Skip to main content

Advertisement

Log in

Bone and the Innate Immune System

  • Osteoimmunology (D Novack and G Schett, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

The immune system and bone are intimately linked with significant physical and functionally related interactions. The innate immune system functions as an immediate response system to initiate protections against local challenges such as pathogens and cellular damage. Bone is a very specific microenvironment, in which infectious attack is less common but repair and regeneration are ongoing and important functions. Thus, in the bone the primary goal of innate immune and bone interactions is to maintain tissue integrity. Innate immune signals are critical for removal of damaged and apoptotic cells and to stimulate normal tissue repair and regeneration. In this review we focus on the innate immune mechanisms that function to regulate bone homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance.

  1. Mori G, D'Amelio P, Faccio R, Brunetti G. The interplay between the bone and the immune system. Clin Dev Immunol. 2013:720504.

  2. Takayanagi H. Osteoimmunology and the effects of the immune system on bone. Nat Rev Rheumatol. 2009;5:667–76.

    Article  CAS  PubMed  Google Scholar 

  3. Takayanagi H. New developments in osteoimmunology. Nat Rev Rheumatol. 2012;8:684–9.

    Article  CAS  PubMed  Google Scholar 

  4. Jones D, Glimche LH, Aliprantis AO. Osteoimmunology at the nexus of arthritis, osteoporosis, cancer, and infection. J Clin Invest. 2011;121:2534–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pacifici R. Role of T cells in ovariectomy induced bone loss–revisited. J Bone Miner Res. 2012;27:231–9.

    Article  PubMed  Google Scholar 

  6. Baker-LePain JC, Nakamura MC, Lane NE. Effects of inflammation on bone: an update. Curr Opin Rheumatol. 2011;23:389–95.

    Article  PubMed  Google Scholar 

  7. Braun T, Zwerina J. Positive regulators of osteoclastogenesis and bone resorption in rheumatoid arthritis. Arthritis Res Ther. 2011;13:235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhao B, Ivashkiv LB. Negative regulation of osteoclastogenesis and bone resorption by cytokines and transcriptional repressors. Arthritis Res Ther. 2011;13:234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Soderstrom K, Stein E, Colmenero P, Purath U, Muller-Ladner U, de Matos CT, et al. Natural killer cells trigger osteoclastogenesis and bone destruction in arthritis. Proc Natl Acad Sci U S A. 2010;107:13028–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chakravarti A, Raquil MA, Tessier P, Poubelle PE. Surface RANKL of toll-like receptor 4-stimulated human neutrophils activates osteoclastic bone resorption. Blood. 2009;114:1633–44.

    Article  CAS  PubMed  Google Scholar 

  11. Charles JF, Hsu LY, Niemi EC, Weiss A, Aliprantis AO, Nakamura MC. Inflammatory arthritis increases mouse osteoclast precursors with myeloid suppressor function. J Clin Invest. 2012;122:4592–605. First demonstration of shared relationship of osteoclast precursors and myeloid dervied suppressor cells.

  12. Jacome-Galarza CE, Lee SK, Lorenzo JA, Aguila HL. Identification, characterization, and isolation of a common progenitor for osteoclasts, macrophages, and dendritic cells from murine bone marrow and periphery. J Bone Miner Res. 2013;28:1203–13.

    Article  CAS  PubMed  Google Scholar 

  13. Rivollier A, Mazzorana M, Tebib J, Piperno M, Aitsiselmi T, Rabourdin-Combe C, et al. Immature dendritic cell transdifferentiation into osteoclasts: a novel pathway sustained by the rheumatoid arthritis microenvironment. Blood. 2004;104:4029–37.

    Article  CAS  PubMed  Google Scholar 

  14. Alnaeeli M, Penninger JM, Teng YT. Immune interactions with CD4+ T cells promote the development of functional osteoclasts from murine CD11c + dendritic cells. J Immunol. 2006;177:3314–26.

    CAS  PubMed  Google Scholar 

  15. Wakkach A, Mansour A, Dacquin R, Coste E, Jurdic P, Carle GF, et al. Bone marrow microenvironment controls the in vivo differentiation of murine dendritic cells into osteoclasts. Blood. 2008;112:5074–83.

