;10:1866–77. https://doi.org/10.1002/aur.1830. Recent study suggesting that prenatal stress-associated autism is a more severe phenotype.

    Article  Google Scholar 

  42. Murphy DL, Lerner A, Rudnick G, Lesch KP. Serotonin transporter: gene, genetic disorders, and pharmacogenomics. Mol Interv. 2004;4:09–123.

    Article  Google Scholar 

  43. Heils A, Teufel A, Petri S, Stober G, Riederer P, Bengel D, et al. Allelic variation of human serotonin transporter gene expression. J Neurochem. 1996;66:2621–4.

    Article  PubMed  CAS  Google Scholar 

  44. Lesch KP, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S, et al. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science. 1996;274:1527–31.

    Article  PubMed  CAS  Google Scholar 

  45. Prasad HC, Zhu CB, McCauley J, Samuvel DJ, Ramamoorthy S, Shelton RC, et al. Human serotonin transporter variants display altered sensitivity to protein kinase G and p38 mitogen-activated protein kinase. Proc Natl Acad Sci U S A. 2005;102:11545–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, et al. Influence of life stress on depression: moderation by a polymorphism in the 5-htt gene. Science. 2003;301:386–9.

    Article  PubMed  CAS  Google Scholar 

  47. Risch N, Herrell R, Lehner T, Liang K-Y, Eaves L, Hoh J, et al. Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression. A meta-analysis. J Am Med Assoc. 2009;301:2462–71.

    Article  CAS  Google Scholar 

  48. Karg K, Burmeister M, Shedden K, Sen S. The serotonin transporter promoter (5-HTTLPR), stress, and depression meta-analysis revisited: evidence for genetic moderation. Arch Gen Psychiatry. 2011;68(5):444–54.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Bondy B, Buettner A, Zill P. Genetics of suicide. Mol Psychiatry. 2006;11(4):336–51.

    Article  PubMed  CAS  Google Scholar 

  50. Hariri AR, Mattay VS, Tessitore A, Kolachana B, Fera F, Goldman D, et al. Serotonin transporter genetic variation and the response of the human amygdala. Science. 2002;297(5580):400–3.

    Article  PubMed  CAS  Google Scholar 

  51. McCauley JL, Olson LM, Dowd M, Amin T, Steele A, Blakely RD, et al. Linkage and association analysis at the serotonin transporter (SLC6A4) locus in a rigid compulsive subset of autism. Am J Med Genet B Neuropsychiatr Genet. 2004;127B(1):104–12.

    Article  PubMed  CAS  Google Scholar 

  52. • Muller CL, Anacker AMJ, Veenstra-VanderWeele J. The serotonin system in autism spectrum disorder: from biomarker to animal models. Neuroscience. 2016;432:24–41. Up-to-date review of the serotonin system and ASD

    Article  CAS  Google Scholar 

  53. Brune C, Kim S, Salt J, Leventhal B, Lord C, Cook E. 5-HTTLPR genotype-specific phenotype in children and adolescents with autism. Am J Psychiatry. 2006;163(12):2148–56.

    Article  PubMed  Google Scholar 

  54. Cook E, Courchesne R, Lord C, Cox N, Yan S, Lincoln A, et al. Evidence of linkage between the serotonin transporter and autistic disorder. Mol Psychiatry. 1997;2(3):247–50.

    Article  PubMed  Google Scholar 

  55. Losh M, Sullivan P, Trembath D, Piven J. Current developments in the genetics of autism: from phenome to genome. J Neuropathol Exp Neurol. 2008;67(9):829–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Zhong N, Ye L, Ju W, Brown W, Tsiouris J, Cohen I. 5-HTTLPR variants not associated with autistic spectrum disorders. Neurogenetics. 1999;2:129–31.

    Article  PubMed  CAS  Google Scholar 

  57. Montanez S, Owens WA, Gould GG, Murphy DL, Daws LC. Exaggerated effect of fluvoxamine in heterozygote serotonin transporter knockout mice. J Neurochem. 2003;86(1):210–9.

    Article  PubMed  CAS  Google Scholar 

  58. Mueller BR, Bale TL. Impact of prenatal stress on long term body weight is dependent on timing and maternal sensitivity. Physiol Behav. 2006;88(4–5):605–14.

