Skip to main content

Advertisement

Log in

Quantitative Sensory Testing of Neuropathic Pain Patients: Potential Mechanistic and Therapeutic Implications

  • Neuropathic Pain (R Raja, Section editor)
  • Published:
Current Pain and Headache Reports Aims and scope Submit manuscript

Abstract

Quantitative sensory testing (QST) is a widely accepted tool to investigate somatosensory changes in pain patients. Many different protocols have been developed in clinical pain research within recent years. In this review, we provide an overview of QST and tested neuroanatomical pathways, including peripheral and central structures. Based on research studies using animal and human surrogate models of neuropathic pain, possible underlying mechanisms of chronic pain are discussed. Clinically, QST may be useful for 1) the identification of subgroups of patients with different underlying pain mechanisms; 2) prediction of therapeutic outcomes; and 3) quantification of therapeutic interventions in pain therapy. Combined with sensory mapping, QST may provide useful information on the site of neural damage and on mechanisms of positive and negative somatosensory abnormalities. The use of QST in individual patients for diagnostic purposes leading to individualized therapy is an interesting concept, but needs further validation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Luana Colloca, Taylor Ludman, … Srinivasa N. Raja

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Cruccu G, Aminoff MJ, Curio G, et al. Recommendations for the clinical use of somatosensory-evoked potentials. Clin Neurophysiol. 2008;119:1705–19. This guideline by the International Federation of Clinical Neurophysiology (IFCN) provides standards for objective tests for the assessment of the somatosensory system.

    Google Scholar 

  2. Treede RD: Das somatosensorische System, in Physiologie des Menschen, Schmidt RF and F. L, Editors. 2007, Springer: Heidelberg. 297–323.

  3. •• Haanpaa M, Attal N, Backonja M, et al.: NeuPSIG guidelines on neuropathic pain assessment. Pain 2011:152:14–27. This review includes recent recommendations and guidelines for the assessment of neuropathic pain, comparing QST with clinical examination, questionnaires, electrophysiology, and skin biopsy.

  4. • Treede RD, Jensen TS, Campbell JN, et al. Neuropathic pain: redefinition and a grading system for clinical and research purposes. Neurology. 2008;70:1630–5. A new definition and a grading system of Neuropathic Pain are presented in this paper, emphasising the relevance of sensory signs in diagnosis.

  5. • Shy ME, Frohman EM, So YT, et al. Quantitative sensory testing: report of the therapeutics and technology assessment subcommittee of the American academy of neurology. Neurology. 2003;60:898–904. This paper presents the use of QST in diagnosis of peripheral neuropathies, especially in small fiber neuropathies.

  6. • Magerl W, Krumova EK, Baron R, et al.: Reference data for quantitative sensory testing (QST): refined stratification for age and a novel method for statistical comparison of group data. Pain 2010:151:598–605. This paper presents reference data and statistical testing methods for the QST protocol developed by the DFNS.

  7. Gruener G, Dyck PJ. Quantitative sensory testing: methodology, applications, and future directions. J Clin Neurophysiol. 1994;11:568–83.

    Article  PubMed  CAS  Google Scholar 

  8. O'Brien PC, Dyck PJ. Procedures for setting normal values. Neurology. 1995;45:17–23.

    PubMed  Google Scholar 

  9. •• Rolke R, Magerl W, Campbell KA, et al. Quantitative sensory testing: a comprehensive protocol for clinical trials. Eur J Pain. 2006;10:77–88. This paper reports on the rationale and the methods of a widespread QST protocol developed by the German Research Network on Neuropathic Pain (DFNS).

  10. Geber C, Klein T, Azad S, et al. Test-retest and interobserver reliability of quantitative sensory testing according to the protocol of the German Research Network on Neuropathic Pain (DFNS): a multi-centre study. Pain. 2011;152:548–56.

    Article  PubMed  Google Scholar 

  11. • Pigg M, Baad-Hansen L, Svensson P, et al.: Reliability of intraoral quantitative sensory testing (QST). Pain 2010:148:220–6. An intraoral version of the QST protocol according to the DFNS is presented in this paper.

