Skip to main content

Advertisement

Log in

Neurosurgery for Brain Tumors: Update on Recent Technical Advances

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Advances in diagnostic imaging modalities and improved access to specialty care have led directly to an increased diagnosis of both metastatic and primary brain tumors. As technology has improved, so has the ability to treat this larger patient population. Diffusion tensor imaging (DTI) has recently shown the potential to aid in histologic diagnosis as well as to identify local brain invasion outside of that readily identifiable by conventional MRI. Similar to DTI, functional MRI provides a noninvasive means of delineating tumor margin from eloquent cortex and aids in preoperative surgical planning. As the literature shows increasing support for the advantages of extensive resection in glioma patients, modalities that aid in this regard are displaying increased importance. Surgeons have recently demonstrated the utility of intraoperative MRI in increasing extent of resection in both low- and high-grade glioma patients. Intraoperative tumor fluorescence provided by the chemical compound 5-aminolevulinic acid assists surgeons in identifying the true tumor margin during resection of glial neoplasms consequently increasing extent of resection. Finally, laser interstitial thermal therapy is an emerging treatment modality allowing surgeons to treat small intracranial lesions with potentially decreased morbidity via this minimally invasive approach. The following review analyzes the recent literature in an effort to describe how these modalities can and should be used in the treatment of patients with intracranial pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance, •• Of major importance

  1. Barnholtz-Sloan JS, Sloan AE, Davis FG, et al. Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System. J Clin Oncol. 2004;22:2865–72.

    Article  PubMed  Google Scholar 

  2. Gu J, Liu Y, Kyritsis AP, Bondy ML. Molecular epidemiology of primary brain tumors. Neurotherapeutics. 2009;6:427–35.

    Article  PubMed  CAS  Google Scholar 

  3. Larjavaara S, Mantyla R, Salminen T, et al. Incidence of gliomas by anatomic location. Neuro Oncol. 2007;9:319–25.

    Article  PubMed  Google Scholar 

  4. Legler JM, Ries LA, Smith MA, et al. Cancer surveillance series [corrected]: brain and other central nervous system cancers: recent trends in incidence and mortality. J Natl Cancer Inst. 1999;91:1382–90.

    Article  PubMed  CAS  Google Scholar 

  5. Smith MA, Freidlin B, Ries LA, Simon R. Trends in reported incidence of primary malignant brain tumors in children in the United States. J Natl Cancer Inst. 1998;90:1269–77.

    Article  PubMed  CAS  Google Scholar 

  6. Wrensch M, Minn Y, Chew T, et al. Epidemiology of primary brain tumors: current concepts and review of the literature. Neuro Oncol. 2002;4:278–99.

    PubMed  Google Scholar 

  7. •• Tsitlakidis A, Foroglou N, Venetis CA, et al. Biopsy versus resection in the management of malignant gliomas: a systematic review and meta-analysis. J Neurosurg. 2010;112:1020–32. The authors performed a meta-analysis to assess the role of cytoreductive surgery versus biopsy for patients with supratentorial malignant glioma. Four retrospective studies and one randomized controlled trial were identified that displayed a significant increase in overall survival in the resection group. The article recommends prospective studies to further validate this conclusion.

    Article  PubMed  Google Scholar 

  8. Duffau H. Surgery of low-grade gliomas: towards a ‘functional neurooncology’. Curr Opin Oncol. 2009;21:543–9.

    Article  PubMed  Google Scholar 

  9. Sanai N, Berger MS. Operative techniques for gliomas and the value of extent of resection. Neurotherapeutics. 2009;6:478–86.

    Article  PubMed  Google Scholar 

  10. Kalkanis SN, Kondziolka D, Gaspar LE, et al. The role of surgical resection in the management of newly diagnosed brain metastases: a systematic review and evidence-based clinical practice guideline. J Neurooncol. 96:33–43.

  11. Kinoshita M, Goto T, Okita Y, et al. Diffusion tensor-based tumor infiltration index cannot discriminate vasogenic edema from tumor-infiltrated edema. J Neurooncol. 2010;96:409–15.

    Article  PubMed  Google Scholar 

  12. Awasthi R, Verma SK, Haris M, et al. Comparative evaluation of dynamic contrast-enhanced perfusion with diffusion tensor imaging metrics in assessment of corticospinal tract infiltration in malignant glioma. J Comput Assist Tomogr. 2010;34:82–8.

    Article  PubMed  Google Scholar 

  13. Bello L, Castellano A, Fava E, et al. Intraoperative use of diffusion tensor imaging fiber tractography and subcortical mapping for resection of gliomas: technical considerations. Neurosurg Focus. 2010;28:E6.

    Article  PubMed  Google Scholar 

  14. Deng Z, Yan Y, Zhong D, et al. Quantitative analysis of glioma cell invasion by diffusion tensor imaging. J Clin Neurosci. 2010.

