Skip to main content

Advertisement

Log in

Chronobiology of Bipolar Disorder: Therapeutic Implication

  • Bipolar Disorders (W Coryell, Section Editor)
  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Multiple lines of evidence suggest that psychopathological symptoms of bipolar disorder arise in part from a malfunction of the circadian system, linking the disease with an abnormal internal timing. Alterations in circadian rhythms and sleep are core elements in the disorders, characterizing both mania and depression and having recently been shown during euthymia. Several human genetic studies have implicated specific genes that make up the genesis of circadian rhythms in the manifestation of mood disorders with polymorphisms in molecular clock genes not only showing an association with the disorder but having also been linked to its phenotypic particularities. Many medications used to treat the disorder, such as antidepressant and mood stabilizers, affect the circadian clock. Finally, circadian rhythms and sleep researches have been the starting point of the developing of chronobiological therapies. These interventions are safe, rapid and effective and they should be considered first-line strategies for bipolar depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. McClung CA. How might circadian rhythms control mood? Let me count the ways. Biol Psychiatry. 2013;74:242–9. This review summarizes recent data implicating the circadian system as a vital regulator of a variety of systems that are thought to play a role in the development of mood disorders.

    PubMed Central  PubMed  Google Scholar 

  2. Harvey AG. Sleep and circadian rhythms in bipolar disorder: seeking synchrony, harmony, and regulation. Am J Psychiatry. 2008;165:820–9.

    PubMed  Google Scholar 

  3. Singh I, Rose N. Biomarkers in psychiatry. Nature. 2009;460:202–7.

    CAS  PubMed  Google Scholar 

  4. Geoffroy PA, Bellivier F, Scott J, Etain B. Seasonality and bipolar disorder: a systematic review, from admission rates to seasonality of symptoms. J Affect Disord. 2014;168:210–23.

    PubMed  Google Scholar 

  5. Mitterauer B. Clock genes, feedback loops and their possible role in the etiology of bipolar disorders: an integrative model. Med Hypotheses. 2000;55:155–9.

    CAS  PubMed  Google Scholar 

  6. McClung CA. Role for the Clock gene in bipolar disorder. Cold Spring Harb Symp Quant Biol. 2007;72:637–44.

    CAS  PubMed  Google Scholar 

  7. Klein DC, Moore RY, Reppert SM. Suprachiasmatic nucleus: the mind’s Clock. 1991.

  8. Reischl S, Kramer A. Kinases and phosphatases in the mammalian circadian clock. FEBS Lett. 2011;585:1393–9.

    CAS  PubMed  Google Scholar 

  9. Lowrey PL, Takahashi JS. Genetics of the mammalian circadian system: photic entrainment, circadian pacemaker mechanisms, and posttranslational regulation. Annu Rev Genet. 2000;34:533–62.

    CAS  PubMed  Google Scholar 

  10. Moore RY, Lenn NJ. A retinohypothalamic projection in the rat. J Comp Neurol. 1972;146:1–14.

    CAS  PubMed  Google Scholar 

  11. Stratmann M, Schibler U. Properties, entrainment, and physiological functions of mammalian peripheral oscillators. J Biol Rhythm. 2006;21:494–506.

    CAS  Google Scholar 

  12. Albrecht U. Timing to perfection: the biology of central and peripheral circadian clocks. Neuron. 2012;74:246–60.

    CAS  PubMed  Google Scholar 

  13. Buhr ED, Yoo SH, Takahashi JS. Temperature as a universal resetting cue for mammalian circadian oscillators. Science. 2010;330:379–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Avery D, Wildschiodtz G, Rafaelsen O. REM latency and temperature in affective disorder before and after treatment. Biol Psychiatry. 1982;17:463–70.

    CAS  PubMed  Google Scholar 

  15. Watson S, Gallagher P, Ritchie JC, Ferrier IN, Young AH. Hypothalamic-pituitary-adrenal axis function in patients with bipolar disorder. Br J Psychiatry. 2004;184:496–502.

    PubMed  Google Scholar 

  16. Deshauer D, Duffy A, Alda M, Grof E, Albuquerque J, Grof P. The cortisol awakening response in bipolar illness: a pilot study. Can J Psychiatry. 2003;48:462–6.

    PubMed  Google Scholar 

  17. Havermans R, Nicolson NA, Berkhof J, de Vries MW. Patterns of salivary cortisol secretion and responses to daily events in patients with remitted bipolar disorder. Psychoneuroendocrinology. 2011;36:258–65.

    CAS  PubMed  Google Scholar 

  18. Ellenbogen MA, Santo JB, Linnen AM, Walker CD, Hodgins S. High cortisol levels in the offspring of parents with bipolar disorder during two weeks of daily sampling. Bipolar Disord. 2010;12:77–86.