    Article  PubMed  CAS  Google Scholar 

  59. Jones KL, Smith RM, Edwards KS, Givens B, Tilley MR, Beversdorf DQ. Combined effect of maternal serotonin transporter genotype and prenatal stress in modulating offspring social interaction. Int J Devel Neurosci. 2010;28:529–36.

    Article  CAS  Google Scholar 

  60. Nadler JJ, Moy SS, Dold G, Trang D, Simmons N, Perez A, et al. Automated apparatus for quantification of social approach behaviors in mice. Genes Brain Behav. 2004;3:303–14.

    Article  PubMed  CAS  Google Scholar 

  61. Crawley J. Behavioral phenotyping of transgenic and knockout mice: experimental design and evaluation of general health, sensory functions, motor abilities, and specific behavioral tests. Brain Res. 1999;835:18–26.

    Article  PubMed  CAS  Google Scholar 

  62. Silverman JL, Yang M, Lord C, Crawley JN. Behavioural phenotyping assays for mouse models of autism. Nat Rev Neurosci. 2010;11:490–502.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. •• Hecht PM, Hudson M, Connors SL, Tilley MR, Liu X, Beversdorf DQ. Maternal serotonin transporter genotype affects risk for ASD with exposure to prenatal stress. Autism Res. 2016;9:1151–60. Recent report indicating a gene × environment risk for prenatal stress in ASD in two independent clinical samples

    Article  PubMed  Google Scholar 

  64. • Murphy DL, Maile MS, Vogt NM. 5HTTLPR: white knight or dark blight? ACS Chem Neurosci. 2013;4:13–5. Recent review of the problematic issues of focusing on one polymoprhism among many that might affect gene function

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. •• Abbott PW, Gumusoglu SB, Bittle J, Beversdorf DQ, Stevens HE. Prenatal stress and genetic risk: how prenatal stress interacts with genetics to alter risk for psychiatric illness. Psychoneuroendocrinology. 2018:90:9–21. Recent review of gene × environment studies focused on prenatal stress and psychiatric illness.

  66. • Smith-Hicks CL. GABAergic dysfunction in pediatric neuro-developmental disorders. Front Cell Neurosci. 2013;7:00269. Recent review of GABAergic function in neurodevelopmental disorders.

    Article  CAS  Google Scholar 

  67. • Fine R, Zhang J, Stevens HE. Prenatal stress and inhibitory neuron systems: implications for neuropsychiatric disorders. Mol Psychiatry. 2014;19:641–51. Recent review of prenatal stress and disruption to GABAergic systems

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Fatemi SH, Halt AR, Stary JM, Kanodia R, Schulz SC, Realmuto GR. Glutamic acid decarboxylase 65 and 67 kDa proteins are reduced in autistic parietal and cerebellar cortices. Biol Psychiatry. 2002;52:805–10.

    Article  PubMed  CAS  Google Scholar 

  69. Yip J, Soghomonian JJ, Blatt GJ. Decreased GAD67 mRNA levels in cerebellar Purkinje cells in autism: pathophysiological implications. Acta Neuropathol. 2007;113:559–68.

    Article  PubMed  CAS  Google Scholar 

  70. Gaetz W, Bloy L, Wang DJ, Port RG, Blaskey L, Levy SE, et al. GABA estimation in the brains of children on the autism spectrum: measurement precision and regional cortical variation. NeuroImage. 2014;86:1–9.

    Article  PubMed  CAS  Google Scholar 

  71. Rojas DC, Singel D, Steinmetz S, Hepburn S, Brown MS. Decreased left perisylvian GABA concentration in children with autism and unaffected siblings. NeuroImage. 2014;86:28–34.

    Article  PubMed  CAS  Google Scholar 

  72. Harada M, Taki MM, Nose A, Kubo H, Mori K, Nishitani H, et al. Non-invasive evaluation of the GABAergic/glutamatergic system in autistic patients observed by MEGA-editing proton MR spectroscopy using a clinical 3 tesla instrument. J Autism Dev Disord. 2011;41:447–54.

    Article  PubMed  Google Scholar 

  73. • Lussier SJ and Stevens HE. delays in gabaergic interneuron development and behavioral inhibition after prenatal stress. Devell Neurobiol. 2016; Jan 2 [epub ahead print]. Recent report on prenatal stress and GABA inhibitory neurons.

