Skip to main content

Advertisement

Log in

Approaches to Objectively Measure Antiretroviral Medication Adherence and Drive Adherence Interventions

  • Behavioral-Bio-Medical Interface (RJ DiClemente and JL Brown, Section Editors)
  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Traditional methods to assess antiretroviral adherence, such as self-report, pill counts, and pharmacy refill data, may be inaccurate in determining actual pill-taking to both antiretroviral therapy (ART) or pre-exposure prophylaxis (PrEP). HIV viral loads serve as surrogates of adherence on ART, but loss of virologic control may occur well after decreases in adherence and viral loads are not relevant to PrEP.

Recent Findings

Pharmacologic measures of adherence, electronic adherence monitors, and ingestible electronic pills all serve as more objective metrics of adherence, surpassing self-report in predicting outcomes. Pharmacologic metrics can identify either recent adherence or cumulative adherence. Recent dosing measures include antiretroviral levels in plasma or urine, as well as emtricitabine-triphosphate in dried blood spots (DBS) for those on tenofovir-emtricitabine-based therapy. A urine tenofovir test has recently been developed into a point-of-care test for bedside adherence monitoring. Cumulative adherence metrics assess adherence over weeks to months and include measurement of tenofovir-diphosphate in peripheral blood mononuclear cells or DBS, as well as ART levels in hair. Electronic adherence monitors and ingestible electronic pills can track pill bottle openings or medication ingestion, respectively.

Summary

New and objective approaches in adherence monitoring can be used to detect nonadherence prior to loss of prevention efficacy or virologic control with PrEP or ART, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Castillo-Mancilla JR, Morrow M, Coyle RP, Coleman SS, Gardner EM, Zheng JH, et al. Tenofovir diphosphate in dried blood spots is strongly associated with viral suppression in individuals with human immunodeficiency virus infections. Clin Infect Dis. 2019;68(8):1335–42. https://doi.org/10.1093/cid/ciy708.

    Article  CAS  PubMed  Google Scholar 

  2. Anderson PL, Liu AY, Castillo-Mancilla JR, Gardner EM, Seifert SM, McHugh C, et al. Intracellular tenofovir-diphosphate and emtricitabine-triphosphate in dried blood spots following directly observed therapy. Antimicrob Agents Chemother. 2018;62(1). https://doi.org/10.1128/AAC.01710-17.

  3. Musinguzi N, Mocello RA, Boum Y 2nd, Hunt PW, Martin JN, Haberer JE, et al. Duration of viral suppression and risk of rebound viremia with first-line antiretroviral therapy in rural Uganda. AIDS Behav. 2017;21(6):1735–40. https://doi.org/10.1007/s10461-016-1447-1.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rosenblum M, Deeks SG, van der Laan M, Bangsberg DR. The risk of virologic failure decreases with duration of HIV suppression, at greater than 50% adherence to antiretroviral therapy. PLoS One. 2009;4(9):e7196. https://doi.org/10.1371/journal.pone.0007196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Morrow M, MaWhinney S, Coyle RP, Coleman SS, Gardner EM, Zheng JH, et al. Predictive value of tenofovir diphosphate in dried blood spots for future viremia in persons living with HIV. J Infect Dis. 2019;220(4):635–42. https://doi.org/10.1093/infdis/jiz144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stohr W, Fidler S, McClure M, Weber J, Cooper D, Ramjee G, et al. Duration of HIV-1 viral suppression on cessation of antiretroviral therapy in primary infection correlates with time on therapy. PLoS One. 2013;8(10):e78287. https://doi.org/10.1371/journal.pone.0078287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Haas AD, Zaniewski E, Anderegg N, Ford N, Fox MP, Vinikoor M, et al. Retention and mortality on antiretroviral therapy in sub-Saharan Africa: collaborative analyses of HIV treatment programmes. J Int AIDS Soc. 2018;21(2). https://doi.org/10.1002/jia2.25084.

  8. Castillo-Mancilla JR, Brown TT, Erlandson KM, Palella FJ Jr, Gardner EM, Macatangay BJ, et al. Suboptimal adherence to combination antiretroviral therapy is associated with higher levels of inflammation despite HIV suppression. Clin Infect Dis. 2016;63(12):1661–7. https://doi.org/10.1093/cid/ciw650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Castillo-Mancilla JR, Morrow M, Boum Y, Byakwaga H, Haberer JE, Martin JN, et al. Brief report: higher ART adherence is associated with lower systemic inflammation in treatment-naive Ugandans who achieve virologic suppression. J Acquir Immune Defic Syndr. 2018;77(5):507–13. https://doi.org/10.1097/QAI.0000000000001629.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Castillo-Mancilla JR, Phillips AN, Neaton JD, Neuhaus J, Sharma S, Baker JV, et al. Incomplete ART adherence is associated with higher inflammation in individuals who achieved virologic suppression in the START study. J Int AIDS Soc. 2019;22(6):e25297. https://doi.org/10.1002/jia2.25297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Buchbinder SP, Liu AY. CROI 2019: advances in HIV prevention and plans to end the epidemic. Top Antivir Med. 2019;27(1):8–25.