    Article  CAS  PubMed  Google Scholar 

  16. McKenna HJ, Stocking KL, Miller RE, Brasel K, De Smedt T, Maraskovsky E, et al. Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood. 2000;95:3489–97.

    CAS  PubMed  Google Scholar 

  17. Tucci M, Stucci S, Savonarola A, Ciavarella S, Cafforio P, Dammacco F, et al. Immature dendritic cells in multiple myeloma are prone to osteoclast-like differentiation through interleukin-17A stimulation. Br J Haematol. 2013;161:821–31.

    Article  CAS  PubMed  Google Scholar 

  18. Bar-Shavit Z. Taking a toll on the bones: regulation of bone metabolism by innate immune regulators. Autoimmunity. 2008;41:195–203.

    Article  CAS  PubMed  Google Scholar 

  19. Takami M, Kim N, Rho J, Choi Y. Stimulation by toll-like receptors inhibits osteoclast differentiation. J Immunol. 2002;169:1516–23.

    CAS  PubMed  Google Scholar 

  20. Seeling M, Hillenhoff U, David JP, Schett G, Tuckermann J, Lux A, et al. Inflammatory monocytes and Fcgamma receptor IV on osteoclasts are critical for bone destruction during inflammatory arthritis in mice. Proc Natl Acad Sci U S A. 2013;110:10729–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu Y, Humphrey MB, Nakamura MC. Osteoclasts—the innate immune cells of the bone. Autoimmunity. 2008;41:183–94.

    Article  PubMed  Google Scholar 

  22. Boyce BF, Rosenberg E, de Papp AE, le Duong T. The osteoclast, bone remodelling, and treatment of metabolic bone disease. Eur J Clin Invest. 2012;42:1332–41.

    Article  CAS  PubMed  Google Scholar 

  23. Del Fattore A, Cappariello A, Teti A. Genetics, pathogenesis and complications of osteopetrosis. Bone. 2008;42:19–29.

    Article  PubMed  Google Scholar 

  24. Chazaud B. Macrophages: supportive cells for tissue repair and regeneration. Immunobiology. 2013.

  25. Deretic V, Saitoh T, Akira S. Autophagy in infection, inflammation and immunity. Nat Rev Immunol. 2013;13:722–37.

    Article  CAS  PubMed  Google Scholar 

  26. Chang MK, Raggatt LJ, Alexander KA, Kuliwaba JS, Fazzalari NL, Schroder K, et al. Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J Immunol. 2008;181:1232–44. First demonstration of the "osteomac" cells as tissue resident macrophages in the bone.

    Google Scholar 

  27. Alexander KA, Chang MK, Maylin ER, Kohler T, Muller R, Wu AC, et al. Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model. J Bone Miner Res. 2011;26:1517–32.

    Article  CAS  PubMed  Google Scholar 

  28. Jilka RL, Weinstein RS, Bellido T, Parfitt AM, Manolagas SC. Osteoblast programmed cell death (apoptosis): modulation by growth factors and cytokines. J Bone Miner Res. 1998;13:793–802.

    Article  CAS  PubMed  Google Scholar 

  29. Hochreiter-Hufford A, Ravichandran KS. Clearing the dead: apoptotic cell sensing, recognition, engulfment, and digestion. Cold Spring Harb Perspect Biol. 2013;5:a008748.

    Article  PubMed  Google Scholar 

  30. Lin YL, de Villiers WJ, Garvy B, Post SR, Nagy TR, Safadi FF, et al. The effect of class a scavenger receptor deficiency in bone. J Biol Chem. 2007;282:4653–60.

    Article  CAS  PubMed  Google Scholar 

  31. Takemura K, Sakashita N, Fujiwara Y, Komohara Y, Lei X, Ohnishi K, et al. Class A scavenger receptor promotes osteoclast differentiation via the enhanced expression of receptor activator of NF-kappaB (RANK). Biochem Biophys Res Comm. 2010;391:1675–80.