  74. Stevens HE, Su T, Yanagawa Y, Vaccarino FM. Prenatal stress delays inhibitory neuron progenitor migration in the developing neocortex. Psychoneuroendocrinol. 2013;38:509–21.

    Article  CAS  Google Scholar 

  75. Stevens H, Lussier S, Michaelson J, Radhakrishna S, Elser. Embryonic GABAergic proliferation as a contributing mechanism of sex differences in prenatal stress effects on brain and behavior Neuropsychopharmacology 2017;43:S497.

  76. • Matsui F, Hecht P, Yoshimoto K, Watanabe Y, Morimoto M, Fritsche K, et al. DHA mitigates autistic behaviors accompanied by dopaminergic change on a gene/prenatal stress mouse model. Neuroscience. 2017;371:407–19. Recent finding of dopaminergic changes with prenatal stress in a gene × environment model.

    Article  PubMed  CAS  Google Scholar 

  77. •• Bale TL. Sex differences in prenatal epigenetic programming of stress pathways. Stess. 2001;14:348–356. Review of sex-specific epigenetic effects of prenatal stress.

  78. Howerton CL, Morgan CP, Fischer DB, Bale TL. O-GlcNAc transferase (OGT) as a placental biomarker of maternal stress and reprogramming of CNS gene transcription in development. Proc Natl Acad Sci U S A. 2013;110:5169–74.

    Article  PubMed  PubMed Central  Google Scholar 

  79. •• Sjaarda CP, Hecht P, McNaughton AJM, Zhou A, Hudson ML, Will MJ, et al. Interplay between maternal Slc6a4 mutation and prenatal stress: a possible mechanism for autistic behavior development. Sci Rep. 2017;7(1):8735. Recent finding of epigenetic changes with prenatal stress in a gene × environment model.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Millan MJ. MicroRNA in the regulation and expression of serotonergic transmission in the brain and other tissues. Curr Opin Pharmacol. 2011;11:11–22.

    Article  PubMed  CAS  Google Scholar 

  81. Bai M, Zhu XZ, Zhang Y, Zhang S, Zhang L, Xue L, et al. Anhedonia was associated with the dysregulation of hippocampal HTR4 and microRNA Let-7a in rats. Physiol Behav. 2014;129:135–41.

    Article  PubMed  CAS  Google Scholar 

  82. Elton TS, Selemon H, Elton SM, Parinandi NL. Regulation of the MIR155 host gene in physiological and pathological processes. Gene. 2013;532:1–12.

    Article  PubMed  CAS  Google Scholar 

  83. Monteleone MC, Adrover E, Pallarés ME, Antonelli MC, Frasch AC, Brocco MA. Prenatal stress changes the glycoprotein GPM6A gene expression and induces epigenetic changes in rat offspring brain. Epigenetics. 2014;9:152–60.

    Article  PubMed  CAS  Google Scholar 

  84. Singh NP, Singh UP, Guan H, Nagarkatti P, Nagarkatti M. Prenatal exposure to TCDD triggers significant modulation of microRNA expression profile in the thymus that affects consequent gene expression. PLoS One. 2012;7(9):e45054.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. •• Babenko O, Kovalchuk I, Metz GA. Stress-induced perinatal and transgenerational epigenetic programming of brain development and mental health. Neurosci Biobehav Rev. 2015;48:70–91. Review of transgenerational effects of stress in mental health

    Article  PubMed  Google Scholar 

  86. •• Zucchi FC, Yao Y, Ward ID, Ilnytskyy Y, Olson DM, Benzies K, et al. Maternal stress induces epigenetic signatures of psychiatric and neurological diseases in the offspring. PLoS One. 2013;8:e56967. Review of transgenerational effects of stress in mental health with clinical implications

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Issler O, Haramati S, Paul ED, Maeno H, Navon I, Zwang R, et al. MicroRNA 135 is essential for chronic stress resiliency, antidepressant efficacy, and intact serotonergic activity. Neuron. 2014;83:344–60.

    Article  PubMed  CAS  Google Scholar 

  88. Baudry A, Mouillet-Richard S, Schneider B, Launay JM, Kellermann O. miR-16 targets the serotonin transporter: a new facet for adaptive responses to antidepressants. Science. 2010;329:1537–41.

