Skip to main content

Advertisement

Log in

Sensory Sensitivity in TBI: Implications for Chronic Disability

  • Neurotrauma (D Sandsmark, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review investigates the relationship between sensory sensitivity and traumatic brain injury (TBI), and the role sensory sensitivity plays in chronic disability.

Recent Findings

TBI is a significant cause of disability with a range of physical, cognitive, and mental health consequences. Sensory sensitivities (e.g., noise and light) are among the most frequently reported, yet least outwardly recognizable symptoms following TBI. Clinicians and scientists alike have yet to identify consistent nomenclature for defining noise and light sensitivity, making it difficult to accurately and reliably assess their influence. Noise and light sensitivity can profoundly affect critical aspects of independent function including communication, productivity, socialization, cognition, sleep, and mental health.

Summary

Research examining the prevalence of sensory sensitivity and evidence for the association of sensory sensitivity with TBI is inconclusive. Evidence-based interventions for sensory sensitivity, particularly following TBI, are lacking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Carroll LJ, Cassidy JD, Peloso PM, Borg J, von Holst H, Holm L, et al. Prognosis for mild traumatic brain injury: results of the WHO Collaborating Centre Task Force on mild traumatic brain injury. J Rehab Med. 2004;36:84–105.

    Article  Google Scholar 

  2. Narayan RK, Michel ME, Ansell B, Baethmann A, Biegon A, Bracken MB, et al. Clinical trials in head injury. J Neurotrauma. 2002;19:503–57.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Taylor CA, Bell JM, Breiding MJ, Xu L. Traumatic brain injury–related emergency department visits, hospitalizations, and deaths—United States, 2007 and 2013. MMWR Surveill Summ. 2017;66:1–16. https://doi.org/10.15585/mmwr.ss6609a1.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Terrio H, Brenner LA, Ivins BJ, Cho JM, Helmick K, Schwab K, et al. Traumatic brain injury screening: preliminary findings in a US Army Brigade combat team. J Head Trauma Rehabil. 2009;24(1):14–23.

    Article  PubMed  Google Scholar 

  5. Lovell MR, Collins MW, Podell K, Powell J, Maroon J. ImPACT: immediate post-concussion assessment and cognitive testing. Pittsburgh, PA: NeuroHealth Systems, LLC; 2000.

    Google Scholar 

  6. McCrory P, Meeuwisse W, Aubry M, Cantu R, Dvorak J, Echemendia RJ, et al. Consensus statement on concussion in sport: the 4th International Conference on Concussion in Sport held in Zurich, November 2012. Brit J Sports Med. 2013;47:250–8.

    Article  Google Scholar 

  7. •• Callahan ML, Binder LM, O’Neil ME, Zaccari B, Roost MS, Golshan S, et al. Sensory sensitivity in Operation Enduring Freedom/Operation Iraqi Freedom veterans with and without blast exposure and mild traumatic brain injury. Appl Neuropsychol: Adult. 2016;24:1–11. https://doi.org/10.1080/23279095.2016.1261867. This study is the first to identify a unique relationship between mild TBI and sensory sensitivity after controlling for psychiatric distress.

  8. Lew HL, Garvert DW, Pogoda TK, Hsu PT, Devine JM, White DK, et al. Auditory and visual impairments in patients with blast-related traumatic brain injury: effect of dual sensory impairment on functional independence measure. J Rehab Res Dev. 2009;46(6):819–26.

    Article  Google Scholar 

  9. Pogoda TK, Hendricks AM, Iverson KM, Stolzmann KL, Krengel MH, Baker E, et al. Multisensory impairment reported by veterans with and without mild traumatic brain injury history. J Rehab Res Dev. 2012;49(7):971–84.

    Article  Google Scholar 

  10. Job RF. Noise sensitivity as a factor influencing human reaction to noise. Noise Health. 1999;1(3):57–68.

    PubMed  Google Scholar 

  11. Stansfeld SA. Noise, noise sensitivity and psychiatric disorder: epidemiological and psychophysiological studies. Psych Med. 1992;22:1–44. https://doi.org/10.1017/s0264180100001119.

    Article  CAS  Google Scholar 

  12. Chang TT, Ciuffreda KJ, Kapoor N. Critical flicker frequency and related symptoms in mild traumatic brain injury. Brain Inj. 2007;21:1055–62.

