Skip to main content
Log in

Current Controversies on Wernicke’s Area and its Role in Language

  • Behavior (H Kirshner, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The aim of the study is to assess historical anatomical and functional definitions of Wernicke’s area in light of modern lesion and neuroimaging data.

Recent Findings

“Wernicke’s area” has become an anatomical label usually applied to the left posterior superior temporal gyrus and adjacent supramarginal gyrus. Recent evidence shows that this region is not critical for speech perception or for word comprehension. Rather, it supports retrieval of phonological forms (mental representations of phoneme sequences), which are used for speech output and short-term memory tasks. Focal damage to this region produces phonemic paraphasia without impairing word comprehension, i.e., conduction aphasia. Neuroimaging studies in recent decades provide evidence for a widely distributed temporal, parietal, and frontal network supporting language comprehension, which does not include the anatomically defined Wernicke area.

Summary

The term Wernicke’s area, if used at all, should not be used to refer to a zone critical for speech comprehension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. DeWitt I, Rauschecker JP. Wernicke’s area revisited: parallel streams and word processing. Brain Lang. 2013;127(2):181–91.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Binder JR. The Wernicke area: modern evidence and a reinterpretation. Neurology. 2015;85:2170–5.

    Article  PubMed  PubMed Central  Google Scholar 

  3. • Mesulam MM, Thompson CK, Weintraub S, Rogalski EJ. The Wernicke conundrum and the anatomy of language comprehension in primary progressive aphasia. Brain. 2015;138(8):2423–37. This study uses data from a large cohort of patients with primary progressive aphasia to examine the neural correlates of language comprehension, concluding that word comprehension depends mainly on the left anterior temporal lobe.

    Article  PubMed  PubMed Central  Google Scholar 

  4. • Tremblay P, Dick AS. Broca and Wernicke are dead, or moving past the classic model of language neurobiology. Brain Lang. 2016;162:60–71. This paper presents interesting survey data on current use of the terms Broca's area and Wernicke's area among language scientists and clinicians, and argues that a lack of agreement renders these terms largely meaningless.

    Article  PubMed  Google Scholar 

  5. Wernicke C. Der aphasische Symptomenkomplex. Cohn & Weigert: Breslau; 1874.

    Google Scholar 

  6. Lichtheim L. On aphasia. Brain. 1885;7:433–84.

    Article  Google Scholar 

  7. Henschen SE. On the hearing sphere. Acta Otolaryngol (Stockh). 1918-1919;1:423–86.

    Article  Google Scholar 

  8. Bastian HC. On different kinds of aphasia, with special reference to their classification and ultimate pathology. Br Med J. 1887;2:931–6. 85-90

    Article  Google Scholar 

  9. Déjerine J. Anatomie des centres nerveux. Paris: Rueff; 1895.

    Google Scholar 

  10. Pick A. Aphasia. Berlin: Springer; 1931.

    Google Scholar 

  11. Kleist K. Sensory aphasia and amusia. London: Pergamon Press; 1962.

    Google Scholar 

  12. Starr MA. The pathology of sensory aphasia, with an analysis of fifty cases in which Broca’s centre was not diseased. Brain. 1889;12:82–101.

    Article  Google Scholar 

  13. Marie P. On aphasia in general and agraphia in particular according to the teaching of Professor Charcot. Reprinted from Le Progres Medical, Series 2, 1888; 7: 81-84. Pierre Marie's Papers on Speech Disorders. New York: Hafner; 1971.

  14. Goldstein K. Language and language disturbances. New York: Grune & Stratton; 1948.

    Google Scholar 

  15. Penfield W, Roberts L. Speech and brain-mechanisms. New York: Atheneum; 1959.

    Google Scholar 

  16. Bogen JE, Bogen GM. Wernicke’s region—where is it? Ann N Y Acad Sci. 1976;290:834–43.

    Article  Google Scholar 

  17. Geschwind N. Aphasia. N Engl J Med. 1971;284(12):654–6.

    Article  CAS  PubMed  Google Scholar 

  18. Geschwind N, Levitsky W. Human brain: left-right asymmetries in temporal speech region. Science. 1968;161:186–7.

    Article  CAS  PubMed  Google Scholar 

  19. Wada JA, Clarke R, Hamm A. Cerebral hemispheric asymmetry in humans. Arch Neurol. 1975;32:239–46.

    Article  CAS  PubMed  Google Scholar 

  20. Steinmetz H, Volkmann J, Jäncke L, Freund H-J. Anatomical left-right asymmetry of language-related temporal cortex is different in left- and right-handers. Ann Neurol. 1991;29:315–9.