  15. Leclercq D, Duffau H, Delmaire C, et al. Comparison of diffusion tensor imaging tractography of language tracts and intraoperative subcortical stimulations. J Neurosurg. 2010;112:503–11.

    Article  PubMed  Google Scholar 

  16. Jakab A, Molnar P, Emri M, Berenyi E. Glioma grade assessment by using histogram analysis of diffusion tensor imaging-derived maps. Neuroradiology. 2010.

  17. Ferda J, Kastner J, Mukensnabl P, et al. Diffusion tensor magnetic resonance imaging of glial brain tumors. Eur J Radiol. 2010;74:428–36.

    Article  PubMed  Google Scholar 

  18. Xu JL, Li YL, Lian JM, et al. Distinction between postoperative recurrent glioma and radiation injury using MR diffusion tensor imaging. Neuroradiology. 2010.

  19. Wang S, Kim S, Chawla S, et al. Differentiation between glioblastomas and solitary brain metastases using diffusion tensor imaging. Neuroimage. 2009;44:653–60.

    Article  PubMed  Google Scholar 

  20. Logothetis NK. The underpinnings of the BOLD functional magnetic resonance imaging signal. J Neurosci. 2003;23:3963–71.

    PubMed  CAS  Google Scholar 

  21. Ogawa S, Lee TM. Magnetic resonance imaging of blood vessels at high fields: in vivo and in vitro measurements and image simulation. Magn Reson Med. 1990;16:9–18.

    Article  PubMed  CAS  Google Scholar 

  22. Zhang D, Johnston JM, Fox MD, et al. Preoperative sensorimotor mapping in brain tumor patients using spontaneous fluctuations in neuronal activity imaged with functional magnetic resonance imaging: initial experience. Neurosurgery. 2009;65:226–36.

    Article  PubMed  Google Scholar 

  23. Jiang Z, Krainik A, David O, et al. Impaired fMRI activation in patients with primary brain tumors. Neuroimage. 2010;52:538–48.

    Article  PubMed  Google Scholar 

  24. Kleiser R, Staempfli P, Valavanis A, et al. Impact of fMRI-guided advanced DTI fiber tracking techniques on their clinical applications in patients with brain tumors. Neuroradiology. 2010;52:37–46.

    Article  PubMed  Google Scholar 

  25. Li SW, Wang JF, Jiang T, et al. Preoperative 3 T high field blood oxygen level dependent functional magnetic resonance imaging for glioma involving sensory cortical areas. Chin Med J (Engl). 2010;123:1006–10.

    Google Scholar 

  26. Pantelis E, Papadakis N, Verigos K, et al. Integration of functional MRI and white matter tractography in stereotactic radiosurgery clinical practice. Int J Radiat Oncol Biol Phys. 2010;78:257–67.

    Article  PubMed  Google Scholar 

  27. Talacchi A, Turazzi S, Locatelli F, et al. Surgical treatment of high-grade gliomas in motor areas. The impact of different supportive technologies: a 171-patient series. J Neurooncol. 2010.

  28. Lacroix M, Abi-Said D, Fourney DR, et al. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg. 2001;95:190–8.

    Article  PubMed  CAS  Google Scholar 

  29. Hatiboglu MA, Weinberg JS, Suki D, et al. Impact of intraoperative high-field magnetic resonance imaging guidance on glioma surgery: a prospective volumetric analysis. Neurosurgery. 2009;64:1073–81. discussion 1081.

    Article  PubMed  Google Scholar 

  30. Maesawa S, Fujii M, Nakahara N, et al. Clinical indications for high-field 1.5 T intraoperative magnetic resonance imaging and neuro-navigation for neurosurgical procedures. Review of initial 100 cases. Neurol Med Chir (Tokyo). 2009;49:340–9. discussion 349–350.

    Article  Google Scholar 

  31. Senft C, Franz K, Ulrich CT, et al. Low field intraoperative MRI-guided surgery of gliomas: a single center experience. Clin Neurol Neurosurg. 2010;112:237–43.

    Article  PubMed  Google Scholar 

  32. Senft C, Seifert V, Hermann E, et al. Usefulness of intraoperative ultra low-field magnetic resonance imaging in glioma surgery. Neurosurgery. 2008;63:257–66. discussion 266–257.

    Article  PubMed  Google Scholar 

  33. Ulmer S, Hartwigsen G, Riedel C, et al. Intraoperative dynamic susceptibility contrast MRI (iDSC-MRI) is as reliable as preoperatively acquired perfusion mapping. Neuroimage. 2010;49:2158–62.

    Article  PubMed  Google Scholar 

  34. Ramina R, Coelho Neto M, Giacomelli A, et al. Optimizing costs of intraoperative magnetic resonance imaging. A series of 29 glioma cases. Acta Neurochir (Wien). 2010;152:27–33.

    Article  Google Scholar 

  35. Yrjana SK, Katisko JP, Ojala RO, et al. Versatile intraoperative MRI in neurosurgery and radiology. Acta Neurochir (Wien). 2002;144:271–8. discussion 278.

