Skip to main content
Log in

Etiology of Autism Spectrum Disorder: A Genomics Perspective

  • Autism Spectrum Disorders (ES Brodkin, Section Editor)
  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

In recent years, considerable progress has been made in understanding the genomic basis of autism spectrum disorder (ASD). Hundreds of variants have been proposed as predisposing to ASD, and the challenge now is to validate candidates and to understand how gene networks interact to produce ASD phenotypes. Genome-wide association and second-generation sequencing studies in particular have provided important indications about how to understand ASD on a molecular level, and we are beginning to see these experimental approaches translate into novel treatments and diagnostic tests. We review key studies in the field over the past five years and discuss some of the remaining technological and methodological challenges that remain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Bailey A et al. Autism as a strongly genetic disorder: evidence from a British twin study. Psychol Med. 1995;25:63–77.

    Article  PubMed  CAS  Google Scholar 

  2. Lauritsen MB, Pedersen CB, Mortensen PB. Effects of familial risk factors and place of birth on the risk of autism: a nationwide register-based study. J Child Psychol Psychiatry. 2005;46:963–71. doi:10.1111/j.1469-7610.2004.00391.x.

    Article  PubMed  Google Scholar 

  3. Sandin S et al. The familial risk of autism. JAMA. 2014;311:1770–7.

    Article  PubMed  CAS  Google Scholar 

  4. St Pourcain B. Variability in the common genetic architecture of social-communication spectrum phenotypes during childhood and adolescence. Mol Autism. 2014;5:18.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Skuse DH. Rethinking the nature of genetic vulnerability to autistic spectrum disorders. Trends Genet. 2007;23:387–95. doi:10.1016/j.tig.2007.06.003.

    Article  PubMed  CAS  Google Scholar 

  6. Hindorff L, MacArthur J, (2013). The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 2014 Jan;42(Database issue):D1001-6. doi:10.1093/nar/gkt1229.

  7. Wang K et al. Common genetic variants on 5p14.1 associate with autism spectrum disorders. Nature. 2009;459:528–33. doi:10.1038/nature07999.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Ma D et al. A genome-wide association study of autism reveals a common novel risk locus at 5p14.1. Ann Hum Genet. 2009;73:263–73. doi:10.1111/j.1469-1809.2009.00523.x.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. St Pourcain B et al. Association between a high-risk autism locus on 5p14 and social communication spectrum phenotypes in the general population. Am J Psychiatry. 2010;167:1364–72. doi:10.1176/appi.ajp.2010.09121789.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kerin T et al. A noncoding RNA antisense to moesin at 5p14.1 in autism. Sci Transl Med. 2012;4:128ra140. doi:10.1126/scitranslmed.3003479. This study provides important functional validation of the 5p14. 1 locus as an important correlate of ASD susceptibility. Furthermore, it highlights a limitation in DNA sequencing, which would have failed to identify the MSNP1AS pseudogene.

    Article  Google Scholar 

  11. Arking DE et al. A common genetic variant in the neurexin superfamily member CNTNAP2 increases familial risk of autism. Am J Hum Genet. 2008;82:160–4. doi:10.1016/j.ajhg.2007.09.015.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Alarcon M, Cantor RM, Liu J, Gilliam TC, Geschwind DH. Evidence for a language quantitative trait locus on chromosome 7q in multiplex autism families. Am J Hum Genet. 2002;70:60–71. doi:10.1086/338241.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Vernes SC et al. A functional genetic link between distinct developmental language disorders. N Engl J Med. 2008;359:2337–45. doi:10.1056/NEJMoa0802828.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Lai CS, Fisher SE, Hurst JA, Vargha-Khadem F, Monaco AP. A forkhead-domain gene is mutated in a severe speech and language disorder. Nature. 2001;413:519–23. doi:10.1038/35097076.

    Article  PubMed  CAS  Google Scholar 

  15. Benayed R et al. Autism-associated haplotype affects the regulation of the homeobox gene, ENGRAILED 2. Biol Psychiatry. 2009;66:911–7. doi:10.1016/j.biopsych.2009.05.027.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Wang L et al. Association of the ENGRAILED 2 (EN2) gene with autism in Chinese Han population. Am J Med Genet B Neuropsychiatr Genet. 2008;147B:434–8. doi:10.1002/ajmg.b.30623.