  12. Geber C, Scherens A, Pfau D, et al. Procedure for certification of QST laboratories. Schmerz. 2009;23:65–9.

    Article  PubMed  CAS  Google Scholar 

  13. • Neziri AY, Curatolo M, Nuesch E, et al.: Factor analysis of responses to thermal, electrical, and mechanical painful stimuli supports the importance of multi-modal pain assessment. Pain 2011:152:1146–55. This paper refers to the importance of multimodal testing as sensory testing assesses statistically independent the function of the nociceptive system.

  14. Rader AJ. Surgical decompression in lower-extremity diabetic peripheral neuropathy. J Am Podiatr Med Assoc. 2005;95:446–50.

    PubMed  Google Scholar 

  15. Bansal V, Kalita J, Misra UK. Diabetic neuropathy. Postgrad Med J. 2006;82:95–100.

    Article  PubMed  CAS  Google Scholar 

  16. Cruccu G, Sommer C, Anand P, et al. EFNS guidelines on neuropathic pain assessment: revised 2009. Eur J Neurol. 2010;17:1010–8.

    Article  PubMed  CAS  Google Scholar 

  17. Yarnitsky D. Quantitative sensory testing. Muscle Nerve. 1997;20:198–204.

    Article  PubMed  CAS  Google Scholar 

  18. Fruhstorfer H, Lindblom U, Schmidt WC. Method for quantitative estimation of thermal thresholds in patients. J Neurol Neurosurg Psychiatry. 1976;39:1071–5.

    Article  PubMed  CAS  Google Scholar 

  19. • Dyck PJ, O'Brien PC, Kosanke JL, et al. A 4, 2, and 1 stepping algorithm for quick and accurate estimation of cutaneous sensation threshold. Neurology. 1993;43:1508–12. This paper compares speed and accuracy of several paradigms for threshold estimation and provides information on testing procedures and backgrounds of an earlier highly developed QST protocol (case IV system).

  20. Scherens A, Maier C, Haussleiter IS, et al. Painful or painless lower limb dysesthesias are highly predictive of peripheral neuropathy: comparison of different diagnostic modalities. Eur J Pain. 2009;13:711–8.

    Article  PubMed  Google Scholar 

  21. Tamburin S, Cacciatori C, Praitano ML, et al. Median nerve small- and large-fiber damage in carpal tunnel syndrome: a quantitative sensory testing study. J Pain. 2011;12:205–12.

    Article  PubMed  Google Scholar 

  22. • Hansson P, Backonja M, Bouhassira D. Usefulness and limitations of quantitative sensory testing: clinical and research application in neuropathic pain states. Pain. 2007;129:256–9. This review provides an overview over QST procedures compared with bedside tests and focuses on clinical application possibilities.

  23. •• Arendt-Nielsen L, Yarnitsky D: Experimental and clinical applications of quantitative sensory testing applied to skin, muscles and viscera. J Pain 2009:10:556–72. This review reports on QST methodology in different tissues, including skin, muscles, and viscera.

  24. Jaaskelainen SK, Teerijoki-Oksa T, Forssell H. Neurophysiologic and quantitative sensory testing in the diagnosis of trigeminal neuropathy and neuropathic pain. Pain. 2005;117:349–57.

    Article  PubMed  Google Scholar 

  25. Geber C, Baumgartner U, Fechir M, et al. Comparison of LEP and QST and their contribution to standard sensory diagnostic assessment of spinal lesions: a pilot study. Neurol Sci. 2011;32:401–10.

    Article  PubMed  Google Scholar 

  26. • Blankenburg M, Boekens H, Hechler T, et al.: Reference values for quantitative sensory testing in children and adolescents: developmental and gender differences of somatosensory perception. Pain 2010:149:76–88. This study demonstrates QST and presents normative values in children.

  27. Rolke R, Baron R, Maier C, et al. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): standardized protocol and reference values. Pain. 2006;123:231–43.

    Article  PubMed  CAS  Google Scholar 

  28. Backonja MM, Walk D, Edwards RR, et al. Quantitative sensory testing in measurement of neuropathic pain phenomena and other sensory abnormalities. Clin J Pain. 2009;25:641–7.

    Article  PubMed  Google Scholar 

  29. Ziegler EA, Magerl W, Meyer RA, et al. Secondary hyperalgesia to punctate mechanical stimuli. Central sensitization to A-fibre nociceptor input. Brain. 1999;122(Pt 12):2245–57.