    Article  PubMed  Google Scholar 

  13. Digre KB, Brennan KC. Shedding light on photophobia. J Neuroophth. 2012;32:68–81.

    Article  Google Scholar 

  14. Lew HL, et al. Dual sensory impairment (DSI) in traumatic brain injury (TBI)—an emerging interdisciplinary challenge. Neuro Rehab. 2010;26:213–22.

    Google Scholar 

  15. Echemendia RJ, Meeuwisse W, McCrory P, Davis GA, Putukian M, Leddy J, et al. The Sport Concussion Assessment Tool 5th Edition (SCAT5). Br J Sports Med. 2017;0:1–3. https://doi.org/10.1136/bjsports-2017-097506.

    Article  Google Scholar 

  16. Cicerone KD, Kalmar K. Persistent postconcussion syndrome: the structure of subjective complaints after mild traumatic brain injury. J Head Trauma Rehabil. 1995;10(3):1–17.

    Article  Google Scholar 

  17. King NS, Crawford S, Wenden FJ, Moss NE, Wade DT. The Rivermead postconcussion symptoms questionnaire: a measure of symptoms commonly experienced after head injury and its reliability. J Neurol. 1995;242(9):587–92. https://doi.org/10.1007/BF00868811.

    Article  PubMed  CAS  Google Scholar 

  18. Weinstein ND. Individual differences in reactions to noise: a longitudinal study in a college dormitory. J App Psych. 1978;63:458–66.

    Article  CAS  Google Scholar 

  19. Verriotto JD, Gonzalez A, Aguilar MC, Parel J-MA, Feuer WJ, Smith AR, et al. New methods for quantification of visual photosensitivity threshold and symptoms. Trans Vis Sci Tech. 2017;6(4):18. https://doi.org/10.1167/tvst.6.4.18.

    Article  Google Scholar 

  20. Smith A. The concept of noise sensitivity: implications for noise control. Noise Health. 2003;5:57–9.

    PubMed  CAS  Google Scholar 

  21. Shepherd D, Hautus MJ, Lee SY, Mulgrew J. Electrophysiological approaches to noise sensitivity. J Clin Exp Neuropsychol. 2016;38(8):900–12. https://doi.org/10.1080/13803395.2016.1176995.

    Article  PubMed  Google Scholar 

  22. •• Kliuchko M, Heinonen-Guzejev M, Vuust P, Tervaniemi M, Brattico E. A window into the brain mechanisms associated with noise sensitivity. Sci Rep. 2016;6 https://doi.org/10.1038/srep39236. The authors used a physiological approach to study the brain mechanisms associated with noise sensitivity, which correctly identified central auditory response patterns experienced by noise-sensitive individuals.

  23. Aguilar MC, Gonzalez A, Rowaan C, Lee W, de Freitas C, Alawa K, et al. BPEI photosensitivity tester: instrument design and test results in healthy subjects. Invest Ophthalmol Vis Sci. 2014;55:4108.

    Google Scholar 

  24. Heinonen-Guzejev, M. (2008). Noise sensitivity–medical, psychological and genetic aspects.

    Google Scholar 

  25. Heinonen-Guzejev M, Vuorinen HS, Mussalo-Rauhamaa H, Heikkila K, Koskenvuo M, Kaprio J. Genetic component of noise sensitivity. Twin Res Hum Genet. 2005;8:245–9.

    Article  PubMed  Google Scholar 

  26. Kashluba S, Paniak C, Blake T, Reynolds S, Toller-Lobe G, Nagy J. A longitudinal, controlled study of patient complaints following treated mild traumatic brain injury. Arch Clin Neuropsychol. 2004;19(6):805–16.

    Article  PubMed  Google Scholar 

  27. Dikmen S, Machamer J, Fann JR, Temkin NR. Rates of symptom reporting following traumatic brain injury. J Int Neuropsychol Soc. 2010;16(3):401–11.

    Article  PubMed  Google Scholar 

  28. Bulson R, Jun W, Hayes J. Visual symptomatology and referral patterns for Operation Iraqi Freedom and Operation Enduring Freedom veterans with traumatic brain injury. JRRD. 2012;49:1075–82.

    Article  Google Scholar 

  29. Capo-Aponte JE, Urosevich TG, Temme LA, Tarbett AK, Sanghera NK. Visual dysfunctions and symptoms during the subacute stage of blast-induced mild traumatic brain injury. Mil Med. 2012;177:804–13.