    Article  CAS  PubMed  Google Scholar 

  21. Galaburda AM, LeMay M, Kemper T, Geschwind N. Right-left asymmetries in the brain. Structural differences between the hemispheres may underlie cerebral dominance. Science. 1978;199:852–6.

    Article  CAS  PubMed  Google Scholar 

  22. Witelson SF, Kigar DL. Sylvian fissure morphology and asymmetry in men and women: bilateral differences in relation to handedness in men. J Comp Neurol. 1992;323:326–40.

    Article  CAS  PubMed  Google Scholar 

  23. Foundas AL, Leonard CM, Gilmore R, et al. Planum temporale asymmetry and language dominance. Neuropsychologia. 1994;32:1225–31.

    Article  CAS  PubMed  Google Scholar 

  24. Benson DF. Aphasia, alexia and agraphia. New York: Churchill Livingstone; 1979.

    Google Scholar 

  25. Mayeux R, Kandel ER. Natural language, disorders of language, and other localizable disorders of cognitive function. In: Kandel ER, Schwartz J, editors. Principles of Neural Science. 2nd ed. New York: Elsevier Science Publishing Co.; 1985. p. 688–703.

    Google Scholar 

  26. Mesulam MM. Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann Neurol. 1990;28:597–613.

    Article  CAS  PubMed  Google Scholar 

  27. Benson DF, Sheremata WA, Bouchard R, et al. Conduction aphasia. A clinicopathological study. Arch Neurol. 1973;28:339–46.

    Article  CAS  PubMed  Google Scholar 

  28. Boller F. Destruction of Wernicke’s area without language disturbance. A fresh look at crossed aphasia. Neuropsychologia. 1973;11:243–6.

    Article  CAS  PubMed  Google Scholar 

  29. Damasio H, Damasio AR. The anatomical basis of conduction aphasia. Brain. 1980;103:337–50.

    Article  CAS  PubMed  Google Scholar 

  30. Palumbo CL, Alexander MP, Naeser MA. CT scan lesion sites associated with conduction aphasia. In: Kohn SE, editor. Conduction aphasia. Hillsdale, NJ: Lawrence Erlbaum; 1992. p. 51–75.

    Google Scholar 

  31. Axer H, Keyserlingk AG, Berks G, Keyserlingk DF. Supra- and infrasylvian conduction aphasia. Brain Lang. 2001;76:317–31.

    Article  CAS  PubMed  Google Scholar 

  32. Fridriksson J, Kjartansson O, Morgan PS, et al. Impaired speech repetition and left parietal lobe damage. J Neurosci. 2010;30:11057–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. • Buchsbaum BR, Baldo J, D’Esposito M, et al. Conduction aphasia, sensory-motor integration, and phonological short-term memory: an aggregate analysis of lesion and fMRI data. Brain Lang. 2011;119:119–28. This paper presents a multi-faceted review and meta-analysis of neuroimaging data regarding phonological processing.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Anderson JM, Gilmore R, Roper S, et al. Conduction aphasia and the arcuate fasciculus: a reexamination of the Wernicke-Geschwind model. Brain Lang. 1999;70:1–12.

    Article  CAS  PubMed  Google Scholar 

  35. Quigg M, Fountain NB. Conduction aphasia elicited by stimulation of the left posterior superior temporal gyrus. J Neurol Neurosurg Psychiatry. 1999;66:393–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Corina DP, Loudermilk BC, Detwiler L, et al. Analysis of naming errors during cortical stimulation mapping: implications for models of language representation. Brain Lang. 2010;115:101–12.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Roux FE, Durand JB, Jucla M, et al. Segregation of lexical and sub-lexical reading processes in the left perisylvian cortex. PLoS One. 2012;7(11):e50665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Levelt WJM. Speaking: from intention to articulation. Cambridge, MA: MIT Press; 1989.

    Google Scholar 

  39. Caplan D, Waters G. Issues arising regarding the nature and consequences of reproduction conduction aphasia. In: Kohn SE, editor. Conduction aphasia. Hillsdale, NJ: Lawrence Erlbaum; 1992. p. 117–49.

    Google Scholar 

  40. Wilshire CE, McCarthy RA. Experimental investigations of an impairment in phonological encoding. Cogn Neuropsychol. 1996;13(7):1059–98.