    Article  PubMed  Google Scholar 

  30. Magerl W, Fuchs PN, Meyer RA, et al. Roles of capsaicin-insensitive nociceptors in cutaneous pain and secondary hyperalgesia. Brain. 2001;124:1754–64.

    Article  PubMed  CAS  Google Scholar 

  31. Fruhstorfer H. Thermal sensibility changes during ischemic nerve block. Pain. 1984;20:355–61.

    Article  PubMed  CAS  Google Scholar 

  32. Treede RD, Meyer RA, Raja SN, et al. Peripheral and central mechanisms of cutaneous hyperalgesia. Prog Neurobiol. 1992;38:397–421.

    Article  PubMed  CAS  Google Scholar 

  33. Meyer RA, Campbell JN. Myelinated nociceptive afferents account for the hyperalgesia that follows a burn to the hand. Science. 1981;213:1527–9.

    Article  PubMed  CAS  Google Scholar 

  34. LaMotte RH, Thalhammer JG, Robinson CJ. Peripheral neural correlates of magnitude of cutaneous pain and hyperalgesia: a comparison of neural events in monkey with sensory judgments in human. J Neurophysiol. 1983;50:1–26.

    PubMed  CAS  Google Scholar 

  35. Rolke R, Andrews Campbell K, Magerl W, et al. Deep pain thresholds in the distal limbs of healthy human subjects. Eur J Pain. 2005;9:39–48.

    Article  PubMed  CAS  Google Scholar 

  36. • Woolf CJ, Mannion RJ. Neuropathic pain: aetiology, symptoms, mechanisms, and management. Lancet. 1999;353:1959–64. This review gives an overview over pathophysiological mechanisms of neuropathic pain and therapeutic targets and argues for mechanism-based rather than diagnosisbased classification of neuropathic pain.

  37. • Woolf CJ: Central sensitization: implications for the diagnosis and treatment of pain. Pain 2011:152:S2-15. This review reports on mechanisms of central sensitization and other mechanisms of persistent pain.

  38. Yarnitsky D, Ochoa JL. Release of cold-induced burning pain by block of cold-specific afferent input. Brain. 1990;113(Pt 4):893–902.

    Article  PubMed  Google Scholar 

  39. Susser E, Sprecher E, Yarnitsky D. Paradoxical heat sensation in healthy subjects: peripherally conducted by A delta or C fibres? Brain. 1999;122(Pt 2):239–46.

    Article  PubMed  Google Scholar 

  40. Hansen C, Hopf HC, Treede RD. Paradoxical heat sensation in patients with multiple sclerosis. Evidence for a supraspinal integration of temperature sensation. Brain. 1996;119(Pt 5):1729–36.

    Article  PubMed  Google Scholar 

  41. Torebjork HE, Lundberg LE, LaMotte RH. Central changes in processing of mechanoreceptive input in capsaicin-induced secondary hyperalgesia in humans. J Physiol. 1992;448:765–80.

    PubMed  CAS  Google Scholar 

  42. Treede RD. Hyperalgesia and allodynia: taxonomy, assessment, and mechansims. In: Brune K, Handwerker HO, editors. Hyperalgesia: molecular mechanisms and clincal implications. Seattle: IASP; 2004.

    Google Scholar 

  43. Simone DA, Sorkin LS, Oh U, et al. Neurogenic hyperalgesia: central neural correlates in responses of spinothalamic tract neurons. J Neurophysiol. 1991;66:228–46.

    PubMed  CAS  Google Scholar 

  44. LaMotte RH, Shain CN, Simone DA, et al. Neurogenic hyperalgesia: psychophysical studies of underlying mechanisms. J Neurophysiol. 1991;66:190–211.

    PubMed  CAS  Google Scholar 

  45. Blumenstiel K, Gerhardt A, Rolke R, et al. Quantitative sensory testing profiles in chronic back pain are distinct from those in fibromyalgia. Clin J Pain. 2011;27:682–90.

    Article  PubMed  Google Scholar 

  46. Devor M, Wall PD, Catalan N. Systemic lidocaine silences ectopic neuroma and DRG discharge without blocking nerve conduction. Pain. 1992;48:261–8.