    PubMed  Google Scholar 

  19. Cervantes P, Gelber S, Kin FN, Nair VN, Schwartz G. Circadian secretion of cortisol in bipolar disorder. J Psychiatry Neurosci. 2001;26:411–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Nurnberger Jr JI, Adkins S, Lahiri DK, Mayeda A, Hu K, Lewy A, et al. Melatonin suppression by light in euthymic bipolar and unipolar patients. Arch Gen Psychiatry. 2000;57:572–9.

    CAS  PubMed  Google Scholar 

  21. Lewy AJ, Wher T, Gold PW, Goodwin FK. Plasma melatonin in manic depressive illness. In: Usdin E, Koping IJ, Barchas JD, editors. Catecholamines: basic and clinical frontiers. Oxford: Pergamon Press; 1979. p. 1173–5.

    Google Scholar 

  22. Kennedy SH, Tighe S, McVey G, Brown GM. Melatonin and cortisol “switches” during mania, depression, and euthymia in a drug-free bipolar patient. J Nerv Ment Dis. 1989;177:300–3.

    CAS  PubMed  Google Scholar 

  23. Novakova M, Prasko J, Latalova K, Sladek M, Sumova A. The circadian system of patients with bipolar disorder differs in episodes of mania and depression. Bipolar Disord. 2014.

  24. Beck-Friis J, Ljunggren JG, Thoren M, von Rosen D, Kjellman BF, Wetterberg L. Melatonin, cortisol and ACTH in patients with major depressive disorder and healthy humans with special reference to the outcome of the dexamethasone suppression test. Psychoneuroendocrinology. 1985;10:173–86.

    CAS  PubMed  Google Scholar 

  25. Kennedy SH, Kutcher SP, Ralevski E, Brown GM. Nocturnal melatonin and 24-hour 6-sulphatoxymelatonin levels in various phases of bipolar affective disorder. Psychiatry Res. 1996;63:219–22.

    CAS  PubMed  Google Scholar 

  26. Lewy AJ, Wehr TA, Goodwin FK, Newsome DA, Rosenthal NE. Manic-depressive patients may be supersensitive to light. Lancet. 1981;1:383–4.

    CAS  PubMed  Google Scholar 

  27. Nathan PJ, Burrows GD, Norman TR. Melatonin sensitivity to dim white light in affective disorders. Neuropsychopharmacology. 1999;21:408–13.

    CAS  PubMed  Google Scholar 

  28. Lewy AJ, Nurnberger Jr JI, Wehr TA, Pack D, Becker LE, Powell RL, et al. Supersensitivity to light: possible trait marker for manic-depressive illness. Am J Psychiatry. 1985;142:725–7.

    CAS  PubMed  Google Scholar 

  29. Nurnberger Jr JI, Berrettini W, Tamarkin L, Hamovit J, Norton J, Gershon E. Supersensitivity to melatonin suppression by light in young people at high risk for affective disorder. A preliminary report. Neuropsychopharmacology. 1988;1:217–23.

    PubMed  Google Scholar 

  30. Linkowski P, Van Cauter E, L’Hermite-Baleriaux M, Kerkhofs M, Hubain P, L’Hermite M, et al. The 24-hour profile of plasma prolactin in men with major endogenous depressive illness. Arch Gen Psychiatry. 1989;46:813–9.

    CAS  PubMed  Google Scholar 

  31. Fava GA, Molnar G, Spinks M, Loretan A, Edwards L, Morphy MA. Case report of prolactin and bipolar illness: a longitudinal study. Prog Neuropsychopharmacol Biol Psychiatry. 1985;9:451–7.

    CAS  PubMed  Google Scholar 

  32. Linkowski P, Mendlewicz J, Leclercq R, Brasseur M, Hubain P, Golstein J, et al. The 24-hour profile of adrenocorticotropin and cortisol in major depressive illness. J Clin Endocrinol Metab. 1985;61:429–38.

    CAS  PubMed  Google Scholar 

  33. Mendlewicz J, Linkowski P, Kerkhofs M, Desmedt D, Golstein J, Copinschi G, et al. Diurnal hypersecretion of growth hormone in depression. J Clin Endocrinol Metab. 1985;60:505–12.

    CAS  PubMed  Google Scholar 

  34. Gruber J, Miklowitz DJ, Harvey AG, Frank E, Kupfer D, Thase ME, et al. Sleep matters: sleep functioning and course of illness in bipolar disorder. J Affect Disord. 2011;134:416–20.