    Article  Google Scholar 

  41. Dell GS, Schwartz MF, Martin N, et al. Lexical access in aphasic and nonaphasic speakers. Psychol Rev. 1997;104(4):801–38.

    Article  CAS  PubMed  Google Scholar 

  42. • Acheson DJ, Hamidi M, Binder JR, Postle BR. A common neural substrate for language production and verbal working memory. J Cogn Neurosci. 2011;23:1358–67. This study presents combined fMRI and transcranial magnetic stimulation evidence for a common posterior STG localization for phonological representation and phonological short-term memory .

    Article  PubMed  Google Scholar 

  43. Booth JR, Burman DD, Meyer JR, et al. Functional anatomy of intra- and cross-modal lexical tasks. NeuroImage. 2002;16:7–22.

    Article  PubMed  Google Scholar 

  44. Xu B, Grafman J, Gaillard WD, et al. Neuroimaging reveals automatic speech coding during perception of written word meaning. NeuroImage. 2002;17(2):859–70.

    Article  PubMed  Google Scholar 

  45. Hickok G, Buchsbaum B, Humphries C, Muftuler T. Auditory-motor interaction revealed by fMRI: speech, music, and working memory in area Spt. J Cogn Neurosci. 2003;15(5):673–82.

    Article  PubMed  Google Scholar 

  46. Indefrey P, Levelt WJM. The spatial and temporal signatures of word production components. Cognition. 2004;92(1–2):101–44.

    Article  CAS  PubMed  Google Scholar 

  47. Buchsbaum BR, Olsen RK, Koch P, Berman KF. Human dorsal and ventral auditory streams subserve rehearsal-based and echoic processes during verbal working memory. Neuron. 2005;48(4):687–97.

    Article  CAS  PubMed  Google Scholar 

  48. Burton MW, Locasto PC, Krebs-Noble D, Gullapalli RP. A systematic investigation of the functional neuroanatomy of auditory and visual phonological processing. NeuroImage. 2005;26(3):647–61.

    Article  PubMed  Google Scholar 

  49. Graves WW, Grabowski TJ, Mehta S, Gordon JK. A neural signature of phonological access: distinguishing the effects of word frequency from familiarity and length in overt picture naming. J Cogn Neurosci. 2007;19(4):617–31.

    Article  PubMed  Google Scholar 

  50. Bruno JL, Zumberge A, Manis FR, et al. Sensitivity to orthographic familiarity in the occipito-temporal region. NeuroImage. 2008;39:1988–2001.

    Article  PubMed  Google Scholar 

  51. Wilson SM, Isenberg AK, Hickok G. Neural correlates of word production stages delineated by parametric modulation of psycholinguistic variables. Hum Brain Mapp. 2009;30:3596–608.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wilson LB, Tregellas JR, Slason E, et al. Implicit phonological priming during visual word recognition. NeuroImage. 2011;55(2):724–31.

    Article  PubMed  Google Scholar 

  53. • Pillay SB, Stengel BC, Humphries C, et al. Cerebral localization of impaired phonological retrieval during rhyme judgment. Ann Neurol. 2014;76:738–46. This study presents lesion evidence linking the classical Wernicke's area with pre-articulatory (i.e., silent) retrieval of phonological word forms.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Gorno-Tempini ML, Brambati SM, Ginex V, et al. The logopenic/phonological variant of primary progressive aphasia. Neurology. 2008;71(16):1227–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rohrer JD, Ridgway GR, Crutch SJ, et al. Progressive logopenic/phonological aphasia: erosion of the language network. NeuroImage. 2010;49:984–93.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Leyton CE, Ballard KJ, Piguet O, Hodges JR. Phonologic errors as a clinical marker of the logopenic variant of PPA. Neurology. 2014;82(18):1620–7.

    Article  PubMed  Google Scholar 

  57. Blumstein SE, Baker E, Goodglass H. Phonological factors in auditory comprehension in aphasia. Neuropsychologia. 1977;15:19–30.

    Article  CAS  PubMed  Google Scholar 

  58. Blumstein SE, Tartter VC, Nigro G, Statlender S. Acoustic cues for the perception of place of articulation in aphasia. Brain Lang. 1984;22:128–49.

    Article  CAS  PubMed  Google Scholar 

  59. Boatman D, Hart J, Lesser RP, et al. Right hemisphere speech perception revealed by amobarbital injection and electrical interference. Neurology. 1998;51(2):458–64.