    Article  PubMed  CAS  Google Scholar 

  47. • Maier C, Baron R, Tolle TR, et al.: Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): somatosensory abnormalities in 1236 patients with different neuropathic pain syndromes. Pain 2010:150:439–50. QST profiles across different neuropathic pain diagnoses reveal a combination of signs of sensory gain and loss in most individuals.

  48. • Scholz J, Mannion RJ, Hord DE, et al.: A novel tool for the assessment of pain: validation in low back pain. PLoS Med 2009:6:e1000047. This paper gives evidence of the interpretation of QST and other tests as predictive tool for low back pain.

  49. Jensen TS, Baron R. Translation of symptoms and signs into mechanisms in neuropathic pain. Pain. 2003;102:1–8.

    Article  PubMed  Google Scholar 

  50. • Serra J: Sensory profiles: the cliche and the challenge. Pain 2010:150:384–5. This commentary represents a critical statement on the future role of QST in clinical testing.

  51. Aasvang EK, Brandsborg B, Jensen TS, et al. Heterogeneous sensory processing in persistent postherniotomy pain. Paint. 2010;150:237–42.

    Article  Google Scholar 

  52. Jensen TS, Hansson PT. Chapter 34 Classification of neuropathic pain syndromes based on symptoms and signs. Handb Clin Neurol. 2006;81:517–26.

    Article  PubMed  Google Scholar 

  53. Geber C, Magerl W, Fondel R, et al. Numbness in clinical and experimental pain–a cross-sectional study exploring the mechanisms of reduced tactile function. Pain. 2008;139:73–81.

    Article  PubMed  Google Scholar 

  54. Eberle T, Doganci B, Kramer HH, et al. Warm and cold complex regional pain syndromes: differences beyond skin temperature? Neurology. 2009;72:505–12.

    Article  PubMed  CAS  Google Scholar 

  55. Bachmann CG, Rolke R, Scheidt U, et al. Thermal hypoaesthesia differentiates secondary restless legs syndrome associated with small fibre neuropathy from primary restless legs syndrome. Brain. 2010;133:762–70.

    Article  PubMed  Google Scholar 

  56. Pfau DB, Rolke R, Nickel R, et al. Somatosensory profiles in subgroups of patients with myogenic temporomandibular disorders and Fibromyalgia Syndrome. Pain. 2009;147:72–83.

    Article  PubMed  Google Scholar 

  57. Lang PM, Schober GM, Rolke R, et al. Sensory neuropathy and signs of central sensitization in patients with peripheral arterial disease. Pain. 2006;124:190–200.

    Article  PubMed  Google Scholar 

  58. Aasvang EK, Gmaehle E, Hansen JB, et al. Predictive risk factors for persistent postherniotomy pain. Anesthesiology. 2010;112:957–69.

    Article  PubMed  Google Scholar 

  59. Said-Yekta S, Smeets R, Esteves-Oliveira M, et al.: Verification of Nerve Integrity After Surgical Intervention Using Quantitative Sensory Testing. J Oral Maxillofac Surg 2011.

  60. Attal N, Bouhassira D, Gautron M, et al. Thermal hyperalgesia as a marker of oxaliplatin neurotoxicity: a prospective quantified sensory assessment study. Pain. 2009;144:245–52.

    Article  PubMed  CAS  Google Scholar 

  61. Ducreux D, Attal N, Parker F, et al. Mechanisms of central neuropathic pain: a combined psychophysical and fMRI study in syringomyelia. Brain. 2006;129:963–76.

    Article  PubMed  Google Scholar 

  62. Eisenberg E, Backonja MM, Fillingim RB, et al. Quantitative sensory testing for spinal cord stimulation in patients with chronic neuropathic pain. Pain Pract. 2006;6:161–5.

    Article  PubMed  Google Scholar 

  63. Yarnitsky D, Granot M, Nahman-Averbuch H, Khamaisi M, Granovsky Y. Conditioned pain modulation (CPM) predicts duloxetine efficacy in painful diabetic neuropathy. Pain. 2012. doi:10.1016/j.pain.2012.02.021.

  64. Cruccu G, Anand P, Attal N, et al. EFNS guidelines on neuropathic pain assessment. Eur J Neurol. 2004;11:153–62.

    Article  PubMed  CAS  Google Scholar 

  65. Stiasny-Kolster K, Magerl W, Oertel WH, et al. Static mechanical hyperalgesia without dynamic tactile allodynia in patients with restless legs syndrome. Brain. 2004;127:773–82.