    Article  PubMed  CAS  Google Scholar 

  89. Moya PR, Wendland JR, Salemme J, Fried RL, Murphy DL. miR-15a and miR-16 regulate serotonin transporter expression in human placental and rat brain raphe cells. Int J Neuropsychopharmacol. 2013;16:621–9.

    Article  PubMed  CAS  Google Scholar 

  90. Arisawa T, Tahara T, Fukuyama T, Hayashi R, Matsunaga K, Hayashi N, et al. Genetic polymorphism of pri-microRNA 325, targeting SLC6A4 3’-UTR, is closely associated with the risk of functional dyspepsia in Japan. J Gastroenterol. 2012;47:1091–8.

    Article  PubMed  CAS  Google Scholar 

  91. Hu VW, Frank BC, Heine S, Lee NH, Quackenbush J. Gene expression profiling of lymphoblastoid cell lines from monozygotic twins discordant in severity of autism reveals differential regulation of neurologically relevant genes. BMC Genomics. 2006;7:118.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Nguyen AT, Rauch RA, Pfeifer GP, Hu VW. Global methylation profiling of lymphoblastoid cell lines reveals epigenetic contributions to autism spectrum disorders and a novel autism candidate gene, RORA, whose protein product is reduced in autistic brain. FASEB J. 2010;24:3036–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. •• Griffiths BB, Hunter RG. Neuroepigenetics of stress. Neuroscience. 2014;275:420–35. Recent prominent stress epigenetics review

    Article  PubMed  CAS  Google Scholar 

  94. •• Bale TL. Epigenetic and transgenerational reprogramming of brain development. Nat Rev Neurosci. 2015;16:332–44. Significant review of transgenerational epigenetic effects on development

    Article  PubMed  CAS  Google Scholar 

  95. Rodgers AB, Morgan CP, Bronson SL, Revello S, Bale TL. Paternal stress exposure alters sperm microRNA content and reprograms offspring HPA stress axis regulation. J Neurosci. 2013;33:9003–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. • Rodgers AB, Morgan CP, Leu NA, Bale TL. Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress. Proc Natl Acad Sci U S A. 2015;112:13699–704. Remarkable recent finding of paternal prenatal stress effects on offspring and a mechanism of action

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Chaouat G. The Th1-Th2 paradigm: still important in pregnancy? Semin Immunopathol. 2007;29:113.

    Article  Google Scholar 

  98. Wegman TG, Lin H, Guilbert L, Mosmann TR. Bidirectional cytokine interactions in the maternal-fetal relationship: is successful pregnancy a TH2 phenomenon? Immunol Today. 2993;14:353–6.

    Article  Google Scholar 

  99. Ataldóttir HÓ, Henriksen TB, Schendel DE, Parner ET. Autism after infection, febrile episodes, and antibiotic use during pregnancy: an exploratory study. Pediatrics. 2012;130:e1447–554.

    Article  Google Scholar 

  100. Ataldóttir HÓ, Thorsen P, Østergaard L, Schendel DE, Lemcke S, Abdallah M, et al. Maternal infection requiring hospitalization during pregnancy and autism spectrum disorders. J Autism Dev Disord. 2010;40:1423–30.

    Article  Google Scholar 

  101. Chess S. Autism in children with congenital rubella. J Autism Child Schizophr. 1971;1:33–47.

    Article  PubMed  CAS  Google Scholar 

  102. Deykin EY, MacMahon B. Viral exposure and autism. Am J Epidemiol. 1979;109:628–38.

    Article  PubMed  CAS  Google Scholar 

  103. Lee BK, Magnusson C, Gardner RM, Blomström Å, Newschaffer CJ, Burstyn I, et al. Maternal hospitalization with infection during pregnancy and risk of autism spectrum disorders. Brain Behav Immun. 2015;44:100–5.

    Article  PubMed  Google Scholar 

  104. • Zerbo O, Iosif AM, Walker C, Ozonoff S, Hansen RL, Hertz-Picciotto I. Is maternal influenza or fever during pregnancy associated with autism or developmental delays? Results from the CHARGE (CHildhood Autism Risks from Genetics and Environment) Study. J Autism Dev Disord. 2013;43:25–33. Systematic study monitoring ASD risk with infection in a population

    Article  PubMed  PubMed Central  Google Scholar 

  105. Deverman BE, Patterson PH. Cytokines and CNS development. Neuron. 2009;64:61–78.

    Article  PubMed  CAS  Google Scholar 

  106. Mehler MF, Kessler JA. Cytokines in brain development and function. Adv Protein Chem. 1998;52:223–51.

    Article  PubMed  CAS  Google Scholar 

  107. Samuelsson AM, Jennische E, Hansson HA, Holmäng A. Prenatal exposure to interleukin-6 results in inflammatory neurodegeneration in hippocampus with NMDA/GABA(A) dysregulation and impaired spatial learning. Am J Physiol Regul Integr Comp Physiol. 2006;290:R1345–56.