    Article  CAS  PubMed  Google Scholar 

  32. Kevorkova O, Martineau C, Martin-Falstrault L, Sanchez-Dardon J, Brissette L, Moreau R. Low-bone-mass phenotype of deficient mice for the Cluster of Differentiation 36 (CD36). PloS One. 2013;8:e77701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jilka RL, Noble B, Weinstein RS. Osteocyte apoptosis. Bone. 2013;54:264–71.

    Article  PubMed  Google Scholar 

  34. Kennedy OD, Herman BC, Laudier DM, Majeska RJ, Sun HB, Schaffler MB. Activation of resorption in fatigue-loaded bone involves both apoptosis and active pro-osteoclastogenic signaling by distinct osteocyte populations. Bone. 2012;50:1115–22.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Verborgt O, Gibson GJ, Schaffler MB. Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo. J Bone Miner Res. 2000;15:60–7.

    Article  CAS  PubMed  Google Scholar 

  36. Cardoso L, Herman BC, Verborgt O, Laudier D, Majeska RJ, Schaffler MB. Osteocyte apoptosis controls activation of intracortical resorption in response to bone fatigue. J Bone Miner Res. 2009;24:597–605.

    Article  CAS  PubMed  Google Scholar 

  37. Noble BS, Peet N, Stevens HY, Brabbs A, Mosley JR, Reilly GC, et al. Mechanical loading: biphasic osteocyte survival and targeting of osteoclasts for bone destruction in rat cortical bone. Am J Physiol Cell Physiol. 2003;284:C934–43.

    Article  CAS  PubMed  Google Scholar 

  38. Aguirre JI, Plotkin LI, Stewart SA, Weinstein RS, Parfitt AM, Manolagas SC, et al. Osteocyte apoptosis is induced by weightlessness in mice and precedes osteoclast recruitment and bone loss. J Bone Miner Res. 2006;21:605–15.

    Article  PubMed  Google Scholar 

  39. Cabahug PCLD. Kennedy OD. Tuthill A, Judex S, Shaffler MB. Inhibition of osteocyte apoptosis prevents trabecular bone loss after unloading of mouse long bone. Orthopaedic Research Society: Majeska RJ; 2013.

    Google Scholar 

  40. Emerton KB, Hu B, Woo AA, Sinofsky A, Hernandez C, Majeska RJ, et al. Osteocyte apoptosis and control of bone resorption following ovariectomy in mice. Bone. 2010;46:577–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nakashima T, Hayashi M, Fukunaga T, Kurata K, Oh-Hora M, Feng JQ, et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nature Med. 2011;17:1231–4. First demonstration of the importance of osteocyte produced RANKL in bone turnover regulation.

  42. Xiong J, Onal M, Jilka RL, Weinstein RS, Manolagas SC, O'Brien CA. Matrix-embedded cells control osteoclast formation. Nature Med. 2011;17:1235–41. First demonstration of the importance of osteocyte produced RANKL in bone turnover regulation and demonstration the bone loss with skeletal unloading requires osteocyte produced RANKL

  43. Elliott MR, Ravichandran KS. Clearance of apoptotic cells: implications in health and disease. J Cell Biol. 2010;189:1059–70.

    Article  CAS  PubMed  Google Scholar 

  44. Harre U, Keppeler H, Ipseiz N, Derer A, Poller K, Aigner M, et al. Moonlighting osteoclasts as undertakers of apoptotic cells. Autoimmunity. 2012;45:612–9.

    Article  CAS  PubMed  Google Scholar 

  45. Bronckers AL, Goei W, van Heerde WL, Dumont EA, Reutelingsperger CP, van den Eijnde SM. Phagocytosis of dying chondrocytes by osteoclasts in the mouse growth plate as demonstrated by annexin-V labelling. Cell Tissue Res. 2000;301:267–72.