    PubMed  PubMed Central  Google Scholar 

  12. Cohen MS, Chen YQ, McCauley M, Gamble T, Hosseinipour MC, Kumarasamy N, et al. Antiretroviral therapy for the prevention of HIV-1 transmission. N Engl J Med. 2016;375(9):830–9. https://doi.org/10.1056/NEJMoa1600693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hermans LE, Steegen K, ter Heine R, Schuurman R, Tempelman H, Moraba R et al. PI Drug-Level Testing as a Screening Tool for Drug Resistance in 2nd-Line ART Failure. Conference on Retroviruses and Opportunistic Infections (CROI); March 4-7, 2019; Seattle, Washington; Abstract #461. Webcast available at: http://www.croiwebcasts.org/console/player/41115?mediaType=slideVideo&.

  14. Winchester NE, Maldarelli F, Mejia Y, Dee N, Dewar R, Laidlaw E, et al. 8-day inpatient directly observed therapy for ART failure: a tool for preventing unnecessary ART changes and optimizing adherence support. Clin Infect Dis. 2019. https://doi.org/10.1093/cid/ciz590.

  15. Glidden DV, Amico KR, Liu AY, Hosek SG, Anderson PL, Buchbinder SP, et al. Symptoms, side effects and adherence in the iPrEx open-label extension. Clin Infect Dis. 2016;62(9):1172–7. https://doi.org/10.1093/cid/ciw022.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Molina JM, Capitant C, Spire B, Pialoux G, Cotte L, Charreau I, et al. On-demand Preexposure prophylaxis in men at high risk for HIV-1 infection. N Engl J Med. 2015;373(23):2237–46. https://doi.org/10.1056/NEJMoa1506273.

    Article  CAS  PubMed  Google Scholar 

  17. Hare CB, Coll J, Ruane P, Molina JM, Mayer KH, Jessen H et al. The Phase 3 Discover Study: Daily F/TAF or F/TDF for HIV Pre-Exposure Prophylaxis. Conference on Retroviruses and Opportunistic Infections; March 4–7, 2019; Seattle, Washington. Abstract 104LB. Available at: https://www.croiconference.org/abstract/phase-3-discover-study-daily-ftaf-or-ftdf-hiv-preexposure-prophylaxis/.

  18. Marrazzo JM, Ramjee G, Richardson BA, Gomez K, Mgodi N, Nair G, et al. Tenofovir-based preexposure prophylaxis for HIV infection among African women. N Engl J Med. 2015;372(6):509–18. https://doi.org/10.1056/NEJMoa1402269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Corneli AL, McKenna K, Perry B, Ahmed K, Agot K, Malamatsho F, et al. The science of being a study participant: FEM-PrEP participants’ explanations for overreporting adherence to the study pills and for the whereabouts of unused pills. J Acquir Immune Defic Syndr. 2015;68(5):578–84. https://doi.org/10.1097/QAI.0000000000000525.

    Article  PubMed  Google Scholar 

  20. Van Damme L, Corneli A, Ahmed K, Agot K, Lombaard J, Kapiga S, et al. Preexposure prophylaxis for HIV infection among African women. N Engl J Med. 2012;367(5):411–22. https://doi.org/10.1056/NEJMoa1202614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. van der Straten A, Brown ER, Marrazzo JM, Chirenje MZ, Liu K, Gomez K, et al. Divergent adherence estimates with pharmacokinetic and behavioural measures in the MTN-003 (VOICE) study. J Int AIDS Soc. 2016;19(1):20642. https://doi.org/10.7448/IAS.19.1.20642.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Baker Z, Javanbakht M, Mierzwa S, Pavel C, Lally M, Zimet G, et al. Predictors of over-reporting HIV pre-exposure prophylaxis (PrEP) adherence among young men who have sex with men (YMSM) in self-reported versus biomarker data. AIDS Behav. 2017. https://doi.org/10.1007/s10461-017-1958-4.

  23. Agot K, Taylor D, Corneli AL, Wang M, Ambia J, Kashuba AD, et al. Accuracy of self-report and pill-count measures of adherence in the FEM-PrEP clinical trial: implications for future HIV-prevention trials. AIDS Behav. 2015;19(5):743–51. https://doi.org/10.1007/s10461-014-0859-z.