    Article  PubMed  CAS  Google Scholar 

  108. Zaretsky MV, Alexander JM, Byrd W, Bawdon RE. Transfer of inflammatory cytokines across the placenta. Obstet Gynecol. 2004;103:546–50.

    Article  PubMed  CAS  Google Scholar 

  109. Ashdown H, Dumont Y, Ng M, Poole S, Boksa P, Luheshi GN. The role of cytokines in mediating effects of prenatal infection on the fetus: implications for schizophrenia. Mol Psychiatry. 2006;11:47–55.

    Article  PubMed  CAS  Google Scholar 

  110. Hauguel-de Mouzon S, Guerre-Millo M. The placenta cytokine network and inflammatory signals. Placenta. 2006;27:794–8.

    Article  PubMed  CAS  Google Scholar 

  111. Goines PE, Crown LA, Braunschweig D, Yoshida CK, Grether J, Hansen R, et al. Increased midgestational IFN-γ, IL-4 and IL-5 in women bearing a child with autism: a case-control study. Mol Autism. 2011;2:13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. •• Jones KL, Croen LA, Yoshida CK, Heuer L, Hansen R, Zerbo O, et al. Autism with intellectual disability is associated with increased levels of maternal cytokines and chemokines during gestation. Mol Psychiatry. 2017;22:273–9. Recent report distinguishing the immune profiles associated with ASD in contrast to non-ASD developmental disability.

    Article  PubMed  CAS  Google Scholar 

  113. Shimaoka Y, Hidaka Y, Tada H, Amino N, Nakamura T, Murata Y, et al. Changes in cytokine production during and after normal pregnancy. Am J Reprod Immunol. 2000;44:143–7.

    Article  PubMed  CAS  Google Scholar 

  114. Denney JM, Nelson EL, Wadhwa PD, Waters TP, Mathew L, Chung EK, et al. Longitudinal modulation of immune system cytokine profile during pregnancy. Cytokine. 2011;53:170–7.

    Article  PubMed  CAS  Google Scholar 

  115. Brown AS. The environment and susceptibility to schizophrenia. Prog Neurobiol. 2011;93:23–58.

    Article  PubMed  CAS  Google Scholar 

  116. •• Hsiao EY. Immune dysregulation in autism spectrum disorder. Int Rev Neurobiol. 2013;113:269–302. Important review of ASD-associated immune dysregulation.

    Article  PubMed  CAS  Google Scholar 

  117. •• Malkova NV, Yu CZ, Hsiao EY, Moore MJ, Patterson PH. Maternal immune activation yields offspring displaying mouse versions of the three core symptoms of autism. Brain Behav Immun. 2012;26:607–16. Mouse model of maternal immune activation resulting in ASD-like behavior in offspring.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Patterson PH. Maternal infection: window on neuroimmune interactions in fetal brain development and mental illness. Curr Opin Neurobiol. 2002;12:115–8.

    Article  PubMed  CAS  Google Scholar 

  119. Meyer U, Feldon J, Yee BK. A review of the fetal brain cytokine imbalance hypothesis of schizophrenia. Schizophr Bull. 2009;35:959–72.

    Article  PubMed  Google Scholar 

  120. Meyer U, Feldon J, Schedlowski M, Yee BK. Towards an immuno-precipitated neurodevelopmental animal model of schizophrenia. Neurosci Biobehav Rev. 2006;29:913–47.

    Article  CAS  Google Scholar 

  121. Zuckerman L, Weiner I. Maternal immune activation leads to behavioral and pharmacological changes in the adult offspring. J Psychiatr Res. 2005;39:311–23.

    Article  PubMed  Google Scholar 

  122. Boksa P. Effects of prenatal infection on brain development and behavior: a review of findings from animal models. Brain Behav Immun. 2010;24:881–97.