    Article  PubMed  Google Scholar 

  30. Goodrich GL, Flyg HM, Kirby JE, Chang CY, Martinsen GL. Mechanisms of TBI and visual consequences in military and veteran populations. Opt Vis Sci. 2013;90:105–12. https://doi.org/10.1097/opx.0b013e31827f15a1.

    Article  Google Scholar 

  31. Stelmack JA, Frith T, Van Koevering D, Rinne S, Stelmack TR. Visual function in patients followed at a Veteran Affairs polytrauma network site: an electronic medical record review. Optometry. 2009;80:419–24.

    Article  PubMed  Google Scholar 

  32. •• Elliott J, Opel RA, Chau AQ, Weymann KB, Callahan ML, Storzbach D, & Lim MM. Sleep disturbances in TBI: associations with sensory sensitivity. J Clin Sleep Med. 2018 epub ahead of print. The authors report a high rate of sleep dysfunction in patients with sensory sensitivity, and link PTSD autonomic arousal to sensory sensitivity using an overnight sleep study. This is the first study to examine the relationship between sensory sensitivity and sleep in a TBI population.

  33. Lew HL, Pogoda TK, Baker E, Stolzmann KL, Meterko M, Cifu DX, et al. Prevalence of dual sensory impairment and its association with traumatic brain injury and blast exposure in OEF/OIF veterans. J Head Trauma Rehabil. 2011;26(6):489–96.

    Article  PubMed  Google Scholar 

  34. Chafi MS, Karami G, Ziejewski M. Biomechanical assessment of brain dynamic responses due to blast pressure waves. Ann Biomed Eng. 2010;38(2):490–504.

    Article  PubMed  CAS  Google Scholar 

  35. Taber KH, Warden DL, Hurley RA. Blast-related traumatic brain injury: what is known? J Neuropsychiatry Clin Neurosci. 2006;18:141–5.

    Article  PubMed  Google Scholar 

  36. Iverson GL. Outcome from mild traumatic brain injury. Cur Op Psychiatry. 2005;18:301–17.

    Article  Google Scholar 

  37. Myers PJ, Wilmington DJ, Gallun FJ, Henry JA, Fausti SA. Hearing impairment and traumatic brain injury among soldiers: special considerations for the audiologist. Sem Hearing. 2009;30(1):5–27.

    Article  Google Scholar 

  38. Nields JA, Fallon BA, Jastreboff PJ. Carbamazepine in the treatment of Lyme disease-induced hyperacusis. J Neuropsychiatrcy Clin Neurosci. 1999;11:97–9.

    Article  CAS  Google Scholar 

  39. Gallun FJ, Diedesch AC, Kubli LR, Walden TC, Folmer RL, Lewis MS, et al. Performance on tests of central auditory processing by individuals exposed to high-intensity blasts. JRRD. 2012;49(7):1005–24.

    Article  Google Scholar 

  40. Alwis DS, Yan EB, Morganti-Kossmann MC, Rajan R. Sensory cortex underpinnings of traumatic brain injury deficits. PLoS One. 2012;7(12):e52169.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Carron SF, Alwis DS, Rajan R. Traumatic brain injury and neuronal functionality changes in sensory cortex. Front Syst Neurosci. 2016;10:47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Yi JH, Hazell AS. Excitotoxic mechanisms and the role of astrocytic glutamate transporters in traumatic brain injury. Neurochem Int. 2006;48:394–403.

    Article  PubMed  CAS  Google Scholar 

  43. Shively SB, Horkayne-Szakaly I, Jones RV, Kelly JP, Armstrong RC, Perl DP. Characterization of interface astrological scarring in the human brain after blast exposure: a post-mortem case series. Lancet Neurol. 2016;15:944–53.

    Article  PubMed  Google Scholar 

  44. Niogi SN, Mukerjee P. Diffusion tensor imaging of mild traumatic brain injury. JHTR. 2010;25:241–55.

    PubMed  Google Scholar 

  45. Kaas JH. The evolution of the complex sensory and motor systems of the human brain. Brain Res Bull. 2008;75:384–90.

    Article  PubMed  Google Scholar 

  46. Greenwald BD, Kapoor N, Singh AD. Visual impairments in the first year after traumatic brain injury. Brain Inj. 2012;26(11):1338–59. https://doi.org/10.3109/02699052.2012.706356.