    Article  PubMed  Google Scholar 

  24. Blumenthal J, Haubrich R. Pre-exposure prophylaxis for HIV infection: how antiretroviral pharmacology helps to monitor and improve adherence. Expert Opin Pharmacother. 2013;14(13):1777–85. https://doi.org/10.1517/14656566.2013.812072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Landovitz RJ, Beymer M, Kofron R, Amico KR, Psaros C, Bushman L, et al. Plasma Tenofovir levels to support adherence to TDF/FTC preexposure prophylaxis for HIV prevention in MSM in Los Angeles, California. J Acquir Immune Defic Syndr. 2017;76(5):501–11. https://doi.org/10.1097/QAI.0000000000001538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Castillo-Mancilla JR, Haberer JE. Adherence measurements in HIV: new advancements in pharmacologic methods and real-time monitoring. Curr HIV/AIDS Rep. 2018;15(1):49–59. https://doi.org/10.1007/s11904-018-0377-0.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Stirratt MJ, Curtis JR, Danila MI, Hansen R, Miller MJ, Gakumo CA. Advancing the science and practice of medication adherence. J Gen Intern Med. 2018;33(2):216–22. https://doi.org/10.1007/s11606-017-4198-4.

    Article  PubMed  Google Scholar 

  28. Stirratt MJ, Dunbar-Jacob J, Crane HM, Simoni JM, Czajkowski S, Hilliard ME, et al. Self-report measures of medication adherence behavior: recommendations on optimal use. Transl Behav Med. 2015;5(4):470–82. https://doi.org/10.1007/s13142-015-0315-2.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pearson CR, Simoni JM, Hoff P, Kurth AE, Martin DP. Assessing antiretroviral adherence via electronic drug monitoring and self-report: an examination of key methodological issues. AIDS Behav. 2007;11(2):161–73. https://doi.org/10.1007/s10461-006-9133-3.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Simoni JM, Kurth AE, Pearson CR, Pantalone DW, Merrill JO, Frick PA. Self-report measures of antiretroviral therapy adherence: a review with recommendations for HIV research and clinical management. AIDS Behav. 2006;10(3):227–45. https://doi.org/10.1007/s10461-006-9078-6.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Berg KM, Arnsten JH. Practical and conceptual challenges in measuring antiretroviral adherence. J Acquir Immune Defic Syndr. 2006;43(Suppl 1):S79–87.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kagee A, Nel A. Assessing the association between self-report items for HIV pill adherence and biological measures. AIDS Care. 2012;24(11):1448–52. https://doi.org/10.1080/09540121.2012.687816.

    Article  PubMed  Google Scholar 

  33. Okatch H, Beiter K, Eby J, Chapman J, Marukutira T, Tshume O, et al. Brief report: apparent antiretroviral overadherence by pill count is associated with HIV treatment failure in adolescents. J Acquir Immune Defic Syndr. 2016;72(5):542–5. https://doi.org/10.1097/QAI.0000000000000994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bisson GP, Gross R, Bellamy S, Chittams J, Hislop M, Regensberg L, et al. Pharmacy refill adherence compared with CD4 count changes for monitoring HIV-infected adults on antiretroviral therapy. PLoS Med. 2008;5(5):e109. https://doi.org/10.1371/journal.pmed.0050109.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Molina JM, Charreau I, Chidiac C, Pialoux G, Cua E, Delaugerre C, et al. Post-exposure prophylaxis with doxycycline to prevent sexually transmitted infections in men who have sex with men: an open-label randomised substudy of the ANRS IPERGAY trial. Lancet Infect Dis. 2018;18(3):308–17. https://doi.org/10.1016/S1473-3099(17)30725-9.

    Article  CAS  PubMed  Google Scholar 

  36. O'Connor JL, Gardner EM, Esser S, Mannheimer SB, Lifson AR, Telzak EE, et al. A simple self-reported adherence tool as a predictor of viral rebound in people with viral suppression on antiretroviral therapy. HIV Med. 2016;17(2):124–32. https://doi.org/10.1111/hiv.12284.