    Article  CAS  PubMed  Google Scholar 

  46. Kaczmarek A, Vandenabeele P, Krysko DV. Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity. 2013;38:209–23.

    Article  CAS  PubMed  Google Scholar 

  47. Moriwaki K, Chan FK. RIP3: a molecular switch for necrosis and inflammation. Genes Dev. 2013;27:1640–9.

    Article  CAS  PubMed  Google Scholar 

  48. Chan FK. Fueling the flames: mammalian programmed necrosis in inflammatory diseases. Cold Spring Harb Perspect Biol. 2012;4.

  49. Tang D, Kang R, Coyne CB, Zeh HJ, Lotze MT. PAMPs and DAMPs: signal 0 s that spur autophagy and immunity. Immunol Rev. 2012;249:158–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Einhorn TA, Majeska RJ, Rush EB, Levine PM, Horowitz MC. The expression of cytokine activity by fracture callus. J Bone Miner Res. 1995;10:1272–81.

    Article  CAS  PubMed  Google Scholar 

  51. Gerstenfeld LC, Cho TJ, Kon T, Aizawa T, Tsay A, Fitch J, et al. Impaired fracture healing in the absence of TNF-alpha signaling: the role of TNF-alpha in endochondral cartilage resorption. J Bone Miner Res. 2003;18:1584–92.

    Article  CAS  PubMed  Google Scholar 

  52. Wallace A, Cooney TE, Englund R, Lubahn JD. Effects of interleukin-6 ablation on fracture healing in mice. J Orthopaed Res. 2011;29:1437–42.

    Article  CAS  Google Scholar 

  53. Schoengraf P, Lambris JD, Recknagel S, Kreja L, Liedert A, Brenner RE, et al. Does complement play a role in bone development and regeneration? Immunobiology. 2013;218:1–9.

    Article  CAS  PubMed  Google Scholar 

  54. Ignatius A, Schoengraf P, Kreja L, Liedert A, Recknagel S, Kandert S, et al. Complement C3a and C5a modulate osteoclast formation and inflammatory response of osteoblasts in synergism with IL-1beta. J Cell Biochem. 2011;112:2594–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tu Z, Bu H, Dennis JE, Lin F. Efficient osteoclast differentiation requires local complement activation. Blood. 2010;116:4456–63.

    Article  CAS  PubMed  Google Scholar 

  56. Claes L, Recknagel S, Ignatius A. Fracture healing under healthy and inflammatory conditions. Nat Rev Rheumatol. 2012;8:133–43.

    Article  CAS  PubMed  Google Scholar 

  57. Taniguchi N, Yoshida K, Ito T, Tsuda M, Mishima Y, Furumatsu T, et al. Stage-specific secretion of HMGB1 in cartilage regulates endochondral ossification. Mol Cell Biol. 2007;27:5650–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Charoonpatrapong K, Shah R, Robling AG, Alvarez M, Clapp DW, Chen S, et al. HMGB1 expression and release by bone cells. J Cell Physiol. 2006;207:480–90.

    Article  CAS  PubMed  Google Scholar 

  59. Yang J, Shah R, Robling AG, Templeton E, Yang H, Tracey KJ, et al. HMGB1 is a bone-active cytokine. J Cell Physiol. 2008;214:730–9.

    Article  CAS  PubMed  Google Scholar 

  60. Zhou Z, Han JY, Xi CX, Xie JX, Feng X, Wang CY, et al. HMGB1 regulates RANKL-induced osteoclastogenesis in a manner dependent on RAGE. J Bone Miner Res. 2008;23:1084–96.

    Article  CAS  PubMed  Google Scholar 

  61. Hamada Y, Kitazawa S, Kitazawa R, Kono K, Goto S, Komaba H, et al. The effects of the receptor for advanced glycation end products (RAGE) on bone metabolism under physiological and diabetic conditions. Endocrine. 2010;38:369–76.

    Article  CAS  PubMed  Google Scholar 

  62. Ding KH, Wang ZZ, Hamrick MW, Deng ZB, Zhou L, Kang B, et al. Disordered osteoclast formation in RAGE-deficient mouse establishes an essential role for RAGE in diabetes related bone loss. Biochem Biophys Res Comm. 2006;340:1091–7.