    Article  PubMed  Google Scholar 

  47. Du T, Ciuffreda KJ, Kapoor N. Elevated dark adaptation thresholds in traumatic brain injury. Brain Inj. 2005;19:1125–38.

    Article  PubMed  CAS  Google Scholar 

  48. Kapoor N, Ciuffreda K. Vision deficits following acquired brain injury. In: Cristian A, editor. Medical management of adults with neurologic disabilities. New York (NY): Demos Medical Publishing; 2009. p. 407–23.

    Google Scholar 

  49. Mesulam MM. The human frontal lobes: transcending the default mode through contingent encoding. In: Principles of frontal lobe function; 2002. p. 8–30.

    Chapter  Google Scholar 

  50. Wolf JA, Koch PF. Disruption of network synchrony and cognitive dysfunction after traumatic brain injury. Front Syst Neurosci. 2016;10

  51. Barnes DE, Byers AL, Gardner RC, Seal KH, Boscardin WJ, Yaffe K. Association of mild traumatic brain injury with and without loss of consciousness with dementia in US military veterans. JAMA Neurology. 2018;

  52. Chen H, Richard M, Sandler DP, Umbach DM, Kamel F. Head injury and amyotrophic lateral sclerosis. Am J Epidemiol. 2007;166(7):810–6.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Fleminger S, Oliver DL, Lovestone S, Rabe-Hesketh S, Giora A. Head injury as a risk factor for Alzheimer’s disease: the evidence 10 years on; a partial replication. J Neurol Neurosurg Psychiatry. 2003;74:857–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Goldman SM, Tanner CM, Oakes D, Bhudhikanok GS, Gupta A, Langston JW. Head injury and Parkinson’s disease risk in twins. Ann Neurol. 2006;60(1):65–72.

    Article  PubMed  Google Scholar 

  55. Jafari S, Etminan M, Aminzadeh F, Samii A. Head injury and risk of Parkinson disease: a systematic review and meta-analysis. Movement disorders: Official Journal of the Movement Disorder Society. 2013;28(9):1222–9.

    Article  Google Scholar 

  56. Kalkonde YV, Jawaid A, Qureshi SU, Shirani P, Wheaton M, Pinto-Patarroyo GP, et al. Medical and environmental risk factors associated with frontotemporal dementia: a case-control study in a veteran population. Alzheimer’s & dementia: the journal of the Alzheimer’s Association. 2012;8(3):204–10.

    Article  Google Scholar 

  57. Mortimer JA, van Duijn CM, Chandra V, Fratiglioni L, Graves AB, Heyman A, et al. Head trauma as a risk factor for Alzheimer’s disease: a collaborative re-analysis of case-control studies. EURODEM Risk Factors Research Group. Int J Epidemiol. 1991;20:S28–35.

    Article  PubMed  Google Scholar 

  58. Rosso SM, Landweer EJ, Houterman M, Donker Kaat L, van Duijn CM, van Swieten JC. Medical and environmental risk factors for sporadic frontotemporal dementia: a retrospective case-control study. J Neurol Neurosurg Psychiatry. 2003;74(11):1574–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Barnfield TV, Leathem JM. Neuropsychological outcomes of traumatic brain injury and substance abuse in a New Zealand prison population. Brain Inj. 1998;12:951–62.

    Article  PubMed  CAS  Google Scholar 

  60. Belanger HG, Kretzmer T, Yoash-Gantz R, Pickett T, Tupler LA. Cognitive sequelae of blast-related versus other mechanisms of brain trauma. JINS. 2009;15:1–8.

    PubMed  Google Scholar 

  61. Brenner LA, Ivins BJ, Schwab K, Warden D, Nelson LA, Jaffee M, et al. Traumatic brain injury, posttraumatic stress disorder, and postconcussive symptom reporting among troops returning from Iraq. JHTR. 2010;25(5):307–12.

    PubMed  Google Scholar 

  62. Millis SR, Rosenthal M, Novack TA, Sherer M, Nick TG, Kreutzer JS, et al. Long-term neuropsychological outcome after traumatic brain injury. J Head Trauma Rehabil. 2001;16:343–55.

    Article  PubMed  CAS  Google Scholar 

  63. Belanger HG, Curtiss G, Demery JA, Lebowitz BK, Vanderploeg RD. Factors moderating neuropsychological outcomes following mild traumatic brain injury: a meta-analysis. JINS. 2005;11:215–27.