    Article  CAS  PubMed  Google Scholar 

  37. Mitchell JT, LeGrand S, Hightow-Weidman LB, McKellar MS, Kashuba AD, Cottrell M, et al. Smartphone-based contingency management intervention to improve pre-exposure prophylaxis adherence: pilot trial. JMIR Mhealth Uhealth. 2018;6(9):e10456. https://doi.org/10.2196/10456.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Marcus JL, Hurley LB, Hare CB, Nguyen DP, Phengrasamy T, Silverberg MJ, et al. Preexposure prophylaxis for HIV prevention in a large integrated health care system: adherence, renal safety, and discontinuation. J Acquir Immune Defic Syndr. 2016;73(5):540–6. https://doi.org/10.1097/QAI.0000000000001129.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hendrix CW, Andrade A, Bumpus NN, Kashuba AD, Marzinke MA, Moore A, et al. Dose frequency ranging pharmacokinetic study of Tenofovir-Emtricitabine after directly observed dosing in healthy volunteers to establish adherence benchmarks (HPTN 066). AIDS Res Hum Retrovir. 2016;32(1):32–43. https://doi.org/10.1089/AID.2015.0182.

    Article  CAS  PubMed  Google Scholar 

  40. Koenig HC, Mounzer K, Daughtridge GW, Sloan CE, Lalley-Chareczko L, Moorthy GS, et al. Urine assay for tenofovir to monitor adherence in real time to tenofovir disoproxil fumarate/emtricitabine as pre-exposure prophylaxis. HIV Med. 2017;18(6):412–8. https://doi.org/10.1111/hiv.12518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Anderson PL, Glidden DV, Liu A, Buchbinder S, Lama JR, Guanira JV, et al. Emtricitabine-tenofovir concentrations and pre-exposure prophylaxis efficacy in men who have sex with men. Sci Transl Med. 2012;4(151):151ra25. https://doi.org/10.1126/scitranslmed.3004006.

    Article  CAS  Google Scholar 

  42. Gandhi M, Greenblatt RM. Hair it is: the long and short of monitoring antiretroviral treatment. Ann Intern Med. 2002;137(8):696–7.

    Article  PubMed  Google Scholar 

  43. Huang Y, Gandhi M, Greenblatt RM, Gee W, Lin ET, Messenkoff N. Sensitive analysis of anti-HIV drugs, efavirenz, lopinavir and ritonavir, in human hair by liquid chromatography coupled with tandem mass spectrometry. Rapid Commun Mass Spectrom. 2008;22(21):3401–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Huang Y, Yang Q, Yoon K, Lei Y, Shi R, Gee W, et al. Microanalysis of the antiretroviral nevirapine in human hair from HIV-infected patients by liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem. 2011;401(6):1923–33. https://doi.org/10.1007/s00216-011-5278-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gandhi M, Greenblatt RM, Bacchetti P, Jin C, Huang Y, Anastos K, et al. A single-nucleotide polymorphism in CYP2B6 leads to >3-fold increases in efavirenz concentrations in plasma and hair among HIV-infected women. J Infect Dis. 2012;206(9):1453–61. https://doi.org/10.1093/infdis/jis508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. van Zyl GU, van Mens TE, McIlleron H, Zeier M, Nachega JB, Decloedt E, et al. Low lopinavir plasma or hair concentrations explain second line protease inhibitor failures in a resource-limited setting. J Acquir Immune Defic Syndr. 2011;56(4):333–9. https://doi.org/10.1097/QAI.0b013e31820dc0cc.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Prasitsuebsai W, Kerr SJ, Truong KH, Ananworanich J, Do VC, Nguyen LV, et al. Using lopinavir concentrations in hair samples to assess treatment outcomes on second-line regimens among Asian children. AIDS Res Hum Retrovir. 2015;31(10):1009–14. https://doi.org/10.1089/AID.2015.0111.