    Article  CAS  PubMed  Google Scholar 

  60. Hickok G, Okada K, Barr W, et al. Bilateral capacity for speech sound processing in auditory comprehension: evidence from Wada procedures. Brain Lang. 2008;107:179–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Buchman AS, Garron DC, Trost-Cardamone JE, et al. Word deafness: one hundred years later. J Neurol Neurosurg Psychiatry. 1986;49:489–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Poeppel D. Pure word deafness and the bilateral processing of the speech code. Cogn Sci. 2001;25:679–93.

    Article  Google Scholar 

  63. Binder JR, Frost JA, Hammeke TA, et al. Human temporal lobe activation by speech and nonspeech sounds. Cereb Cortex. 2000;10:512–28.

    Article  CAS  PubMed  Google Scholar 

  64. Liebenthal E, Binder JR, Spitzer SM, et al. Neural substrates of phonemic perception. Cereb Cortex. 2005;15:1621–31.

    Article  PubMed  Google Scholar 

  65. • DeWitt I, Rauschecker JP. Phoneme and word recognition in the auditory ventral stream. Proc Natl Acad Sci U S A. 2012;109:E505–14. This careful meta-analysis of fMRI speech perception studies provides strong evidence that auditory cortex specialized for speech perception lies anterior to the classical Wernicke's area .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Scott SK, Blank C, Rosen S, Wise RJS. Identification of a pathway for intelligible speech in the left temporal lobe. Brain. 2000;123:2400–6.

    Article  PubMed  Google Scholar 

  67. Binder JR. Wernicke aphasia: a disorder of central language processing. In: D’Esposito ME, editor. Neurological foundations of cognitive neuroscience. Cambridge, MA: MIT Press; 2002. p. 175–238.

    Google Scholar 

  68. Kertesz A, Lau WK, Polk M. The structural determinants of recovery in Wernicke’s aphasia. Brain Lang. 1993;44:153–64.

    Article  CAS  PubMed  Google Scholar 

  69. Dronkers NF, Redfern BB, Ludy CA. Lesion localization in chronic Wernicke’s aphasia. Brain Lang. 1995;51:62–5.

    Google Scholar 

  70. Damasio H, Tranel D, Grabowski T, et al. Neural systems behind word and concept retrieval. Cognition. 2004;92:179–229.

    Article  CAS  PubMed  Google Scholar 

  71. Dronkers NF, Wilkins DP, Van Valin RD, et al. Lesion analysis of the brain areas involved in language comprehension. Cognition. 2004;92:145–77.

    Article  PubMed  Google Scholar 

  72. Thothathiri M, Kimberg DY, Schwartz MF. The neural basis of reversible sentence comprehension: evidence from voxel-based lesion symptom mapping in aphasia. J Cogn Neurosci. 2012;24(1):212–22.

    Article  PubMed  Google Scholar 

  73. Damasio H. Cerebral localization of the aphasias. In: Sarno MT, editor. Acquired aphasia. Orlando: Academic Press; 1981. p. 27–50.

    Google Scholar 

  74. Kertesz A, Sheppard A, MacKenzie R. Localization in transcortical sensory aphasia. Arch Neurol. 1982;39:475–8.

    Article  CAS  PubMed  Google Scholar 

  75. Alexander MP, Hiltbrunner B, Fischer RS. Distributed anatomy of transcortical sensory aphasia. Arch Neurol. 1989;46:885–92.

    Article  CAS  PubMed  Google Scholar 

  76. Rapcsak SZ, Rubens AB. Localization of lesions in transcortical aphasia. In: Kertesz A, editor. Localization and neuroimaging in neuropsychology. San Diego: Academic Press; 1994. p. 297–329.

    Google Scholar 

  77. Otsuki M, Soma Y, Koyama A, et al. Transcortical sensory aphasia following left frontal infarction. J Neurol. 1998;245:69–76.

    Article  CAS  PubMed  Google Scholar 

  78. Maeshima S, Osawa A, Nakayama Y, Miki J. Transcortical sensory aphasia following infarction in the left frontal lobe. Eur Neurol. 2004;52(2):125–8.

    Article  PubMed  Google Scholar 

  79. Sethi NK, Burke L, Torgovnick J, Arsura E. Transcortical sensory aphasia as a result of left frontal cortical-subcortical infarction. A case report. Eur Neurol. 2007;57(1):52–3.