    PubMed  Google Scholar 

  64. Schretlen DJ, Shapiro AM. A quantitative review of the effects of traumatic brain injury on cognitive functioning. Int Rev Psychiatry. 2003;15:341–9.

    Article  PubMed  Google Scholar 

  65. Vanderploeg RD, Curtiss G, Belanger HG. Long-term neuropsychological outcomes following mild traumatic brain injury. J Int Neuropsychol Soc. 2005;11:228–36.

    Article  PubMed  Google Scholar 

  66. Zakzanis, KK, et al. (1999). Mild traumatic brain injury. In Neuropsychological differential diagnosis (pp. 163–171). Exton, Pennsylvania: Swets & Zeitlinger.

  67. Baltes PB, Lindenberger U. Emergence of a powerful connection between sensory and cognitive functions across the adult life span: a new window to the study of cognitive aging? Psych & Ag. 1997;12:12–21.

    Article  CAS  Google Scholar 

  68. Lin FR, Ferrucci L, Metter EJ, An Y, Zonderman AB, Resnick SM. Hearing loss and cognition in the Baltimore Longitudinal Study of Aging. Neuropsych. 2011;25:763–70. https://doi.org/10.1037//a0024238.

    Article  Google Scholar 

  69. Jelinkova Z, Picek M, Hyncica V. Psychophysiological aspects of noise influence. Int J Psychophysiol. 1989;7:249–50.

    Article  Google Scholar 

  70. Reuben DB, Mui S, Damesyn M, Moore AA, Greendale GA. The prognostic value of sensory impairment in older persons. J Am Ger Soc. 1999;47:930–5.

    Article  CAS  Google Scholar 

  71. Pinto PC, Marcelos CM, Mezzasalma MA, Osterne FJ, de Melo Tavares de Lima MA, Nardi AE. Tinnitus and its association with psychiatric disorders: systematic review. J Laryngol Otol. 2014;128(8):660–4.

    Article  PubMed  CAS  Google Scholar 

  72. Stansfeld, SA, Clark, CR, Jenkins, LM, & Tarnopolsky (1985). Sensitivity to noise in a community sample: I. Measurement of psychiatric disorder and personality. Psych Med, 15(2), 243–254. doi:https://doi.org/10.1017/s0033291700023527.

  73. Stansfeld SA, Shipley M. Noise sensitivity and future risk of illness and mortality. Sci Total Enviro. 2015;520:114–9.

    Article  CAS  Google Scholar 

  74. Ohrström E, Bjorkman M, Rylander R. Noise annoyance with regard to neurophysiological sensitivity, subjective noise sensitivity and personality variables. Psych Med. 1988;18(3):605–13. https://doi.org/10.1017/s003329170000828x.

    Article  Google Scholar 

  75. Hallberg LRM, Hallberg U, Johansson M, Jansson G, Wilberg A. Daily living with hyperacusis due to head injury 1 year after a treatment programme at the hearing clinic. Scand J Caring Sci. 2005;19:410–8.

    Article  PubMed  Google Scholar 

  76. Martenson, M, Halawa, Ol, Tonsfeldt, KJ, Maxwell, CA, Hammack, N, Mist, SD, Pennesi, ME, et al. (2016). A possible neural mechanism for photosensitivity in chronic pain. Pain, 157, 868–878. doi:https://doi.org/10.1097/j.pain.0000000000000450.

  77. • Callahan ML, Storzbach D. Sensory sensitivity and posttraumatic stress disorder in blast exposed veterans with mild traumatic brain injury. App Neuro. 2018; https://doi.org/10.1080/23279095.2018.1433179. This study analyses the role PTSD symptoms play in maintaining sensory sensitivity. It is critically important for polytrauma rehabilitation.

  78. Hoge CW, McGurk D, Thomas JL, Cox AL, Engel CC, Castro CA. Mild traumatic brain injury in US soldiers returning from Iraq. NEJM. 2008;358:453–63.

    Article  PubMed  CAS  Google Scholar 

  79. Goodrich GL, Martinsen GL, Flyg HM, Kirby J, Garvert DW, Tyler CW. Visual function, traumatic brain injury, and posttraumatic stress disorder. J Rehabil Res Dev. 2014;51(4):547–58.

    Article  PubMed  Google Scholar 

  80. Al-Ozairi A, McCullagh S, Feinstein A. Predicting posttraumatic stress symptoms following mild, moderate, and severe traumatic brain injury: the role of posttraumatic amnesia. JHTR. 2015;30:283–90.