    Article  CAS  PubMed  Google Scholar 

  48. Gandhi M, Ameli N, Bacchetti P, Gange SJ, Anastos K, Levine A, et al. Protease inhibitor levels in hair strongly predict virologic response to treatment. AIDS. 2009;23(4):471–8. https://doi.org/10.1097/QAD.0b013e328325a4a9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gandhi M, Ameli N, Bacchetti P, Anastos K, Gange SJ, Minkoff H, et al. Atazanavir concentration in hair is the strongest predictor of outcomes on antiretroviral therapy. Clin Infect Dis. 2011;52(10):1267–75. https://doi.org/10.1093/cid/cir131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cohan D, Natureeba P, Koss CA, Plenty A, Luwedde F, Mwesigwa J, et al. Efficacy and safety of lopinavir/ritonavir versus efavirenz-based antiretroviral therapy in HIV-infected pregnant Ugandan women. AIDS. 2015;29(2):183–91. https://doi.org/10.1097/QAD.0000000000000531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Koss CA, Natureeba P, Mwesigwa J, Cohan D, Nzarubara B, Bacchetti P, et al. Hair concentrations of antiretrovirals predict viral suppression in HIV-infected pregnant and breastfeeding Ugandan women. AIDS. 2015;29(7):825–30. https://doi.org/10.1097/QAD.0000000000000619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chawana TD, Gandhi M, Nathoo K, Ngara B, Louie A, Horng H, et al. Defining a cutoff for atazanavir in hair samples associated with Virological failure among adolescents failing second-line antiretroviral treatment. J Acquir Immune Defic Syndr. 2017;76(1):55–9. https://doi.org/10.1097/QAI.0000000000001452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pintye J, Bacchetti P, Teeraananchai S, Kerr S, Prasitsuebsai W, Singtoroj T, et al. Brief report: lopinavir hair concentrations are the strongest predictor of viremia in HIV-infected Asian children and adolescents on second-line antiretroviral therapy. J Acquir Immune Defic Syndr. 2017;76(4):367–71. https://doi.org/10.1097/QAI.0000000000001527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Baxi SM, Greenblatt RM, Bacchetti P, Jin C, French AL, Keller MJ, et al. Nevirapine concentration in hair samples is a strong predictor of virologic suppression in a prospective cohort of HIV-infected patients. PLoS One. 2015;10(6):e0129100. https://doi.org/10.1371/journal.pone.0129100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gandhi M, Ofokotun I, Bacchetti P, Jin C, Ribaudo HJ, Haas DW, et al. Antiretroviral concentrations in hair strongly predict virologic response in a large HIV treatment-naive clinical trial. Clin Infect Dis. 2019;5:1044–7. https://doi.org/10.1093/cid/ciy764.

    Article  CAS  Google Scholar 

  56. Gandhi M, Mwesigwa J, Aweeka F, Plenty A, Charlebois E, Ruel TD, et al. Hair and plasma data show that Lopinavir, ritonavir, and Efavirenz all transfer from mother to infant in utero, but only Efavirenz transfers via breastfeeding. J Acquir Immune Defic Syndr. 2013;63(5):578–84. https://doi.org/10.1097/QAI.0b013e31829c48ad.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hickey MD, Salmen CR, Tessler RA, Omollo D, Bacchetti P, Magerenge R, et al. Antiretroviral concentrations in small hair samples as a feasible marker of adherence in rural Kenya. J Acquir Immune Defic Syndr. 2014;66(3):311–5. https://doi.org/10.1097/QAI.0000000000000154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Olds PK, Kiwanuka JP, Nansera D, Huang Y, Bacchetti P, Jin C, et al. Assessment of HIV antiretroviral therapy adherence by measuring drug concentrations in hair among children in rural Uganda. AIDS Care. 2015;27(3):327–32. https://doi.org/10.1080/09540121.2014.983452.

    Article  PubMed  Google Scholar 

  59. Bartelink IH, Savic RM, Mwesigwa J, Achan J, Clark T, Plenty A, et al. Pharmacokinetics of lopinavir/ritonavir and efavirenz in food insecure HIV-infected pregnant and breastfeeding women in Tororo, Uganda. J Clin Pharmacol. 2014;54(2):121–32. https://doi.org/10.1002/jcph.167.

    Article  CAS  PubMed  Google Scholar 

  60. Gandhi M, Yang Q, Bacchetti P, Huang Y. Short communication: a low-cost method for analyzing nevirapine levels in hair as a marker of adherence in resource-limited settings. AIDS Res Hum Retrovir. 2014;30(1):25–8. https://doi.org/10.1089/AID.2013.0239.

    Article  CAS  PubMed  Google Scholar 

  61. Gwadz M, Cleland CM, Applegate E, Belkin M, Gandhi M, Salomon N, et al. Behavioral intervention improves treatment outcomes among HIV-infected individuals who have delayed, declined, or discontinued antiretroviral therapy: a randomized controlled trial of a novel intervention. AIDS Behav. 2015;19(10):1801–17. https://doi.org/10.1007/s10461-015-1054-6.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hickey MD, Salmen CR, Omollo D, Mattah B, Fiorella KJ, Geng EH, et al. Implementation and operational research: pulling the network together: quasiexperimental trial of a patient-defined support network intervention for promoting engagement in HIV care and medication adherence on Mfangano Island, Kenya. J Acquir Immune Defic Syndr. 2015;69(4):e127–34. https://doi.org/10.1097/QAI.0000000000000664.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Gandhi M, Gandhi RT, Stefanescu A, Bosch RJ, Cyktor JC, Horng H, et al. Cumulative antiretroviral exposure measured in hair is not associated with measures of HIV persistence or inflammation among individuals on suppressive ART. J Infect Dis. 2018;218:234–8. https://doi.org/10.1093/infdis/jiy011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Phung N, Kuncze K, Okochi H, Louie A, Benet LZ, Ofokotun I, et al. Development and validation of an assay to analyze atazanavir in human hair via liquid chromatography-tandem mass spectrometry (LC-MS/MS). Rapid Commun Mass Spectrom. 2018;32(5):431–41. https://doi.org/10.1002/rcm.8058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Liu AY, Yang Q, Huang Y, Bacchetti P, Anderson PL, Jin C, et al. Strong relationship between oral dose and tenofovir hair levels in a randomized trial: hair as a potential adherence measure for pre-exposure prophylaxis (PrEP). PLoS One. 2014;9(1):e83736. https://doi.org/10.1371/journal.pone.0083736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Baxi SM, Liu A, Bacchetti P, Mutua G, Sanders EJ, Kibengo FM, et al. Comparing the novel method of assessing PrEP adherence/exposure using hair samples to other pharmacologic and traditional measures. J Acquir Immune Defic Syndr. 2015;68(1):13–20. https://doi.org/10.1097/QAI.0000000000000386.

