Skip to main content
Log in

Schizotaxia: Current status and future directions

  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Schizophrenia is a biologic disorder whose etiology involves a combination of genetic and environmental risk factors. In this review, the authors update the conceptual basis of schizotaxia, consider evidence for its validity, and look toward its likely evolution in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. Gottesman II, Erlenmeyer-Kimling L: Family and twin strategies as a head start in defining prodromes and endophenotypes for hypothetical early-intervention in schizophrenia. Schizophr Res 2001, 51:93–102.

    Article  PubMed  CAS  Google Scholar 

  2. Meehl PE: Schizotaxia, schizotypy, schizophrenia. Am Psychol 1962, 17:827–838.

    Article  Google Scholar 

  3. Faraone SV, Green AJ, Seidman LJ, Tsuang MT: Schizotaxia: clinical implications and new directions for research. Schizophr Bull 2001, 27:1–18. This paper describes the derivation of schizotaxia, its differentiation from schizotypal personality disorder, and the basis for treatment of its symptoms.

    PubMed  CAS  Google Scholar 

  4. Tsuang MT, Gilbertson MW, Faraone SV: Genetic transmission of negative and positive symptoms in the biological relatives of schizophrenics. In Positive vs Negative Schizophrenia. Edited by Marneros A, Tsuang MT, Andreasen N. New York: Springer-Verlag: 1991:265–291.

    Google Scholar 

  5. Seidman LJ, Faraone SV, Goldstein JM, et al.: Left hippocampal volume as a vulnerability indicator for schizophrenia. Arch Gen Psychiatry 2002, 59:839–849. This report relates a specific brain abnormality in nonpsychotic, first-degree relatives of patients with schizophrenia to deficits in long-term verbal memory, which is a component of schizotaxia.

    Article  PubMed  Google Scholar 

  6. Faraone SV, Seidman LJ, Kremen WS, et al.: Neuropsychological functioning among the nonpsychotic relatives of schizophrenic patients: a diagnostic efficiency analysis. J Abnorm Psychology 1995, 104:286–304.

    Article  CAS  Google Scholar 

  7. Faraone SV, Kremen WS, Lyons MJ, et al.: Diagnostic accuracy and linkage analysis: how useful are schizophrenia spectrum phenotypes? Am J Psychiatry 1995, 152:1286–1290.

    PubMed  CAS  Google Scholar 

  8. Battaglia M, Torgersen S: Schizotypal disorder: at the crossroads of genetics and nosology. Acta Psychiatr Scandin 1996, 94:303–310.

    CAS  Google Scholar 

  9. Tsuang MT, Stone WS, Tarbox SI, Faraone SV: An integration of schizophrenia with schizotypy: identification of schizotaxia and implications for research on treatment and prevention. Schizophr Res 2002, 54:169–175. This report provides a recent formulation of similarities and differences between schizotaxia and SPD.

    Article  PubMed  Google Scholar 

  10. Kendler K: Diagnostic approaches to schizotypal personality disorder: a historical perspective. Schizophr Bull 1985, 11:538–553.

    PubMed  CAS  Google Scholar 

  11. Venables PH: Schizotypal status as a developmental stage in studies of risk for schizophrenia. In Schizotypal Personality. Edited by Raine A, Lencz T, Mednick SA. Cambridge: Cambridge University Press; 1995:107–131.

    Google Scholar 

  12. Torgersen S: Relationship of schizotypal personality disorder to schizophrenia: genetics. Schizophr Bull 1985, 11:554–563.

    PubMed  CAS  Google Scholar 

  13. McGuffin P, Thapar A: The genetics of personality disorder. Br J Psychiatry 1992, 160:12–23.

    Article  PubMed  CAS  Google Scholar 

  14. Gunderson JG, Siever LJ, Spaulding E: The search for a schizotype: crossing the border again. Arch Gen Psychiatry 1983, 40:15–22.

    PubMed  CAS  Google Scholar 

  15. Kendler KS, McGuire M, Gruenberg AM, Walsh D: Schizotypal symptoms and signs in the Roscommon family study. Arch Gen Psychiatry 1995, 52:296–303.

    PubMed  CAS  Google Scholar 

  16. Grove WM, Lebow BS, Clementz BA, et al.: Familial prevalence and coaggregation of schizotypy indicators: a multitrait family study. J Abnorm Psychol 1991, 100:15–121.

    Article  Google Scholar 

  17. Kremen WS, Seidman LJ, Pepple JR, et al.: Neuropsychological risk indicators for schizophrenia: a review of family studies. Schizophr Bull 1994, 20:103–119.

    PubMed  CAS  Google Scholar 

  18. Faraone SV, Seidman LJ, Kremen WS, et al.: Neuropsychological functioning among the nonpsychotic relatives of schizophrenic patients: a four-year follow-up study. J Abnorm Psychol 1999, 108:176–181.