    PubMed Central  PubMed  Google Scholar 

  35. Plante DT, Winkelman JW. Sleep disturbance in bipolar disorder: therapeutic implications. Am J Psychiatry. 2008;165:830–43.

    PubMed  Google Scholar 

  36. Jackson A, Cavanagh J, Scott J. A systematic review of manic and depressive prodromes. J Affect Disord. 2003;74:209–17.

    PubMed  Google Scholar 

  37. Bauer M, Grof P, Rasgon N, Bschor T, Glenn T, Whybrow PC. Temporal relation between sleep and mood in patients with bipolar disorder. Bipolar Disord. 2006;8:160–7.

    PubMed  Google Scholar 

  38. Jones SH, Tai S, Evershed K, Knowles R, Bentall R. Early detection of bipolar disorder: a pilot familial high-risk study of parents with bipolar disorder and their adolescent children. Bipolar Disord. 2006;8:362–72.

    PubMed  Google Scholar 

  39. Duffy A, Alda M, Crawford L, Milin R, Grof P. The early manifestations of bipolar disorder: a longitudinal prospective study of the offspring of bipolar parents. Bipolar Disord. 2007;9:828–38.

    PubMed  Google Scholar 

  40. Hudson JI, Lipinski JF, Frankenburg FR, Grochocinski VJ, Kupfer DJ. Electroencephalographic sleep in mania. Arch Gen Psychiatry. 1988;45:267–73.

    CAS  PubMed  Google Scholar 

  41. Linkowski P, Kerkhofs M, Rielaert C, Mendlewicz J. Sleep during mania in manic-depressive males. Eur Arch Psychiatry Neurol Sci. 1986;235:339–41.

    CAS  PubMed  Google Scholar 

  42. Wehr TA, Sack DA, Norman E. Sleep reduction as a final common pathway in the genesis of mania. Am J Psychiatry. 1987;144:201–4.

    CAS  PubMed  Google Scholar 

  43. Barbini B, Bertelli S, Colombo C, Smeraldi E. Sleep loss, a possible factor in augmenting manic episode. Psychiatry Res. 1996;65:121–5.

  44. Rocha PM, Neves FS, Corrêa H. Significant sleep disturbances in euthymic bipolar patients. Compr Psychiatry. 2013;54(7):1003–8.

  45. Perlis ML, Giles DE, Buysse DJ, Tu X, Kupfer DJ. Self-reported sleep disturbance as a prodromal symptom in recurrent depression. J Affect Disord. 1997;42:209–12.

    CAS  PubMed  Google Scholar 

  46. Perlman CA, Johnson SL, Mellman TA. The prospective impact of sleep duration on depression and mania. Bipolar Disord. 2006;8:271–4.

    PubMed  Google Scholar 

  47. Duncan Jr WC, Pettigrew KD, Gillin JC. REM architecture changes in bipolar and unipolar depression. Am J Psychiatry. 1979;136:1424–7.

    PubMed  Google Scholar 

  48. Riemann D, Voderholzer U, Berger M. Sleep and sleep-wake manipulations in bipolar depression. Neuropsychobiology. 2002;45 Suppl 1:7–12.

    PubMed  Google Scholar 

  49. Sitaram N, Nurnberger Jr JI, Gershon ES, Gillin JC. Cholinergic regulation of mood and REM sleep: potential model and marker of vulnerability to affective disorder. Am J Psychiatry. 1982;139:571–6.

    CAS  PubMed  Google Scholar 

  50. Geoffroy PA, Boudebesse C, Bellivier F, Lajnef M, Henry C, Leboyer M, et al. Sleep in remitted bipolar disorder: a naturalistic case–control study using actigraphy. J Affect Disord. 2014;158:1–7.

    PubMed  Google Scholar 

  51. Gershon A, Thompson WK, Eidelman P, McGlinchey EL, Kaplan KA, Harvey AG. Restless pillow, ruffled mind: sleep and affect coupling in interepisode bipolar disorder. J Abnorm Psychol. 2012;121:863–73.

    PubMed Central  PubMed  Google Scholar 

  52. Eidelman P, Talbot LS, Gruber J, Hairston I, Harvey AG. Sleep architecture as correlate and predictor of symptoms and impairment in inter-episode bipolar disorder: taking on the challenge of medication effects. J Sleep Res. 2010;19:516–24.

    PubMed Central  PubMed  Google Scholar 

  53. McKenna BS, Eyler LT. Overlapping prefrontal systems involved in cognitive and emotional processing in euthymic bipolar disorder and following sleep deprivation: a review of functional neuroimaging studies. Clin Psychol Rev. 2012;32:650–63.