    Article  CAS  PubMed  Google Scholar 

  67. Gandhi M, Glidden DV, Liu A, Anderson PL, Horng H, Defechereux P, et al. Strong correlation between concentrations of tenofovir (TFV) emtricitabine (FTC) in hair and TFV diphosphate and FTC triphosphate in dried blood spots in the iPrEx open label extension: implications for pre-exposure prophylaxis adherence monitoring. J Infect Dis. 2015;212(9):1402–6. https://doi.org/10.1093/infdis/jiv239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gandhi M, Glidden DV, Mayer K, Schechter M, Buchbinder S, Grinsztejn B, et al. Association of age, baseline kidney function, and medication exposure with declines in creatinine clearance on pre-exposure prophylaxis: an observational cohort study. Lancet HIV. 2016;3(11):e521–e8. https://doi.org/10.1016/S2352-3018(16)30153-9.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Koss CA, Bacchetti P, Hillier SL, Livant E, Horng H, Mgodi N, et al. Differences in cumulative exposure and adherence to tenofovir in the VOICE, iPrEx OLE, and PrEP demo studies as determined via hair concentrations. AIDS Res Hum Retrovir. 2017;33(8):778–83. https://doi.org/10.1089/aid.2016.0202.

    Article  CAS  PubMed  Google Scholar 

  70. Saberi P, Neilands TB, Ming K, Johnson MO, Kuncze K, Koss CA, et al. Strong correlation between concentrations of antiretrovirals in home-collected and study-collected hair samples: implications for adherence monitoring. J Acquir Immune Defic Syndr. 2017;76(4):e101–e3. https://doi.org/10.1097/QAI.0000000000001492.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Gandhi M, Murnane PM, Bacchetti P, Elion R, Kolber MA, Cohen SE, et al. Hair levels of preexposure prophylaxis drugs measure adherence and are associated with renal decline among men/transwomen. AIDS. 2017;31(16):2245–51. https://doi.org/10.1097/QAD.0000000000001615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Koss CA, Hosek SG, Bacchetti P, Anderson PL, Liu AY, Horng H, et al. Comparison of measures of adherence to human immunodeficiency virus preexposure prophylaxis among adolescent and young men who have sex with men in the United States. Clin Infect Dis. 2018;66(2):213–9. https://doi.org/10.1093/cid/cix755.

    Article  CAS  PubMed  Google Scholar 

  73. Abaasa A, Hendrix C, Gandhi M, Anderson P, Kamali A, Kibengo F, et al. Utility of different adherence measures for PrEP: patterns and incremental value. AIDS Behav. 2018;22(4):1165–73. https://doi.org/10.1007/s10461-017-1951-y.

    Article  PubMed  Google Scholar 

  74. Seifert SM, Castillo-Mancilla JR, Erlandson K, Morrow M, Gandhi M, Kuncze K, et al. Adherence biomarker measurements in older and younger HIV-infected adults receiving tenofovir-based therapy. J Acquir Immune Defic Syndr. 2017;77(3):295–8. https://doi.org/10.1097/QAI.0000000000001596.