    Article  CAS  PubMed  Google Scholar 

  63. Zhou Z, Immel D, Xi CX, Bierhaus A, Feng X, Mei L, et al. Regulation of osteoclast function and bone mass by RAGE. J Exp Med. 2006;203:1067–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Redlich K, Smolen JS. Inflammatory bone loss: pathogenesis and therapeutic intervention. Nat Rev Drug Discov. 2012;11:234–50.

    Article  CAS  PubMed  Google Scholar 

  65. Weitzmann MN, Pacifici R. Estrogen deficiency and bone loss: an inflammatory tale. J Clin Invest. 2006;116:1186–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ollivere B, Wimhurst JA, Clark IM, Donell ST. Current concepts in osteolysis. J Bone Joint Surg Br. 2012;94:10–5.

    Article  CAS  PubMed  Google Scholar 

  67. Abu-Amer Y, Darwech I, Clohisy JC. Aseptic loosening of total joint replacements: mechanisms underlying osteolysis and potential therapies. Arthritis Res Ther. 2007;9 Suppl 1:S6.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Goodman SB, Gibon E, Yao Z. The basic science of periprosthetic osteolysis. Instr Course Lect. 2013;62:201–6.

    PubMed  PubMed Central  Google Scholar 

  69. Hallab NJ, Jacobs JJ. Biologic effects of implant debris. Bull NYU Hosp Jt Dis. 2009;67:182–8.

    PubMed  Google Scholar 

  70. Burton L, Paget D, Binder NB, Bohnert K, Nestor BJ, Sculco TP, et al. Orthopedic wear debris mediated inflammatory osteolysis is mediated in part by NALP3 inflammasome activation. J Orthopaed Res. 2013;31:73–80. Demonstration that particle induced osteolysis is mediated by inflammasome activation.

  71. Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006;440:237–41.

    Article  CAS  PubMed  Google Scholar 

  72. Valladares RD, Nich C, Zwingenberger S, Li C, Swank KR, Gibon E, et al. Toll-like receptors-2 and 4 are overexpressed in an experimental model of particle-induced osteolysis. J Biomed Mater Res. Part A. 2013.

  73. Frick C, Dietz AC, Merritt K, Umbreit TH, Tomazic-Jezic VJ. Effects of prosthetic materials on the host immune response: evaluation of polymethyl-methacrylate (PMMA), polyethylene (PE), and polystyrene (PS) particles. J Long-Term Eff Med Implants. 2006;16:423–33.

    Article  CAS  PubMed  Google Scholar 

  74. Atkins GJ, Haynes DR, Howie DW, Findlay DM. Role of polyethylene particles in peri-prosthetic osteolysis: a review. World J Orthop. 2011;2:93–101.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock KL, et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol. 2008;9:847–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ortega-Gomez A, Perretti M, Soehnlein O. Resolution of inflammation: an integrated view. EMBO Mol Med. 2013;5:661–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tang Y, Wu X, Lei W, Pang L, Wan C, Shi Z, et al. TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med. 2009;15:757–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wan M, Li C, Zhen G, Jiao K, He W, Jia X, et al. Injury-activated transforming growth factor beta controls mobilization of mesenchymal stem cells for tissue remodeling. Stem Cells. 2012;30:2498–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Molina PE. Neurobiology of the stress response: contribution of the sympathetic nervous system to the neuroimmune axis in traumatic injury. Shock. 2005;24:3–10.

    Article  CAS  PubMed  Google Scholar 

  80. Xing L, Schwarz EM, Boyce BF. Osteoclast precursors, RANKL/RANK, and immunology. Immunol Rev. 2005;208:19–29.

    Article  CAS  PubMed  Google Scholar 

  81. Sawant A, Deshane J, Jules J, Lee CM, Harris BA, Feng X, et al. Myeloid-derived suppressor cells function as novel osteoclast progenitors enhancing bone loss in breast cancer. Cancer Res. 2013;73:672–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhuang J, Zhang J, Lwin ST, Edwards JR, Edwards CM, Mundy GR, et al. Osteoclasts in multiple myeloma are derived from Gr-1 + CD11b + myeloid-derived suppressor cells. PloS One. 2012;7:e48871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Grassi F, Manferdini C, Cattini L, Piacentini A, Gabusi E, Facchini A, et al. T cell suppression by osteoclasts in vitro. J Cell Physiol. 2011;226:982–90.