    PubMed Central  PubMed  Google Scholar 

  54. Canali P. A role for TMS/EEG in neuropsychiatric disorders. Neurol Psychiatry Brain Res. 2014;20:37–40.

  55. Canali P, Sferrazza Papa G, Casali AG, Fecchio M, Pigorini A, Schiena G, et al. Changes of cortical excitability as biomarkers of antidepressant response in bipolar depression. Bipolar Disord. 2014;16:809–19. The first clinical trial investigating the circadian pattern of synaptic building during wake and downscaling during sleep in Bipolar Disorder by means of combined TMS/EEG, showing that lower cortical excitability predicts poor response to chronobiological treatments, which restore a normal circadian pattern of change of these measures in patients achieving the antidepressant response.

    PubMed  Google Scholar 

  56. Boland EM, Alloy LB. Sleep disturbance and cognitive deficits in bipolar disorder: toward an integrated examination of disorder maintenance and functional impairment. Clin Psychol Rev. 2013;33:33–44.

    PubMed Central  PubMed  Google Scholar 

  57. Brietzke E, Stertz L, Fernandes BS, Kauer-Sant’anna M, Mascarenhas M, Escosteguy Vargas A, et al. Comparison of cytokine levels in depressed, manic and euthymic patients with bipolar disorder. J Affect Disord. 2009;116:214–7.

    CAS  PubMed  Google Scholar 

  58. Kim YK, Jung HG, Myint AM, Kim H, Park SH. Imbalance between pro-inflammatory and anti-inflammatory cytokines in bipolar disorder. J Affect Disord. 2007;104:91–5.

    CAS  PubMed  Google Scholar 

  59. O’Brien SM, Scully P, Scott LV, Dinan TG. Cytokine profiles in bipolar affective disorder: focus on acutely ill patients. J Affect Disord. 2006;90:263–7.

    PubMed  Google Scholar 

  60. Hope S, Melle I, Aukrust P, Steen NE, Birkenaes AB, Lorentzen S, et al. Similar immune profile in bipolar disorder and schizophrenia: selective increase in soluble tumor necrosis factor receptor I and von Willebrand factor. Bipolar Disord. 2009;11:726–34.

    CAS  PubMed  Google Scholar 

  61. Drexhage RC, Knijff EM, Padmos RC, Heul-Nieuwenhuijzen L, Beumer W, Versnel MA, et al. The mononuclear phagocyte system and its cytokine inflammatory networks in schizophrenia and bipolar disorder. Expert Rev Neurother. 2010;10:59–76.

    CAS  PubMed  Google Scholar 

  62. Manzar MD, Hussain ME. Sleep-immune system interaction: advantages and challenges of human sleep loss model. Front Neurol. 2012;3:2.

    PubMed Central  PubMed  Google Scholar 

  63. Krueger JM. The role of cytokines in sleep regulation. Curr Pharm Des. 2008;14:3408–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Dinges DF, Douglas SD, Zaugg L, Campbell DE, McMann JM, Whitehouse WG, et al. Leukocytosis and natural killer cell function parallel neurobehavioral fatigue induced by 64 hours of sleep deprivation. J Clin Invest. 1994;93:1930–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, et al. Sleep drives metabolite clearance from the adult brain. Science. 2013;342:373–7. A pivotal preclinical trial showing that the intercellular space increases its water content during sleep, thus markedly increasing diffusion of neurotransmitters and other substances through the extracellular matrix and promoting the clearance of metabolites, including β-amyloid, from the brain.

    CAS  PubMed  Google Scholar 

  66. Kilbourne AM, Cornelius JR, Han X, Pincus HA, Shad M, Salloum I, et al. Burden of general medical conditions among individuals with bipolar disorder. Bipolar Disord. 2004;6:368–73.

    PubMed  Google Scholar 

  67. Nievergelt CM, Kripke DF, Barrett TB, Burg E, Remick RA, Sadovnick AD, et al. Suggestive evidence for association of the circadian genes PERIOD3 and ARNTL with bipolar disorder. Am J Med Genet B Neuropsychiatr Genet. 2006;141B:234–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Mansour HA, Wood J, Logue T, Chowdari KV, Dayal M, Kupfer DJ, et al. Association study of eight circadian genes with bipolar I disorder, schizoaffective disorder and schizophrenia. Genes Brain Behav. 2006;5:150–7.

    CAS  PubMed  Google Scholar 

  69. Lee KY, Song JY, Kim SH, Kim SC, Joo EJ, Ahn YM, et al. Association between CLOCK 3111T/C and preferred circadian phase in Korean patients with bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34:1196–201.

    CAS  PubMed  Google Scholar 

  70. Severino G, Manchia M, Contu P, Squassina A, Lampus S, Ardau R, et al. Association study in a Sardinian sample between bipolar disorder and the nuclear receptor REV-ERBalpha gene, a critical component of the circadian clock system. Bipolar Disord. 2009;11:215–20.