    Article  Google Scholar 

  75. Baxi SM, Vittinghoff E, Bacchetti P, Huang Y, Chillag K, Wiegand R, et al. Comparing pharmacologic measures of tenofovir exposure in a U.S. pre-exposure prophylaxis randomized trial. PLoS One. 2018;13(1):e0190118. https://doi.org/10.1371/journal.pone.0190118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Markowitz M, Grossman H, Anderson PL, Grant R, Gandhi M, Horng H, et al. Newly acquired infection with multidrug-resistant HIV-1 in a patient adherent to Preexposure prophylaxis. J Acquir Immune Defic Syndr. 2017;76(4):e104–e6. https://doi.org/10.1097/QAI.0000000000001534.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Thaden JT, Gandhi M, Okochi H, Hurt CB, McKellar MS. Seroconversion on preexposure prophylaxis: a case report with segmental hair analysis for timed adherence determination. AIDS. 2018;32(9):F1–4. https://doi.org/10.1097/QAD.0000000000001825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Colby DJ, Kroon E, Sacdalan C, Gandhi M, Grant RM, Phanuphak P, et al. Acquisition of Multidrug-Resistant Human Immunodeficiency Virus Type 1 infection in a patient taking preexposure prophylaxis. Clin Infect Dis. 2018;31:962–4. https://doi.org/10.1093/cid/ciy321.

    Article  CAS  Google Scholar 

  79. Koss CA, Liu AY, Castillo-Mancilla J, Bacchetti P, McHugh C, Kuncze K, et al. Similar tenofovir hair concentrations in men and women after directly observed dosing of tenofovir disoproxil fumarate/emtricitabine: implications for preexposure prophylaxis adherence monitoring. AIDS. 2018;32(15):2189–94. https://doi.org/10.1097/QAD.0000000000001935.

    Article  CAS  PubMed  Google Scholar 

  80. Cohen SE, Sachdev D, Lee SA, Scheer S, Bacon O, Chen MJ, et al. Acquisition of tenofovir-susceptible, emtricitabine-resistant HIV despite high adherence to daily pre-exposure prophylaxis: a case report. Lancet HIV. 2018. https://doi.org/10.1016/S2352-3018(18)30288-1.

  81. Gandhi M, Devi S, Bacchetti P, Chandy S, Heylen E, Phung N, et al. Measuring adherence to antiretroviral therapy via hair concentrations in India. J Acquir Immune Defic Syndr. 2019. https://doi.org/10.1097/QAI.0000000000001993.

  82. Tabb ZJ, Mmbaga BT, Gandhi M, Louie A, Kuncze K, Okochi H, et al. Antiretroviral drug concentrations in hair are associated with virologic outcomes among young people living with HIV in Tanzania. AIDS. 2018;32(9):1115–23. https://doi.org/10.1097/QAD.0000000000001788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Murnane PM, Bacchetti P, Currier JS, Brummel S, Okochi H, Phung N, et al. Tenofovir concentrations in hair strongly predict virologic suppression in breastfeeding women. AIDS. 2019;33(10):1657–62. https://doi.org/10.1097/QAD.0000000000002237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jotwani V, Scherzer R, Glidden DV, Mehrotra M, Defechereux P, Liu A, et al. Pre-exposure prophylaxis with tenofovir disoproxil fumarate/emtricitabine and kidney tubular dysfunction in HIV-uninfected individuals. J Acquir Immune Defic Syndr. 2018;78(2):169–74. https://doi.org/10.1097/QAI.0000000000001654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Saberi P, Ming K, Legnitto D, Neilands TB, Gandhi M, Johnson MO. Novel methods to estimate antiretroviral adherence: protocol for a longitudinal study. Patient Prefer Adherence. 2018;12:1033–42. https://doi.org/10.2147/PPA.S166380.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Hojilla JC, Satre DD, Glidden DV, McMahan VM, Gandhi M, Defechereux P, et al. Brief report: cocaine use and pre-exposure prophylaxis: adherence, care engagement, and kidney function. J Acquir Immune Defic Syndr. 2019;81(1):78–82. https://doi.org/10.1097/QAI.0000000000001972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Saberi P, Ming K, Legnitto D, Neilands TB, Gandhi M, Johnson MO. Feasibility and acceptability of novel methods to estimate antiretroviral adherence: a longitudinal study. PLoS One. 2019;14(1):e0210791. https://doi.org/10.1371/journal.pone.0210791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ascher SB, Scherzer R, Estrella MM, Shigenaga J, Spaulding KA, Glidden DV, et al. HIV pre-exposure prophylaxis with tenofovir disoproxil fumarate/emtricitabine and changes in kidney function and tubular health. AIDS. 2019. https://doi.org/10.1097/QAD.0000000000002456.