    Article  CAS  PubMed  Google Scholar 

  84. Funderburk SF, Marcellino BK, Yue Z. Cell "self-eating" (autophagy) mechanism in Alzheimer's disease. Mt Sinai J Med. 2010;77:59–68.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Bincoletto C, Bechara A, Pereira GJ, Santos CP, Antunes F. Peixoto da-Silva J, et al. Interplay between apoptosis and autophagy, a challenging puzzle: new perspectives on antitumor chemotherapies. Chem Biol Interact. 2013;206:279–88.

    Article  CAS  PubMed  Google Scholar 

  86. Onal M, Piemontese M, Xiong J, Wang Y, Han L, Ye S, et al. Suppression of autophagy in osteocytes mimics skeletal aging. J Biol Chem. 2013;288:17432–40.

    Article  CAS  PubMed  Google Scholar 

  87. Xia X, Kar R, Gluhak-Heinrich J, Yao W, Lane NE, Bonewald LF, et al. Glucocorticoid-induced autophagy in osteocytes. J Bone Miner Res. 2010;25:2479–88.

    Article  CAS  PubMed  Google Scholar 

  88. Jia J, Yao W, Guan M, Dai W, Shahnazari M, Kar R, et al. Glucocorticoid dose determines osteocyte cell fate. FASEB J. 2011;25:3366–76.

    Article  CAS  PubMed  Google Scholar 

  89. DeSelm CJ, Miller BC, Zou W, Beatty WL, van Meel E, Takahata Y, et al. Autophagy proteins regulate the secretory component of osteoclastic bone resorption. Dev Cell. 2011;21:966–74. First demonstration of the role for autophagy proteins in osteoclast development.

  90. Komatsu M, Waguri S, Koike M, Sou YS, Ueno T, Hara T, et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell. 2007;131:1149–63.

    Article  CAS  PubMed  Google Scholar 

  91. Laurin N, Brown JP, Morissette J, Raymond V. Recurrent mutation of the gene encoding sequestosome 1 (SQSTM1/p62) in Paget disease of bone. Am J Human Genet. 2002;70:1582–8.

    Article  CAS  Google Scholar 

  92. Hocking LJ, Lucas GJ, Daroszewska A, Mangion J, Olavesen M, Cundy T, et al. Domain-specific mutations in sequestosome 1 (SQSTM1) cause familial and sporadic Paget's disease. Hum Mol Genet. 2002;11:2735–9.

    Article  CAS  PubMed  Google Scholar 

  93. Duran A, Serrano M, Leitges M, Flores JM, Picard S, Brown JP, et al. The atypical PKC-interacting protein p62 is an important mediator of RANK-activated osteoclastogenesis. Dev Cell. 2004;6:303–9.

    Article  CAS  PubMed  Google Scholar 

  94. Kurihara N, Hiruma Y, Zhou H, Subler MA, Dempster DW, Singer FR, et al. Mutation of the sequestosome 1 (p62) gene increases osteoclastogenesis but does not induce Paget disease. J Clin Invest. 2007;117:133–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

J.F. Charles declares that she has no conflicts of interest. M.C. Nakamura has received research support from the NIH, VA, and Arthritis Foundation; speaker honorarium from the University of Oklahoma; and travel reimbursement from the International Osteo-Immunology Conference and Rheumatology Research Foundation.

Human and Animal Rights and Informed Consent

All studies by the authors involving animal and/or human subjects were performed after approval by the appropriate institutional review boards. When required, written informed consent was obtained from all participants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary C. Nakamura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charles, J.F., Nakamura, M.C. Bone and the Innate Immune System. Curr Osteoporos Rep 12, 1–8 (2014). https://doi.org/10.1007/s11914-014-0195-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-014-0195-2

Keywords

Navigation