    Article  PubMed  CAS  Google Scholar 

  66. Finnerup NB, Biering-Sorensen F, Johannesen IL, et al. Intravenous lidocaine relieves spinal cord injury pain: a randomized controlled trial. Anesthesiology. 2005;102:1023–30.

    Article  PubMed  CAS  Google Scholar 

  67. Gormsen L, Finnerup NB, Almqvist PM, et al. The efficacy of the AMPA receptor antagonist NS1209 and lidocaine in nerve injury pain: a randomized, double-blind, placebo-controlled, three-way crossover study. Anesth Analg. 2009;108:1311–9.

    Article  PubMed  CAS  Google Scholar 

  68. Yucel A, Ozyalcin S, Koknel Talu G, et al. The effect of venlafaxine on ongoing and experimentally induced pain in neuropathic pain patients: a double blind, placebo controlled study. Eur J Pain. 2005;9:407–16.

    Article  PubMed  CAS  Google Scholar 

  69. Walk D. Role of skin biopsy in the diagnosis of peripheral neuropathic pain. Curr Pain Headache Rep. 2009;13:191–6.

    Article  PubMed  Google Scholar 

  70. Siao P, Cros DP. Quantitative sensory testing. Phys Med Rehabil Clin N Am. 2003;14:261–86.

    Article  PubMed  Google Scholar 

  71. Arezzo J, Bolton C, Boulton A, et al. Quantitative sensory testing: a consensus report from the Peripheral Neuropathy Association. Neurology. 1993;43:1050–2.

    Google Scholar 

  72. • Dyck PJ, Kennedy WR, Kesserwani H, et al. Limitations of quantitative sensory testing when patients are biased toward a bad outcome. Neurology. 1998;50:1213. This review reports on limitations of QST.

    PubMed  CAS  Google Scholar 

  73. Leffler AS, Hansson P. Painful traumatic peripheral partial nerve injury-sensory dysfunction profiles comparing outcomes of bedside examination and quantitative sensory testing. Eur J Pain. 2008;12:397–402.

    Article  PubMed  Google Scholar 

  74. Woolf CJ, Bennett GJ, Doherty M, et al. Towards a mechanism-based classification of pain? Pain. 1998;77:227–9.

    Article  PubMed  CAS  Google Scholar 

  75. Geber C, Birklein F. Dissecting post-herniotomy pain–scratching the surface? Pain. 2010;150:215–6.

    Article  PubMed  CAS  Google Scholar 

  76. Treede RD: Funktionsprüfung der nozizeptiven Bahnen durch SEP nach schmerzhaften Laser-Hitzereizen, in Evozierte Potenziale, Hess CW, et al., Editors. 2005, Springer: Heidelberg.599-621.

Download references

Disclosures

The authors work in a quantitative sensory testing training center of the German Research Network on Neuropathic Pain, receiving payment for training sessions.

Dr. Doreen B. Pfau has received honoraria and travel expense compensation from Pfizer. C. Geber: none. Dr. Frank Birklein has served on the boards of Eli Lilly & Co., Pfizer, and Astellas Pharma; has received grants from Eli Lilly & Co.; has received honoraria from Eli Lilly & Co., Pfizer, Shire Pharmaceuticals, and Grünenthal GmbH; and has received travel expense compensation from Eli Lilly & Co. and Pfizer. Dr. Rolf-Detlef Treede has served as a consultant for Astellas Pharma, Boehringer Ingelheim, Galderma, Grünenthal GmbH, Eli Lilly & Co., Dr. Kade Merz, Mundipharma, Nycomed, and Pfizer; has been issued patents on behalf of Merz; and has received travel expense compensation from Boehringer Ingelheim, Grünenthal GmbH, Mundipharma, and Pfizer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doreen B. Pfau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfau, D.B., Geber, C., Birklein, F. et al. Quantitative Sensory Testing of Neuropathic Pain Patients: Potential Mechanistic and Therapeutic Implications. Curr Pain Headache Rep 16, 199–206 (2012). https://doi.org/10.1007/s11916-012-0261-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11916-012-0261-3

Keywords

Navigation