    Article  PubMed  CAS  Google Scholar 

  17. Campbell DB et al. A genetic variant that disrupts MET transcription is associated with autism. Proc Natl Acad Sci U S A. 2006;103:16834–9. doi:10.1073/pnas.0605296103.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Campbell DB, Li C, Sutcliffe JS, Persico AM, Levitt P. Genetic evidence implicating multiple genes in the MET receptor tyrosine kinase pathway in autism spectrum disorder. Autism Res. 2008;1:159–68. doi:10.1002/aur.27.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Durand CM et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet. 2007;39:25–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Moessner R et al. Contribution of SHANK3 mutations to autism spectrum disorder. Am J Hum Genet. 2007;81:1289–97. doi:10.1086/522590.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Peça J et al. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature. 2011;472:437–42.

    Article  PubMed  PubMed Central  Google Scholar 

  22. McCauley J et al. Linkage and association analysis at the serotonin transporter (SLC6A4) locus in a rigid‐compulsive subset of autism. Am J Med Genet B Neuropsychiatr Genet. 2004;127:104–12.

    Article  Google Scholar 

  23. Ro M et al. Association of the FGA and SLC6A4 Genes with autistic spectrum disorder in a Korean population. Neuropsychobiology. 2013;68:212–20.

    Article  PubMed  CAS  Google Scholar 

  24. Klei L et al. Common genetic variants, acting additively, are a major source of risk for autism. Mol Autism. 2012;3(1):9. doi:10.1186/2040-2392-3-9. This study used genome-wide complex trait analysis (GCTA) to confirm the importance of common variants as ASD risk factors, supporting an additive model of ASD where many variants of small effect combine to increase susceptibility.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gaugler T et al. Most genetic risk for autism resides with common variation. Nat Genet. 2014;46:881–5.

    Article  PubMed  CAS  Google Scholar 

  26. Hoischen A, Krumm N, Eichler EE. Prioritization of neurodevelopmental disease genes by discovery of new mutations. Nat Neurosci. 2014;17:764–72.

    Article  PubMed  CAS  Google Scholar 

  27. Cross-Disorder Group of the Psychiatric Genomics Consortium et al. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat Genet. 2013;45(9):984-94. doi:10.1038/ng.2711.

  28. Lupski JR. Genomic rearrangements and sporadic disease. Nat Genet. 2007;39:S43–7. doi:10.1038/ng2084.

    Article  PubMed  CAS  Google Scholar 

  29. Abecasis GR et al. A map of human genome variation from population-scale sequencing. Nature;467: 1061-1073, doi:10.1038/nature09534 (2010).

  30. Conrad DF et al. Origins and functional impact of copy number variation in the human genome. Nature. 2010;464:704–12. doi:10.1038/nature08516.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Pang AW et al. Towards a comprehensive structural variation map of an individual human genome. Genome Biol. 2010;11:R52. doi:10.1186/gb-2010-11-5-r52.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sebat J et al. Strong association of de novo copy number mutations with autism. Science. 2007;316:445–9. doi:10.1126/science.1138659.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Glessner JT, Connolly JJ, Hakonarson H. Rare genomic deletions and duplications and their role in neurodevelopmental disorders. Curr Top Behav Neurosci. 2012. doi:10.1007/7854_2011_179.

    PubMed  Google Scholar 

  34. Bucan M et al. Genome-wide analyses of exonic copy number variants in a family-based study point to novel autism susceptibility genes. PLoS Genet. 2009;5:e1000536. doi:10.1371/journal.pgen.1000536.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kim HG et al. Disruption of neurexin 1 associated with autism spectrum disorder. Am J Hum Genet. 2008;82:199–207. doi:10.1016/j.ajhg.2007.09.011.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Guilmatre A et al. Recurrent rearrangements in synaptic and neurodevelopmental genes and shared biologic pathways in schizophrenia, autism, and mental retardation. Arch Gen Psychiatry. 2009;66:947–56. doi:10.1001/archgenpsychiatry.2009.80.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Glessner JT et al. Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature. 2009;459:569–73. doi:10.1038/nature07953.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Yi JJ, Ehlers MD. Ubiquitin and protein turnover in synapse function. Neuron. 2005;47:629–32. doi:10.1016/j.neuron.2005.07.008.