    PubMed  Google Scholar 

  81. Warren L, Wrigley JM, Yoels WC, Fine PR. Factors associated with life satisfaction among a sample of persons with neurotrauma. JRRD. 1996;33:404–8.

    CAS  Google Scholar 

  82. Corrigan JD, Bogner JA, Mysiw WJ, Clinchot D, Fugate L. Life satisfaction after traumatic brain injury. JHTR. 2001;16:543–55.

    PubMed  CAS  Google Scholar 

  83. Pierce CA, Hanks RA. Life satisfaction after traumatic brain injury and the World Health Organization model of disability. Am J Phys Med Rehab. 2006;85:889–98. https://doi.org/10.1097/01.phm.0000242615.43129.ae.

    Article  Google Scholar 

  84. Wahl HW, Schilling O, Oswald F, Heyl V. Psychosocial consequences of age-related visual impairment: comparison with mobility-impaired older adults and long-term outcome. J Ger: Psych Sci. 1999;54B:P304–16.

    Google Scholar 

  85. Branch LG, Horowitz A, Carr C. The implications for everyday life of incident self-reported visual decline among people over age 65 living in the community. Gerontologist. 1989;29:359–65.

    Article  PubMed  CAS  Google Scholar 

  86. Rudberg MA, Furner SE, Dunn JE, Cassel CK. The relationship of visual and hearing impairments to disability: an analysis using the longitudinal study on aging. J Gerontol. 1993;48:M261–5.

    Article  PubMed  CAS  Google Scholar 

  87. Dischinger PC, Ryb GE, Kufera JA, Auman KM. Early predictors of postconcussive syndrome in a population of trauma patients with mild traumatic brain injury. J Trauma Injury Infection Crit Care. 2009;66(2):289–97.

    Article  Google Scholar 

  88. Marks A, Griefahn B. Associations between noise sensitivity and sleep, subjectively evaluated sleep quality, annoyance, and performance after exposure to nocturnal traffic noise. Noise Health. 2007;9:1–7.

    Article  PubMed  CAS  Google Scholar 

  89. Smith A, Nutt D, Wilson S, Rich N, Hayward S, & Heatherley S. Noise and insomnia: a study of community noise exposure, sleep disturbance, noise sensitivity, and subjective reports of health. Report to the UK Department of Health and Department of Environment, Transport and the Regions. 2002

  90. Park J, Chung S, Lee J, Sung JH, Cho SW, Sim CS. Noise sensitivity, rather than noise level, predicts the non-auditory effects of noise in community samples: a population-based survey. BMC Public Health. 2017;17:315. https://doi.org/10.1186/s12889-017-4244-5.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Waye KP, Bengtsson J, Rylander R, Hucklebridge F, Evans P, Clow A. Low frequency noise enhances cortisol among noise sensitive subjects during work performance. Life Sci. 2002;70:745–58.

    Article  PubMed  Google Scholar 

  92. Valente M, Goebel J, Duddy D, Sinks B, Peterein J. Evaluation and treatment of severe hyperacusis. J Am Acad Audiol. 2000;11:295–9.

    PubMed  CAS  Google Scholar 

  93. Gallin PF, Terman M, Reme CE, Rafferty B, Terman JS, Burde RM. Ophthalmologic examination of patients with seasonal affective disorder, before and after bright light therapy. Am J Ophthalmol. 1999;119:202–10.

    Article  Google Scholar 

  94. Truong JQ, Ciuffreda KJ, Han MHE, Suchoff IB. Photosensitivity in mild traumatic brain injury (mTBI): a retrospective analysis. Brain Inj. 2014;28:1283–7. https://doi.org/10.3109/02699052.2014.915989.

    Article  PubMed  Google Scholar 

  95. Bengtzen R, Woodward M, Lynn MJ, Newman NJ, Biousse V. The “sunglasses sign” predicts nonorganic visual loss in neuro-ophthalmologic practice. Neurology. 2008;70(3):218–21.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miranda M. Lim.

Ethics declarations

Conflict of Interest

Megan L. Callahan and Miranda M. Lim each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Neurotrauma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Callahan, M.L., Lim, M.M. Sensory Sensitivity in TBI: Implications for Chronic Disability. Curr Neurol Neurosci Rep 18, 56 (2018). https://doi.org/10.1007/s11910-018-0867-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-018-0867-x

Keywords

Navigation