    Article  PubMed  Google Scholar 

  123. • Brown AS, Surcel HM, Hinkka-Yli-Salomäki S, Cheslack-Postava K, Bao Y, Sourander A. Maternal thyroid autoantibody and elevated risk of autism in a national birth cohort. Prog Neuro-Psychopharmacol Biol Psychiatry. 2015;57:86–92. Large study examining maternal thyroid autoantibody associated risk for ASD

    Article  CAS  Google Scholar 

  124. •• Edmiston E, Ashwood P, Van de Water J. Autoimmunity, Autoantibodies, and Autism Spectrum Disorder. Biol Psychiatry. 2017;81:383–90. Very recent review of immune dysregulation in ASD

    Article  PubMed  CAS  Google Scholar 

  125. Short SJ, Lubach GR, Karasin AI, Olsen CW, Styner M, Knickmeyer RC, et al. Maternal influenza infection during pregnancy impacts postnatal brain development in the rhesus monkey. Biol Psychiatry. 2010;67:965–73.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Connor CM, Dincer A, Straubhaar J, Galler JR, Houston IB, Akbarian S. Maternal immune activation alters behavior in adult offspring, with subtle changes in the cortical transcriptome and epigenome. Schizophrenia Res. 2012;140:175–84.

    Article  Google Scholar 

  127. Simister NE. Placental transport of immunoglobulin G. Vaccine. 2003;21:3365–9.

    Article  PubMed  CAS  Google Scholar 

  128. Tincani A, Bompane D, Danieli E, Doria A. Pregnancy, lupus and antiphospholipid syndrome (Hughes syndrome). Lupus. 2006;15:156–60.

    Article  PubMed  CAS  Google Scholar 

  129. Soares Rolim AM, Castro M, Santiago MB. Neonatal antiphospholipid syndrome. Lupus. 2006;15:301–3.

    Article  PubMed  CAS  Google Scholar 

  130. Fu J, Jiang Y, Liang L, Zhu H. Risk factors of primary thyroid dysfunction in early infants born to mothers with autoimmune thyroid disease. Acta Paediatr. 2006;94:1043–8.

    Google Scholar 

  131. Braunschweig D, Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Croen LA, et al. Autism: maternally derived antibodies specific for fetal brain proteins. Neurotoxicology. 2008;29:226–31.

    PubMed  CAS  Google Scholar 

  132. Croen LA, Braunschweig D, Haapanen L, Yoshida CK, Fireman B, Grether JK, et al. Maternal mid-pregnancy autoantibodies to fetal brain protein: the early markers for autism study. Biol Psychiatry. 2008;64:583–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. •• Braunschweig D, Duncanson P, Boyce R, Hansen R, Ashwood P, Pessah IN, et al. Behavioral correlates of maternal antibody status among children with autism. J Autism Dev Disord. 2012;42:1435–45. Recent study examining the behavioral phenotype of maternal antibody-associated ASD.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Singer HS, Morris CM, Gause CD, Gillin PK, Crawford S, Zimmerman AW. Antibodies against fetal brain in sera of mothers with autistic children. J Neuroimmunol. 2008;194:165–72.

    Article  PubMed  CAS  Google Scholar 

  135. Zimmerman AW, Connors SL, Matteson KJ, Li L-C, Singer HS, Castaneda JA, et al. Maternal antibrain antibodies in autism. Brain Behav Immun. 2007;21:351–7.

    Article  PubMed  CAS  Google Scholar 

  136. •• Brimberg L, Mader S, Jeganathan V, Berlin R, Coleman TR, Gregersen PK, et al. Caspr2-reactive antibody cloned from a mother of an ASD child mediates an ASD-like phenotype in mice. Mol Psychiatry. 2016;21:1663–71. Recent report of a maternal antibody-based animal model of autism, allowing further study in the model organism.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Martin LA, Ashwood P, Braunschweig D, Cabanlit M, Van de Water J, Amaral DG. (2008). Stereotypies and hyperactivity in rhesus monkeys exposed to IgG from mothers of children with autism. Brain Behav Immun 2008;22:806–816.

  138. •• Jones KL, Pride MC, Edmiston E, Yang M, Silverman JL, Crawley JN, Van de Water J (In Press). Autism-specific maternal autoantibodies produce behavioral abnormalities in an endogenous antigen-driven mouse model of autism. Mol Psych. New report describing the generation of a maternal antibody-based animal model of autism.