    Article  PubMed  CAS  Google Scholar 

  39. Missler M, Südhof TC, Biederer T. Synaptic cell adhesion. Cold Spring Harb Perspect Biol. 2012;4:a005694.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Pinto D, Marshall C, Feuk L, Scherer SW. Copy-number variation in control population cohorts. Hum Mol Genet. 2007;16 Spec No. 2:R168–73. doi:10.1093/hmg/ddm241.

    Article  PubMed  Google Scholar 

  41. Anney R et al. A genome-wide scan for common alleles affecting risk for autism. Hum Mol Genet. 2010;19:4072–82. doi:10.1093/hmg/ddq307.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Hadley D et al. The impact of the metabotropic glutamate receptor and other gene family interaction networks on autism. Nat Commun. 2014;5:4074. doi:10.1038/ncomms5074. To find potentially druggable genetic targets, this study compared family interaction networks (GFINs) in 6742 patients ASDs and 12,544 neurologically normal controls, identifying enrichment of structural defects in the metabotropic glutamate receptor GFIN, as well as MXD-MYC-MAX and calmodulin 1 (CALM1) GFINs.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Povey S et al. The HUGO gene nomenclature committee (HGNC). Hum Genet. 2001;109:678–80.

    Article  PubMed  CAS  Google Scholar 

  44. Pinto D et al. Functional impact of global rare copy number variation in autism spectrum disorders. Nature. 2010;466:368–72. doi:10.1038/nature09146.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Moreno-De-Luca D et al. Using large clinical data sets to infer pathogenicity for rare copy number variants in autism cohorts. Mol Psychiatry. 2012;18:1090–5.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Gilman SR et al. Rare de novo variants associated with autism implicate a large functional network of genes involved in formation and function of synapses. Neuron. 2011;70:898–907. doi:10.1016/j.neuron.2011.05.021.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Sachidanandam R et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature. 2001;409:928–33. doi:10.1038/35057149.

    Article  PubMed  CAS  Google Scholar 

  48. Sakai Y et al. Corticostriatal functional connectivity in non-medicated patients with obsessive-compulsive disorder. Eur Psychiatry. 2011;26:463–9.

    Article  PubMed  CAS  Google Scholar 

  49. Noh HJ et al. Network topologies and convergent aetiologies arising from deletions and duplications observed in individuals with autism. PLoS Genet. 2013;9:e1003523.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Li H et al. The association analysis of RELN and GRM8 genes with autistic spectrum disorder in Chinese Han population. Am J Med Genet B Neuropsychiatr Genet. 2008;147:194–200.

    Article  Google Scholar 

  51. Serajee F, Zhong H, Nabi R, Huq AM. The metabotropic glutamate receptor 8 gene at 7q31: partial duplication and possible association with autism. J Med Genet. 2003;40:e42.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Cuscó I et al. Autism-specific copy number variants further implicate the phosphatidylinositol signaling pathway and the glutamatergic synapse in the etiology of the disorder. Hum Mol Genet. 2009;18:1795–804.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Auerbach BD, Osterweil EK, Bear MF. Mutations causing syndromic autism define an axis of synaptic pathophysiology. Nature. 2011;480:63–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  54. Iossifov I et al. De novo gene disruptions in children on the autistic spectrum. Neuron. 2012;74:285–99. doi:10.1016/j.neuron.2012.04.009. Like several other studies in this review, Iossifov et al. use whole exome sequence to identify a range of mutations associated with ASD. Identification of the fragile X protein, FMRP, may have particularly important functional and translational consequences.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Darnell JC, Klann E. The translation of translational control by FMRP: therapeutic targets for FXS. Nat Neurosci. 2013;16:1530–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Bear MF, Huber KM, Warren ST. The mGluR theory of fragile X mental retardation. Trends Neurosci. 2004;27:370–7. doi:10.1016/j.tins.2004.04.009.

    Article  PubMed  CAS  Google Scholar 

  57. Jacquemont S et al. Epigenetic modification of the FMR1 gene in fragile X syndrome is associated with differential response to the mGluR5 antagonist AFQ056. Sci Transl Med. 2011. doi:10.1126/scitranslmed.3001708.