    Article  PubMed  CAS  Google Scholar 

  19. Toomey R, Faraone SV, Seidman LJ, et al.: Association of vulnerability markers in relatives of schizophrenic patients. Schizophr Res 1998, 31:89–98.

    Article  PubMed  CAS  Google Scholar 

  20. Lyons MJ, Toomey R, Seidman LJ, et al.: Verbal learning and memory in relatives of schizophrenics: preliminary findings. Biol Psychiatry 1995, 37:750–753.

    Article  PubMed  CAS  Google Scholar 

  21. Faraone SV, Seidman LJ, Kremen WS, et al.: Neuropsychological functioning among the elderly nonpsychotic relatives of schizophrenic patients. Schizophr Res 1996, 21:27–31.

    Article  PubMed  CAS  Google Scholar 

  22. Kremen WS, Goldstein JM, Seidman LJ, et al.: Sex differences in neuropsychological function in nonpsychotic relatives of schizophrenic probands. Psychiatry Res 1997, 66:131–144.

    Article  PubMed  CAS  Google Scholar 

  23. Faraone SV, Seidman LJ, Kremen WS, et al.: Neuropsychological functioning among the nonpsychotic relatives of schizophrenic patients: the effect of genetic loading. Biol Psychiatry 2000, 48:120–126. This paper underscores the importance of genetic factors in contributing to cognitive deficits, which are a component of schizotaxia, in nonpsychotic, first-degree relatives of patients with schizophrenia.

    Article  PubMed  CAS  Google Scholar 

  24. Gottesman I.I: Psychopathology through a life-span genetic prism. Am Psychol 2001, 56:864–878. This is a useful update on the genetic and environmental etiology of schizophrenia, and is salient for an understanding of schizotaxia.

    Article  Google Scholar 

  25. Tsuang MT, Faraone SV: The case for heterogeneity in the etiology of schizophrenia. Schizophr Res 1995, 17:161–175.

    Article  PubMed  CAS  Google Scholar 

  26. Tsuang MT, Lyons MJ, Faraone SV: Heterogeneity of schizophrenia: conceptual models and analytic strategies. Br J Psychiatry 1990, 156:17–26.

    PubMed  CAS  Google Scholar 

  27. Chen WJ, Liu SK, Chang CJ, et al.: Sustained attention deficit and schizotypal personality features in nonpsychotic relatives of schizophrenic patients. Am J Psychiatry 1998, 155:1214–1220.

    PubMed  CAS  Google Scholar 

  28. Tsuang MT, Stone WS, Seidman LJ, et al.: Treatment of nonpsychotic relatives of patients with schizophrenia: four case studies. Biol Psychiatry 1999, 41:1412–1418. This was the first report to propose specific diagnostic criteria for schizotaxia, and to describe preliminary results of a treatment protocol.

    Article  Google Scholar 

  29. Tsuang MT, Stone WS, Tarbox SI, Faraone SV: Treatment of nonpsychotic relatives of patients with schizophrenia: a pilot study. Neuropsychiatr Genet 2003, In press.

  30. Stone WS, Faraone SV, Seidman LJ, et al.: Concurrent validation of schizotaxia: a pilot study. Biol Psychiatry 2001, 50:434–440. This paper was the first to report evidence of concurrent validation for the proposed syndrome of schizotaxia.

    Article  PubMed  CAS  Google Scholar 

  31. Andreasen NC: The Scale for the Assessment of Negative Symptoms (SANS). Iowa City: The University of Iowa; 1983.

    Google Scholar 

  32. Andreasen NC: The Scale for the Assessment of Positive Symptoms (SAPS). Iowa City: The University of Iowa; 1984.

    Google Scholar 

  33. Kendler KS, Lieberman JA, Walsh D: The structured interview for schizotypy (SIS): a preliminary report. Schizophr Bull 1989, 15:559–571.

    PubMed  CAS  Google Scholar 

  34. Nurnberger JI, Jr., Blehar MC, Kaufmann CA, et al.: Diagnostic interview for genetic studies: rationale, unique features, and training. Arch Gen Psychiatry 1994, 51:849–859.

    PubMed  Google Scholar 

  35. Cloninger CR, Kaufmann CA, Faraone SV, et al.: A genomewide search for schizophrenia susceptibility loci: the NIMH genetics initiative & Millennium consortium. Am J Medi Genet 1998, 81:275–281.

    Article  CAS  Google Scholar 

  36. Seidman LJ, Faraone SV, Goldstein JM, et al.: Reduced subcortical brain volumes in nonpsychotic siblings of schizophrenic patients: a pilot MRI Study. Am J Med Genet 1997, 74:507–514.

    Article  PubMed  CAS  Google Scholar 

  37. Seidman LJ, Breiter HC, Goldstein JM, et al.: Functional MRI of attention in relatives of schizophrenic patients. Schizophr Res 1997, 24:172.