    PubMed  Google Scholar 

  71. Kishi T, Kitajima T, Ikeda M, Yamanouchi Y, Kinoshita Y, Kawashima K, et al. Association analysis of nuclear receptor Rev-erb alpha gene (NR1D1) with mood disorders in the Japanese population. Neurosci Res. 2008;62:211–5.

    CAS  PubMed  Google Scholar 

  72. Soria V, Martinez-Amoros E, Escaramis G, Valero J, Perez-Egea R, Garcia C, et al. Differential association of circadian genes with mood disorders: CRY1 and NPAS2 are associated with unipolar major depression and CLOCK and VIP with bipolar disorder. Neuropsychopharmacology. 2010;35:1279–89.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. McGrath CL, Glatt SJ, Sklar P, Le-Niculescu H, Kuczenski R, Doyle AE, et al. Evidence for genetic association of RORB with bipolar disorder. BMC Psychiatry. 2009;9:70.

    PubMed Central  PubMed  Google Scholar 

  74. Ronai Z, Kovacs-Nagy R, Szantai E, Elek Z, Sasvari-Szekely M, Faludi G, et al. Glycogen synthase kinase 3 beta gene structural variants as possible risk factors of bipolar depression. Am J Med Genet B Neuropsychiatr Genet. 2014;165B:217–22.

    PubMed  Google Scholar 

  75. Lachman HM, Pedrosa E, Petruolo OA, Cockerham M, Papolos A, Novak T, et al. Increase in GSK3beta gene copy number variation in bipolar disorder. Am J Med Genet B Neuropsychiatr Genet. 2007;144B:259–65.

    CAS  PubMed  Google Scholar 

  76. Shi J, Wittke-Thompson JK, Badner JA, Hattori E, Potash JB, Willour VL, et al. Clock genes may influence bipolar disorder susceptibility and dysfunctional circadian rhythm. Am J Med Genet B Neuropsychiatr Genet. 2008;147B:1047–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Badenhop RF, Moses MJ, Scimone A, Mitchell PB, Ewen-White KR, Rosso A, et al. A genome screen of 13 bipolar affective disorder pedigrees provides evidence for susceptibility loci on chromosome 3 as well as chromosomes 9, 13 and 19. Mol Psychiatry. 2002;7:851–9.

    CAS  PubMed  Google Scholar 

  78. Katzenberg D, Young T, Finn L, Lin L, King DP, Takahashi JS, et al. A CLOCK polymorphism associated with human diurnal preference. Sleep. 1998;21:569–76.

    CAS  PubMed  Google Scholar 

  79. Serretti A, Cusin C, Benedetti F, Mandelli L, Pirovano A, Zanardi R, et al. Insomnia improvement during antidepressant treatment and CLOCK gene polymorphism. Am J Med Genet B Neuropsychiatr Genet. 2005;10:10.

    Google Scholar 

  80. Benedetti F, Dallaspezia S, Fulgosi MC, Lorenzi C, Serretti A, Barbini B, et al. Actimetric evidence that CLOCK 3111 T/C SNP influences sleep and activity patterns in patients affected by bipolar depression. Am J Med Genet B Neuropsychiatr Genet. 2007;144B:631–5.

    CAS  PubMed  Google Scholar 

  81. Benedetti F, Serretti A, Colombo C, Barbini B, Lorenzi C, Campori E, et al. Influence of CLOCK gene polymorphism on circadian mood fluctuation and illness recurrence in bipolar depression. Am J Med Genet. 2003;123B:23–6.

    PubMed  Google Scholar 

  82. Benedetti F, Radaelli D, Bernasconi A, Dallaspezia S, Falini A, Scotti G, et al. Clock genes beyond the clock: CLOCK genotype biases neural correlates of moral valence decision in depressed patients. Genes Brain Behav. 2008;7:20–5.

    CAS  PubMed  Google Scholar 

  83. Pawlak J, Dmitrzak-Weglarz M, Maciukiewicz M, Wilkosc M, Leszczynska-Rodziewicz A, Zaremba D, et al. Suicidal behavior in the context of disrupted rhythmicity in bipolar disorder-Data from an association study of suicide attempts with clock genes. Psychiatry Res. 2015;226:517–20.

    PubMed  Google Scholar 

  84. Benedetti F, Dallaspezia S, Colombo C, Pirovano A, Marino E, Smeraldi E. A length polymorphism in the circadian clock gene Per3 influences age at onset of bipolar disorder. Neurosci Lett. 2008;445:184–7.