    PubMed  Google Scholar 

  58. Dolen G et al. Correction of fragile X syndrome in mice. Neuron. 2007;56:955–62.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Richards RI et al. Fragile X syndrome: genetic localisation by linkage mapping of two microsatellite repeats FRAXAC1 and FRAXAC2 which immediately flank the fragile site. J Med Genet. 1991;28:818–23.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  60. Rogers SJ, Wehner DE, Hagerman R. The behavioral phenotype in fragile X: symptoms of autism in very young children with fragile X syndrome, idiopathic autism, and other developmental disorders. J Dev Behav Pediatr. 2001;22:409–17.

    Article  PubMed  CAS  Google Scholar 

  61. Harris SW et al. Autism profiles of males with fragile X syndrome. Am J Ment Retard. 2008;113:427–38.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Curtis AR et al. X chromosome linkage studies in familial Rett syndrome. Hum Genet. 1993;90:551–5.

    Article  PubMed  CAS  Google Scholar 

  63. Ramocki MB et al. Autism and other neuropsychiatric symptoms are prevalent in individuals with MeCP2 duplication syndrome. Ann Neurol. 2009;66:771–82. doi:10.1002/ana.21715.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. Muhle R, Trentacoste SV, Rapin I. The genetics of autism. Pediatrics. 2004;113:e472–86.

    Article  PubMed  Google Scholar 

  65. Carney RM et al. Identification of MeCP2 mutations in a series of females with autistic disorder. Pediatr Neurol. 2003;28:205–11.

    Article  PubMed  Google Scholar 

  66. Volkmar FR. Handbook of autism and pervasive developmental disorders. 3rd ed. New York: Wiley; 2005.

    Book  Google Scholar 

  67. Li W et al. The HMG-CoA reductase inhibitor lovastatin reverses the learning and attention deficits in a mouse model of neurofibromatosis type 1. Curr Biol. 2005;15:1961–7. doi:10.1016/j.cub.2005.09.043.

    Article  PubMed  CAS  Google Scholar 

  68. Zafeiriou DI, Ververi A, Vargiami E. Childhood autism and associated comorbidities. Brain Dev. 2007;29:257–72. doi:10.1016/j.braindev.2006.09.003.

    Article  PubMed  Google Scholar 

  69. Schuurs-Hoeijmakers JH et al. Recurrent De Novo Mutations in <i> PACS1</i> cause defective cranial-neural-crest migration and define a recognizable intellectual-disability syndrome. Am J Hum Genet. 2012;91:1122–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  70. Rauch A et al. Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. Lancet. 2012;380:1674–82.

    Article  PubMed  CAS  Google Scholar 

  71. O'Roak BJ et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature. 2012. doi:10.1038/nature10989. The whole exome sequencing study showed that de novo germline mutations in coding regions are more prominent among males and found mutations in several existing ASD candidate genes.

    PubMed  PubMed Central  Google Scholar 

  72. Fischbach GD, Lord C. The Simons simplex collection: a resource for identification of autism genetic risk factors. Neuron. 2010;68:192–5. doi:10.1016/j.neuron.2010.10.006.

    Article  PubMed  CAS  Google Scholar 

  73. Hultman C, Sandin S, Levine S, Lichtenstein P, Reichenberg A. Advancing paternal age and risk of autism: new evidence from a population-based study and a meta-analysis of epidemiological studies. Mol Psychiatry. 2011;16:1203–12.

    Article  PubMed  CAS  Google Scholar 

  74. Malaspina D et al. Advancing paternal age and the risk of schizophrenia. Arch Gen Psychiatry. 2001;58:361–7.

    Article  PubMed  CAS  Google Scholar 

  75. McGrath JJ, et al. A Comprehensive Assessment of Parental Age and Psychiatric Disorders. JAMA psychiatry. 2014;71(3):301-9. doi: 10.1001/jamapsychiatry.2013.4081.

  76. Nishimura-Akiyoshi S, Niimi K, Nakashiba T, Itohara S. Axonal netrin-Gs transneuronally determine lamina-specific subdendritic segments. Proc Natl Acad Sci U S A. 2007;104:14801–6.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Neale BM et al. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature. 2012. doi:10.1038/nature11011. Whole exome sequencing study showed an association between de novo events and paternal age, as well as maternal age.

    Google Scholar 

  78. Sanders SJ et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature. 2012. doi:10.1038/nature10945. Whole exome sequencing study showing mutations in several ASD candidate genes. Of particular importance are two independent nonsense variants found to disrupt SCN2A.