    Article  CAS  Google Scholar 

  36. • Jankovski A, Francotte F, Vaz G, et al. Intraoperative magnetic resonance imaging at 3-T using a dual independent operating room-magnetic resonance imaging suite: development, feasibility, safety, and preliminary experience. Neurosurgery 2008;63:412–24; discussion 424–416. This article is the first manuscript to report the feasibility of the 3-T iMRI suite both for use by neurosurgeons and radiologists. The article displays that the system is both feasible and safe and allows for increased extent of resection via high-resolution intraoperative imaging.

    Article  PubMed  Google Scholar 

  37. Stummer W, Stepp H, Moller G, et al. Technical principles for protoporphyrin-IX-fluorescence guided microsurgical resection of malignant glioma tissue. Acta Neurochir (Wien). 1998;140:995–1000.

    Article  CAS  Google Scholar 

  38. Stummer W, Stocker S, Wagner S, et al. Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence. Neurosurgery. 1998;42:518–25. discussion 525–516.

    Article  PubMed  CAS  Google Scholar 

  39. Blake E, Curnow A. The hydroxypyridinone iron chelator CP94 can enhance PpIX-induced PDT of cultured human glioma cells. Photochem Photobiol. 2010;86:1154–60.

    Article  PubMed  CAS  Google Scholar 

  40. Valdes PA, Samkoe K, O’Hara JA, et al. Deferoxamine iron chelation increases delta-aminolevulinic acid induced protoporphyrin IX in xenograft glioma model. Photochem Photobiol. 2010;86:471–5.

    Article  PubMed  CAS  Google Scholar 

  41. Haj-Hosseini N, Richter J, Andersson-Engels S, Wardell K. Optical touch pointer for fluorescence guided glioblastoma resection using 5-aminolevulinic acid. Lasers Surg Med. 2010;42:9–14.

    Article  PubMed  Google Scholar 

  42. Nabavi A, Thurm H, Zountsas B, et al. Five-aminolevulinic acid for fluorescence-guided resection of recurrent malignant gliomas: a phase ii study. Neurosurgery. 2009;65:1070–6. discussion 1076–1077.

    Article  PubMed  Google Scholar 

  43. Widhalm G, Wolfsberger S, Minchev G, et al. 5-Aminolevulinic acid is a promising marker for detection of anaplastic foci in diffusely infiltrating gliomas with nonsignificant contrast enhancement. Cancer. 2010;116:1545–52.

    Article  PubMed  CAS  Google Scholar 

  44. Stummer W, Beck T, Beyer W, et al. Long-sustaining response in a patient with non-resectable, distant recurrence of glioblastoma multiforme treated by interstitial photodynamic therapy using 5-ALA: case report. J Neurooncol. 2008;87:103–9.

    Article  PubMed  CAS  Google Scholar 

  45. Stummer W, Tonn JC, Mehdorn HM, et al. Counterbalancing risks and gains from extended resections in malignant glioma surgery: a supplemental analysis from the randomized 5-aminolevulinic acid glioma resection study. J Neurosurg. 2010.

  46. Floeth FW, Sabel M, Ewelt C, et al. Comparison of (18)F-FET PET and 5-ALA fluorescence in cerebral gliomas. Eur J Nucl Med Mol Imaging. 2010.

  47. Carpentier A, McNichols RJ, Stafford RJ, et al. Real-time magnetic resonance-guided laser thermal therapy for focal metastatic brain tumors. Neurosurgery. 2008;63:ONS21–8. discussion ONS28–29.

    Article  PubMed  Google Scholar 

  48. Leonardi MA, Lumenta CB. Stereotactic guided laser-induced interstitial thermotherapy (SLITT) in gliomas with intraoperative morphologic monitoring in an open MR: clinical expierence. Minim Invasive Neurosurg. 2002;45:201–7.

    Article  PubMed  CAS  Google Scholar 

  49. Schwarzmaier HJ, Eickmeyer F, von Tempelhoff W, et al. MR-guided laser-induced interstitial thermotherapy of recurrent glioblastoma multiforme: preliminary results in 16 patients. Eur J Radiol. 2006;59:208–15.

    Article  PubMed  Google Scholar 

  50. Maroon JC, Onik G, Quigley MR, et al. Cryosurgery re-visited for the removal and destruction of brain, spinal and orbital tumours. Neurol Res. 1992;14:294–302.

    PubMed  CAS  Google Scholar 

  51. Anzai Y, Lufkin R, DeSalles A, et al. Preliminary experience with MR-guided thermal ablation of brain tumors. AJNR Am J Neuroradiol. 1995;16:39–48. discussion 49–52.

    PubMed  CAS  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan H. Sherman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sherman, J.H., Hoes, K., Marcus, J. et al. Neurosurgery for Brain Tumors: Update on Recent Technical Advances. Curr Neurol Neurosci Rep 11, 313–319 (2011). https://doi.org/10.1007/s11910-011-0188-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-011-0188-9

Keywords

Navigation