    CAS  PubMed  Google Scholar 

  85. Dallaspezia S, Lorenzi C, Pirovano A, Colombo C, Smeraldi E, Benedetti F. Circadian clock gene Per3 variants influence the postpartum onset of bipolar disorder. Eur Psychiatry. 2011;26:138–40.

    CAS  PubMed  Google Scholar 

  86. Jimenez E, Arias B, Mitjans M, Goikolea JM, Roda E, Ruiz V, et al. Association between GSK3beta gene and increased impulsivity in bipolar disorder. Eur Neuropsychopharmacol. 2014;24:510–8.

    CAS  PubMed  Google Scholar 

  87. Jimenez E, Arias B, Mitjans M, Goikolea JM, Roda E, Saiz PA, et al. Genetic variability at IMPA2, INPP1 and GSK3beta increases the risk of suicidal behavior in bipolar patients. Eur Neuropsychopharmacol. 2013;23:1452–62.

    CAS  PubMed  Google Scholar 

  88. Benedetti F, Bernasconi A, Lorenzi C, Pontiggia A, Serretti A, Colombo C, et al. A single nucleotide polymorphism in glycogen synthase kinase 3-beta promoter gene influences onset of illness in patients affected by bipolar disorder. Neurosci Lett. 2004;355:37–40.

    CAS  PubMed  Google Scholar 

  89. Benedetti F, Serretti A, Colombo C, Lorenzi C, Tubazio V, Smeraldi E. A glycogen synthase kinase 3-beta promoter gene single nucleotide polymorphism is associated with age at onset and response to total sleep deprivation in bipolar depression. Neurosci Lett. 2004;368:123–6.

    CAS  PubMed  Google Scholar 

  90. Benedetti F, Serretti A, Pontiggia A, Bernasconi A, Lorenzi C, Colombo C, et al. Long-term response to lithium salts in bipolar illness is influenced by the glycogen synthase kinase 3-beta −50 T/C SNP. Neurosci Lett. 2005;376:51–5.

    CAS  PubMed  Google Scholar 

  91. Benedetti F, Bollettini I, Barberi I, Radaelli D, Poletti S, Locatelli C, et al. Lithium and GSK3-beta promoter gene variants influence white matter microstructure in bipolar disorder. Neuropsychopharmacology. 2013;38:313–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Benedetti F, Poletti S, Radaelli D, Locatelli C, Pirovano A, Lorenzi C, et al. Lithium and GSK-3beta promoter gene variants influence cortical gray matter volumes in bipolar disorder. Psychopharmacology (Berl). 2015;232:1325–36.

    CAS  Google Scholar 

  93. McCarthy MJ, Nievergelt CM, Shekhtman T, Kripke DF, Welsh DK, Kelsoe JR. Functional genetic variation in the Rev-Erbalpha pathway and lithium response in the treatment of bipolar disorder. Genes Brain Behav. 2011;10:852–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Li JZ, Bunney BG, Meng F, Hagenauer MH, Walsh DM, Vawter MP, et al. Circadian patterns of gene expression in the human brain and disruption in major depressive disorder. Proc Natl Acad Sci U S A. 2013;110:9950–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Li SX, Liu LJ, Xu LZ, Gao L, Wang XF, Zhang JT, et al. Diurnal alterations in circadian genes and peptides in major depressive disorder before and after escitalopram treatment. Psychoneuroendocrinology. 2013;38:2789–99.

    CAS  PubMed  Google Scholar 

  96. Sjoholm LK, Backlund L, Cheteh EH, Ek IR, Frisen L, Schalling M, et al. CRY2 is associated with rapid cycling in bipolar disorder patients. PLoS One. 2010;5, e12632.

    PubMed Central  PubMed  Google Scholar 

  97. Coyle JT. What can a clock mutation in mice tell us about bipolar disorder? Proc Natl Acad Sci U S A. 2007;104:6097–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Prickaerts J, Moechars D, Cryns K, Lenaerts I, van Craenendonck H, Goris I, et al. Transgenic mice overexpressing glycogen synthase kinase 3beta: a putative model of hyperactivity and mania. J Neurosci. 2006;26:9022–9.

    CAS  PubMed  Google Scholar 

  99. Abarca C, Albrecht U, Spanagel R. Cocaine sensitization and reward are under the influence of circadian genes and rhythm. Proc Natl Acad Sci U S A. 2002;99:9026–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Landgraf D, McCarthy MJ, Welsh DK. The role of the circadian clock in animal models of mood disorders. Behav Neurosci. 2014;128:344–59. A conceptual review of how animal models can be developed to investigate whether circadian rhythm disruptions alter mood, by using clock gene mutants, manipulations of sleep-wake and light–dark cycles, and brain lesions affecting clock function.