    Article  Google Scholar 

  38. Seidman LJ, Faraone SV, Goldstein JM, et al.: Thalamic and amygdala-hippocampal volume reductions in first degree relatives of schizophrenic patients: an MRI-based morphometric analysis. Biol Psychiatry 1999, 46:941–954.

    Article  PubMed  CAS  Google Scholar 

  39. Faraone SV, Seidman LJ, Kremen WS, et al.: Structural brain abnormalities among relatives of patients with schizophrenia: implications for linkage studies. Schizophr Res 2003, In press.

  40. Braceland FJ, Meduna LJ, Vaichulis JA: Delayed action of insulin in schizophrenia. Am J Psychiatry 1945, 102:108–110.

    Google Scholar 

  41. Schimmelbusch W, Mueller P, Sheps J: The positive correlation between insulin resistance and duration of hospitalization in schizophrenia. Br J Psychiatry 1971: 118:429–436.

    Article  PubMed  CAS  Google Scholar 

  42. Mukherjee S, Schnur DB, Reddy R: Family history of type 2 diabetes in schizophrenic patients. Lancet 1989, 4:495.

    Article  Google Scholar 

  43. Popli AP, Konicki PE, Jurjus GJ, et al.: Clozapine and associated diabetes mellitus. J Clin Psychiatry 1997, 58:108–111.

    PubMed  CAS  Google Scholar 

  44. Hagg S, Joelsson L, Mjorndal T, et al.: Prevalence of diabetes and impaired glucose tolerance in patients treated with clozapine compared with patients treated with conventional depot neuroleptic medications. J Clin Psychiatry 1998, 59:294–299.

    PubMed  CAS  Google Scholar 

  45. Lindenmayer JP, Patel R: Olanzapine-induced ketoacidosis with diabetes mellitus [letter]. Am J Psychiatry 1999, 156:1471.

    PubMed  CAS  Google Scholar 

  46. Newcomer JW, Haupt DW, Fucetola R, et al.: Abnormalities in glucose regulation during antipsychotic treatment of schizophrenia. Arch Gen Psychiatry 2002, 59:337–345.

    Article  PubMed  CAS  Google Scholar 

  47. Stone WS, Faraone SV, Su J, et al.: Evidence for linkage between regulatory enzymes in glycolysis and schizophrenia in a multiplex sample. Neuropsychiatr Genet 2003, In press.

  48. Cloninger CR, Kaufmann CA, Faraone SV, et al.: Genome-wide search for schizophrenia susceptibility loci: the NIMH Genetics Initiative and Millennium Consortium. Am J Med Genet 1998, 81:275–281.

    Article  PubMed  CAS  Google Scholar 

  49. Hall JL, Gonder-Frederick LA, Chewning WW, et al.: Glucose enhancement of performance on memory tests in young and aged humans. Neuropsychologia 1989, 27:1129–1138.

    Article  PubMed  CAS  Google Scholar 

  50. Stone WS, Wenk GL, Olton DS, Gold PE: Poor blood glucose regulation predicts sleep and memory deficits in normal aged rats. J Gentrol Biol Sci 1990, 45:169–173.

    Google Scholar 

  51. Messier CA, Gagnon M: Effect of glucose, glucose regulation and word imagery value on human memory. Behav Neurosci 1999, 113:431–438.

    Article  PubMed  CAS  Google Scholar 

  52. McNay EC, Fries TM, Gold PE: Decreases in rat extracellular hippocampal glucose concentration associated with cognitive demand in a spatial task. Proc Natl Acad Sci U S A 2000, 97:2881–2885.

    Article  PubMed  CAS  Google Scholar 

  53. McNay EC, McCarty RC, Gold PE: Fluctuations in brain glucose concentration during behavioral testing: dissociation between brain areas and between brain and blood. Neurobiology Learning Memory 2001, 75:325–337.

    Article  CAS  Google Scholar 

  54. Newcomer JW, Craft S, Fucetola R, et al.: Glucose-induced increase in memory performance in patients with schizophrenia. Schizophr Bull 1999, 25:321–335.

    PubMed  CAS  Google Scholar 

  55. Stone WS, Seidman LJ, Wojcik JD, Green AJ: Glucose effects on cognition in schizophrenia. Schizophr Res 2003, In press.

  56. Stone WS, Tarbox SJ, Wencel H, Seidman LJ: Medial temporal lobe activation following glucose administration in schizophrenia: a fMRI study. Paper presented at the 32nd Annual Meeting of the Society for Neuroscience. Orlando, FL; November 2–7, 2002.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsuang, M.T., Stone, W.S., Gamma, F. et al. Schizotaxia: Current status and future directions. Curr Psychiatry Rep 5, 128–134 (2003). https://doi.org/10.1007/s11920-003-0029-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11920-003-0029-x

Keywords

Navigation