  139. Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol. 2005;57:67–81.

    Article  PubMed  CAS  Google Scholar 

  140. Campbell DB, D’Oronzio R, Garbett K, Ebert PJ, Mimics K, Levitt P, et al. Disruption of cerebral cortex MET signaling in autism spectrum disorder. Ann Neurol. 2007;62:243–50.

    Article  PubMed  Google Scholar 

  141. • Bauman MD, Iosif A-M, Ashwood P, Braunschweig D, Lee A, Schumann CM, et al. Maternal antibodies from mothers of children with autism alter brain growth and social behavior development in the rhesus monkey. Transl Psychiatry. 2013;3:e278. https://doi.org/10.1038/tp.2013.47. Recent report utilizing ASD-associated maternal antibodies to induce aberrant behaviors and altered brain development in primates, demonstrating its causative role.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Kiecolt-Glaser JK, Belury MA, Porter K, Beversdorf DQ, Lemeshow S, Glaser R. Depressive symptoms, omega-6: omega-3 fatty acids, and inflammation in older adults. Psychosom Med. 2007;69:217–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Bennett JM, Glaser WB, Malarkey WB, Beversdorf DQ, Peng J, Kiecolt-Glaser JK. Inflammation and reactivation of latent herpesvirus in older adults. Brain Behav Immun. 2012;26:739–46.

    Article  PubMed  CAS  Google Scholar 

  144. Okada S, Hori N, Kimoto K, Onuzuka M, Sato S, Sasaguri K. Effects of biting on elevation of blood pressure and other physiological responses to stress in rats: biting may reduce allostatic load. Brain Res. 2007;1185:189–94.

    Article  PubMed  CAS  Google Scholar 

  145. • Gumusoglu SB, Fine RS, Murray SJ, Bittle JL, Stevens HE. The role of IL-6 in neurodevelopment after prenatal stress. Brain Behav Immun. 2017;65:274–83. A very recent report examining the interaction between prenatal stress and immune regulation.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  146. Peters JL, Cohen S, Staudenmayer J, Hosen J, Platts-Mills TA, Wright RJ. Prenatal negative life events increases cord blood IgE: interactions with dust mite allergen and maternal atopy. Allergy. 2012;67:454–41.

    Article  CAS  Google Scholar 

  147. Coe CL, Crispen HR. Social stress in pregnant squirrel monkeys (Saimiri boliviensis peruviensis) differentially affects placental transfer of maternal antibody to male and female infants. Health Psychol. 2000;19:554–9.

    Article  PubMed  CAS  Google Scholar 

  148. Baganz NL, Blakely RD. A dialog between the immune system and brain, spoken in the language of serotonin. ACS Chem Neurosci. 2013;4:48–63.

    Article  PubMed  CAS  Google Scholar 

  149. •• Beversdorf DQ, Wang P, Barnes G, Weisskopf M, Hardan A, Hu V, et al. Phenotyping, etiological factors, and biomarkers: towards precision medicine in autism spectrum disorder. J Dev Behav Pediatr. 2016;37:659–73. Current review of the need for precision medicine approaches in ASD research.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Q. Beversdorf.

Ethics declarations

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Conflict of Interest

David Q. Beversdorf declares no relevant conflict of interest but is an associate editor for Research in Autism Spectrum Disorders and has funding from the Department of Defense and the Autism Treatment Network.

Hanna E. Stevens reports being on the Klingenstein Third Generation Foundation Advisory Board, grants from Nellie Ball Trust, Roy J Carver Trust/Iowa Neuroscience Institute, Chromadex Corporation, Carver College of Medicine Center for Hypertension Research, grants and non-financial support from NIEHS/Iowa Environmental Health Science Research Center, grants from Patterson Trust, and NIMH.

Karen L. Jones reports grants from the Hartwell Foundation, NIEHS Center for Children’s Environmental Health, NICHD IDDRC, and Hearst Foundation.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Sex and Gender Issues in Behavioral Health

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beversdorf, D.Q., Stevens, H.E. & Jones, K.L. Prenatal Stress, Maternal Immune Dysregulation, and Their Association With Autism Spectrum Disorders. Curr Psychiatry Rep 20, 76 (2018). https://doi.org/10.1007/s11920-018-0945-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11920-018-0945-4

Keywords

Navigation