    PubMed  Google Scholar 

  101. Nomura K, Castanon-Cervantes O, Davidson A, Fukuhara C. Selective serotonin reuptake inhibitors and raft inhibitors shorten the period of Period1-driven circadian bioluminescence rhythms in rat-1 fibroblasts. Life Sci. 2008;82:1169–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Sprouse J, Braselton J, Reynolds L. Fluoxetine modulates the circadian biological clock via phase advances of suprachiasmatic nucleus neuronal firing. Biol Psychiatry. 2006;60:896–9.

    CAS  PubMed  Google Scholar 

  103. Prosser RA, Lee HM, Wehner A. Serotonergic pre-treatments block in vitro serotonergic phase shifts of the mouse suprachiasmatic nucleus circadian clock. Neuroscience. 2006;142:547–55.

    CAS  PubMed  Google Scholar 

  104. Cuesta M, Mendoza J, Clesse D, Pevet P, Challet E. Serotonergic activation potentiates light resetting of the main circadian clock and alters clock gene expression in a diurnal rodent. Exp Neurol. 2008;210:501–13.

    CAS  PubMed  Google Scholar 

  105. Manev H, Uz T. Clock genes: influencing and being influenced by psychoactive drugs. Trends Pharmacol Sci. 2006;27:186–9.

    CAS  PubMed  Google Scholar 

  106. Kripke DF, Wyborney VG. Lithium slows rat circadian activity rhythms. Life Sci. 1980;26:1319–21.

    CAS  PubMed  Google Scholar 

  107. Welsh DK, Moore-Ede MC. Lithium lengthens circadian period in a diurnal primate. Saimiri sciureus. Biol Psychiatry. 1990;28:117–26.

    CAS  PubMed  Google Scholar 

  108. Johnsson A, Engelmann W, Pflug B, Klemke W. Period lengthening of human circadian rhythms by lithium carbonate, a prophylactic for depressive disorders. Int J Chronobiol. 1983;8:129–47.

    CAS  PubMed  Google Scholar 

  109. Abe M, Herzog ED, Block GD. Lithium lengthens the circadian period of individual suprachiasmatic nucleus neurons. Neuroreport. 2000;11:3261–4.

    CAS  PubMed  Google Scholar 

  110. Li J, Lu WQ, Beesley S, Loudon AS, Meng QJ. Lithium impacts on the amplitude and period of the molecular circadian clockwork. PLoS One. 2012;7:e33292. A preclinical trial showing that lithium increases the oscillation amplitude of clock protein dynamics in the central and peripheral circadian clockwork, and it does it by inhibiting glycogen synthase kinase 3 beta, thus providing a link between classical research on the neuroscience of lithium and chronobiology.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Freland L, Beaulieu JM. Inhibition of GSK3 by lithium, from single molecules to signaling networks. Front Mol Neurosci. 2012;5:14.

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Hirota T, Lewis WG, Liu AC, Lee JW, Schultz PG, Kay SA. A chemical biology approach reveals period shortening of the mammalian circadian clock by specific inhibition of GSK-3beta. Proc Natl Acad Sci U S A. 2008;105:20746–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Vougogiannopoulou K, Ferandin Y, Bettayeb K, Myrianthopoulos V, Lozach O, Fan Y, et al. Soluble 3’,6-substituted indirubins with enhanced selectivity toward glycogen synthase kinase −3 alter circadian period. J Med Chem. 2008;51:6421–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Kripke DF, Judd LL, Hubbard B, Janowsky DS, Huey LY. The effect of lithium carbonate on the circadian rhythm of sleep in normal human subjects. Biol Psychiatry. 1979;14:545–8.

    CAS  PubMed  Google Scholar 

  115. Yin L, Wang J, Klein PS, Lazar MA. Nuclear receptor Rev-erbalpha is a critical lithium-sensitive component of the circadian clock. Science. 2006;311:1002–5.

    CAS  PubMed  Google Scholar 

  116. Gould TD, Manji HK. Glycogen synthase kinase-3: a putative molecular target for lithium mimetic drugs. Neuropsychopharmacology. 2005;30:1223–37.

    CAS  PubMed  Google Scholar 

  117. Hallam KT, Olver JS, Horgan JE, McGrath C, Norman TR. Low doses of lithium carbonate reduce melatonin light sensitivity in healthy volunteers. Int J Neuropsychopharmacol. 2005;8:255–9.

    CAS  PubMed  Google Scholar 

  118. Johansson AS, Brask J, Owe-Larsson B, Hetta J, Lundkvist GB. Valproic acid phase shifts the rhythmic expression of Period2::Luciferase. J Biol Rhythm. 2011;26:541–51.