    Google Scholar 

  79. Weiss LA et al. Sodium channels SCN1A, SCN2A and SCN3A in familial autism. Mol Psychiatry. 2003;8:186–94.

    Article  PubMed  CAS  Google Scholar 

  80. Jiang Y-h et al. Detection of clinically relevant genetic variants in autism spectrum disorder by whole-genome sequencing. Am J Hum Genet. 2013;93:249–63. Whole genome sequencing study if 32 families identifies mutations in several existing ASD candidate loci.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  81. Kamiya K et al. A nonsense mutation of the sodium channel gene SCN2A in a patient with intractable epilepsy and mental decline. J Neurosci. 2004;24:2690–8.

    Article  PubMed  CAS  Google Scholar 

  82. Ogiwara I et al. De novo mutations of voltage-gated sodium channel alphaII gene SCN2A in intractable epilepsies. Neurology. 2009;73:1046–53. doi:10.1212/WNL.0b013e3181b9cebc.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  83. Phenome E, Consortium EK. De novo mutations in epileptic encephalopathies. Nature. 2013. doi:10.1038/nature12439.

    Google Scholar 

  84. de Ligt J et al. Diagnostic exome sequencing in persons with severe intellectual disability. N Engl J Med. 2012;367:1921–9.

    Article  PubMed  Google Scholar 

  85. Fromer M et al. De novo mutations in schizophrenia implicate synaptic networks. Nature. 2014. doi:10.1038/nature12929.

    PubMed Central  Google Scholar 

  86. Pagani F, Baralle FE. Genomic variants in exons and introns: identifying the splicing spoilers. Nat Rev Genet. 2004;5:389–96.

    Article  PubMed  CAS  Google Scholar 

  87. Benjamini Y, Speed TP. Summarizing and correcting the GC content bias in high-throughput sequencing. Nucleic Acids Res. 2012;40:e72.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  88. Karakoc E et al. Detection of structural variants and indels within exome data. Nat Methods. 2012;9:176–8.

    Article  CAS  Google Scholar 

  89. Glessner JT, Li J, Hakonarson H. ParseCNV integrative copy number variation association software with quality tracking. Nucleic Acids Res. 2013;41:e64. doi:10.1093/nar/gks1346.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  90. Bölte S. Is autism curable? Dev Med Child Neurol. 2014. doi:10.1111/dmcn.12495.

    PubMed  Google Scholar 

  91. Williams SC. Drugs targeting mGluR5 receptor offer 'fragile' hope for autism. Nat Med. 2012;18:840.

    Article  PubMed  CAS  Google Scholar 

  92. Pini G, et al. IGF1 as a potential treatment for Rett syndrome: safety assessment in six Rett patients. Autism research and treatment. 2012;679801. doi: 10.1155/2012/679801.

  93. Ehninger D et al. Reversal of learning deficits in a Tsc2+/- mouse model of tuberous sclerosis. Nat Med. 2008;14:843–8. doi:10.1038/nm1788.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  94. Ehninger D, Silva AJ. Rapamycin for treating tuberous sclerosis and autism spectrum disorders. Trends Mol Med. 2011;17:78–87.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  95. Silverman JL, Crawley JN. The promising trajectory of autism therapeutics discovery. Drug Discov Today. 2013. doi:10.1016/j.drudis.2013.12.007.

    PubMed  Google Scholar 

  96. Silverman JL et al. Negative allosteric modulation of the mGluR5 receptor reduces repetitive behaviors and rescues social deficits in mouse models of autism. Sci Transl Med. 2012;4:131ra151. doi:10.1126/scitranslmed.3003501.

    Article  Google Scholar 

  97. Delorme R et al. Progress toward treatments for synaptic defects in autism. Nat Med. 2013;19:685–94.

    Article  PubMed  CAS  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

John J. Connolly and Hakon Hakonarson declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to John J. Connolly or Hakon Hakonarson.

Additional information

This article is part of the Topical Collection on Autism Spectrum Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Connolly, J.J., Hakonarson, H. Etiology of Autism Spectrum Disorder: A Genomics Perspective. Curr Psychiatry Rep 16, 501 (2014). https://doi.org/10.1007/s11920-014-0501-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11920-014-0501-9

Keywords

Navigation