    Article  CAS  PubMed  Google Scholar 

  80. Hodges JR, Patterson K, Oxbury S, Funnell E. Semantic dementia: progressive fluent aphasia with temporal lobe atrophy. Brain. 1992;115:1783–806.

    Article  PubMed  Google Scholar 

  81. Rohrer JD, Warren JD, Modat M, et al. Patterns of cortical thinning in the language variants of frontotemporal lobar degeneration. Neurology. 2009;72:1562–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rogalski E, Cobia D, Harrison TM, et al. Progression of language decline and cortical atrophy in subtypes of primary progressive aphasia. Neurology. 2011;76:1804–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bozeat S, Lambon Ralph MA, Patterson K, et al. Nonverbal semantic impairment in semantic dementia. Neuropsychologia. 2000;38:1207–15.

    Article  CAS  PubMed  Google Scholar 

  84. Rogers TT, Garrard P, McClelland JL, et al. Structure and deterioration of semantic memory: a neuropsychological and computational investigation. Psychol Rev. 2004;111(1):205–35.

    Article  PubMed  Google Scholar 

  85. Patterson K, Nestor PJ, Rogers TT. Where do you know what you know? The representation of semantic knowledge in the human brain. Nat Rev Neurosci. 2007;8:976–87.

    Article  CAS  PubMed  Google Scholar 

  86. Binder JR, Desai R, Conant LL, Graves WW. Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb Cortex. 2009;19:2767–96.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Thompson-Schill SL, D’Esposito M, Aguirre GK, Farah MJ. Role of left inferior prefrontal cortex in retrieval of semantic knowledge: a reevaluation. Proc Natl Acad Sci U S A. 1997;94:14792–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wagner AD, Pare-Blagoev EJ, Clark J, Poldrack RA. Recovering meaning: left prefrontal cortex guides semantic retrieval. Neuron. 2001;31:329–38.

    Article  CAS  PubMed  Google Scholar 

  89. Novick JM, Trueswell JC, Thompson-Schill SL. Cognitive control and parsing: reexamining the role of Broca’s area in sentence comprehension. Cognitive, Affective, & Behavioral Neuroscience. 2005;5(3):263–81.

    Article  Google Scholar 

  90. Jefferies E, Lambon Ralph MA. Semantic impairment in stroke aphasia versus semantic dementia: a case-series comparison. Brain. 2006;129:2132–47.

    Article  PubMed  Google Scholar 

  91. Damasio AR. Time-locked multiregional retroactivation: a systems-level proposal for the neural substrates of recall and recognition. Cognition. 1989;33:25–62.

    Article  CAS  PubMed  Google Scholar 

  92. Simmons WK, Barsalou LW. The similarity-in-topography principle: reconciling theories of conceptual deficits. Cogn Neuropsychol. 2003;20(3):451–86.

    Article  PubMed  Google Scholar 

  93. Meyer K, Damasio A. Convergence and divergence in a neural architecture for recognition and memory. Trends Neurosci. 2009;32(7):376–82.

    Article  CAS  PubMed  Google Scholar 

  94. Binder JR, Desai RH. The neurobiology of semantic memory. Trends Cogn Sci. 2011;15(11):527–36.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Meteyard L, Rodriguez Cuadrado S, Bahrami B, Vigliocco G. Coming of age: a review of embodiment and the neuroscience of semantics. Cortex. 2012;48:788–804.

    Article  PubMed  Google Scholar 

  96. Fernandino L, Binder JR, Desai RH, et al. Concept representation reflects multimodal abstraction: a framework for embodied semantics. Cereb Cortex. 2016;26:2018–34.

    Article  PubMed  Google Scholar 

  97. •• Turken AU, Dronkers NF. The neural architecture of the language comprehension network: converging evidence from lesion and connectivity analyses. Frontiers in Systems Neuroscience. 2011;5:Article 1. This paper presents a thorough, multimodal examination of connectivity within a broadly distributed network supporting sentence comprehension, suggesting a special role for the posterior left MTG in this function.

  98. Pillay SB, Binder JR, Humphries C, et al. Lesion localization of speech comprehension deficits in chronic aphasia. Neurology. 2017;88(10):970–5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey R. Binder.

Ethics declarations

Conflict of Interest

Jeffrey R. Binder declares no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Behavior

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Binder, J.R. Current Controversies on Wernicke’s Area and its Role in Language. Curr Neurol Neurosci Rep 17, 58 (2017). https://doi.org/10.1007/s11910-017-0764-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-017-0764-8

Keywords

Navigation