    CAS  Google Scholar 

  119. Klemfuss H, Kripke DF. Antimanic drugs stabilize hamster circadian rhythms. Psychiatry Res. 1995;57:215–22.

    CAS  PubMed  Google Scholar 

  120. Ogden CA, Rich ME, Schork NJ, Paulus MP, Geyer MA, Lohr JB, et al. Candidate genes, pathways and mechanisms for bipolar (manic-depressive) and related disorders: an expanded convergent functional genomics approach. Mol Psychiatry. 2004;9:1007–29.

    CAS  PubMed  Google Scholar 

  121. Hallam KT, Olver JS, Norman TR. Effect of sodium valproate on nocturnal melatonin sensitivity to light in healthy volunteers. Neuropsychopharmacology. 2005;30:1400–4.

    CAS  PubMed  Google Scholar 

  122. Niles LP, Sathiyapalan A, Bahna S, Kang NH, Pan Y. Valproic acid up-regulates melatonin MT1 and MT2 receptors and neurotrophic factors CDNF and MANF in the rat brain. Int J Neuropsychopharmacol. 2012;15:1343–50.

    CAS  PubMed  Google Scholar 

  123. Dallaspezia S, Benedetti F. Chronobiological therapy for mood disorders. Expert Rev Neurother. 2011;11:961–70.

    PubMed  Google Scholar 

  124. Benedetti F. Antidepressant chronotherapeutics for bipolar depression. Dialogues in Clinical Neuroscience. 2012;14:401–11.

  125. Wirz-Justice A, Van den Hoofdakker RH. Sleep deprivation in depression: what do we know, where do we go? Biol Psychiatry. 1999;46:445–53.

    CAS  PubMed  Google Scholar 

  126. Wirz-Justice A, Terman M, Oren DA, Goodwin FK, Kripke DF, Whybrow PC, et al. Brightening depression. Science. 2004;303:467–9.

    CAS  PubMed  Google Scholar 

  127. Benedetti F, Smeraldi E. Neuroimaging and genetics of antidepressant response to sleep deprivation: implications for drug development. Curr Pharm Des. 2009;15:2637–49.

    CAS  PubMed  Google Scholar 

  128. Dallaspezia S, Benedetti F. Sleep deprivation therapy for depression. Curr Top Behav Neurosci. 2015;25:483–502. A recent review about sleep deprivation therapy focusing on both clinical and biological aspects.

  129. Benedetti F, Barbini B, Fulgosi MC, Colombo C, Dallaspezia S, Pontiggia A, et al. Combined total sleep deprivation and light therapy in the treatment of drug-resistant bipolar depression: acute response and long-term remission rates. J Clin Psychiatry. 2005;66:1535–40.

    CAS  PubMed  Google Scholar 

  130. Colombo C, Lucca A, Benedetti F, Barbini B, Campori E, Smeraldi E. Total sleep deprivation combined with lithium and light therapy in the treatment of bipolar depression: replication of main effects and interaction. Psychiatry Res. 2000;95:43–53.

    CAS  PubMed  Google Scholar 

  131. Wehr TA, Sack DA, Norman E. Treatment of rapidly cycling bipolar patient by using extended bed rest and darkness to stabilize the timing and duration of sleep. Biol Psychiatry. 1998;43:822–8.

    CAS  PubMed  Google Scholar 

  132. Terman M. Evolving applications of light therapy. Sleep Med Rev. 2007;11:497–507.

    PubMed  Google Scholar 

  133. Terman M, Terman JS. Light therapy for seasonal and nonseasonal depression: efficacy, protocol, safety, and side effects. CNS Spectr. 2005;10:647–63. quiz 72.

    PubMed  Google Scholar 

  134. Barbini B, Benedetti F, Colombo C, Dotoli D, Bernasconi A, Cigala-Fulgosi M, et al. Dark therapy for mania: a pilot study. Bipolar Disord. 2005;7:98–101.

    PubMed  Google Scholar 

  135. Slat E, Freeman GM, Jr., Herzog ED. The clock in the brain: neurons, glia, and networks in daily rhythms. Handb Exp Pharmacol. 2013;217:105–23.

  136. Benedetti F, Terman M. Much ado about…a moody clock. Biol Psychiatry. 2013;74:236–7.

    PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

The authors declare that they have no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Dallaspezia.

Additional information

This article is part of the Topical Collection on Bipolar Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dallaspezia, S., Benedetti, F. Chronobiology of Bipolar Disorder: Therapeutic Implication. Curr Psychiatry Rep 17, 68 (2015). https://doi.org/10.1007/s11920-015-0606-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11920-015-0606-9

Keywords

Navigation