  89. Velloza J, Bacchetti P, Hendrix CW, Murnane P, Hughes JP, Li M, et al. Short- and long-term pharmacologic measures of HIV pre-exposure prophylaxis use among high-risk men who have sex with men in HPTN 067/ADAPT. J Acquir Immune Defic Syndr. 2019;82(2):149–58. https://doi.org/10.1097/QAI.0000000000002128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Castillo-Mancilla JR, Zheng JH, Rower JE, Meditz A, Gardner EM, Predhomme J, et al. Tenofovir, emtricitabine, and tenofovir diphosphate in dried blood spots for determining recent and cumulative drug exposure. AIDS Res Hum Retrovir. 2013;29(2):384–90. https://doi.org/10.1089/AID.2012.0089.

    Article  CAS  PubMed  Google Scholar 

  91. Grant RM, Lama JR, Anderson PL, McMahan V, Liu AY, Vargas L, et al. Preexposure chemoprophylaxis for HIV prevention in men who have sex with men. N Engl J Med. 2010;363(27):2587–99. https://doi.org/10.1056/NEJMoa1011205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Yager JL, Coyle RP, Coleman SS, Ellison L, Zheng JH, Bushman L, et al. Moderately high tenofovir diphosphate in dried blood spots indicates drug resistance in viremic persons living with HIV. J Int Assoc Provid AIDS Care. 2019;18:2325958219888457. https://doi.org/10.1177/2325958219888457.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Nettles RE, Kieffer TL, Parsons T, Johnson J, Cofrancesco J Jr, Gallant JE, et al. Marked intraindividual variability in antiretroviral concentrations may limit the utility of therapeutic drug monitoring. Clin Infect Dis. 2006;42(8):1189–96.

    Article  CAS  PubMed  Google Scholar 

  94. Clevenbergh P, Garaffo R, Durant J, Dellamonica P. PharmAdapt: a randomized prospective study to evaluate the benefit of therapeutic monitoring of protease inhibitors: 12 week results. AIDS. 2002;16:2311–5.

    Article  CAS  PubMed  Google Scholar 

  95. Wertheimer BZ, Freedberg KA, Walensky RP, Yazdanapah Y, Losina E. Therapeutic drug monitoring in HIV treatment: a literature review. HIV Clin Trials. 2006;7(2):59–69.

    Article  PubMed  Google Scholar 

  96. Podsadecki TJ, Vrijens BC, Tousset EP, Rode RA, Hanna GJ. “White coat compliance” limits the reliability of therapeutic drug monitoring in HIV-1-infected patients. HIV Clin Trials. 2008;9(4):238–46.

    Article  PubMed  Google Scholar 

  97. Gandhi M, Bacchetti P, Rodrigues WC, Spinelli M, Koss CA, Drain PK, et al. Development and validation of an immunoassay for tenofovir in urine as a real-time metric of antiretroviral adherence. EClin Med (Published by The Lancet). 2018. https://doi.org/10.1016/jeclinm201808004.

  98. Gandhi M, Bacchetti P, Spinelli MA, Okochi H, Baeten JM, Siriprakaisil O, et al. Brief report: validation of a urine tenofovir immunoassay for adherence monitoring to PrEP and ART and Establishing the cutoff for a point-of-care test. J Acquir Immune Defic Syndr. 2019;81(1):72–7. https://doi.org/10.1097/QAI.0000000000001971.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Spinelli MA, Glidden DV, Rodrigues WC, Wang G, Vincent M, Okochi H, et al. Low tenofovir level in urine by a novel immunoassay is associated with seroconversion in a PrEP demonstration project. AIDS. 2019;5:867–72. https://doi.org/10.1097/QAD.0000000000002135.

    Article  CAS  Google Scholar 

  100. Gandhi M, Wang G, King R, Rodrigues WC, Vincent M, Glidden DV, et al. Development and validation of the first point-of-care assay to objectively monitor adherence to HIV treatment and prevention in real-time in routine settings. AIDS. 2020;34(2):255–60. https://doi.org/10.1097/QAD.0000000000002395.

    Article  CAS  PubMed  Google Scholar 

  101. Spinelli MA, Rodrigues WC, Wang G, Vincent M, Glidden DV, Okochi H, et al. High accuracy of a real-time urine antibody-based tenofovir point-of-care test compared to laboratory-based ELISA in diverse populations. JAIDS. 2020 ;84(2):149–2. https://doi.org/10.1097/QAI.0000000000002322.

  102. Zheng JH, Rower C, McAllister K, Castillo-Mancilla J, Klein B, Meditz A, et al. Application of an intracellular assay for determination of tenofovir-diphosphate and emtricitabine-triphosphate from erythrocytes using dried blood spots. J Pharm Biomed Anal. 2016;122:16–20. https://doi.org/10.1016/j.jpba.2016.01.038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Castillo-Mancilla J, Coyle RP, Zheng JH, Ellison L, Roon L, Fey J et al. Tenofovir diphosphate arising from TAF is quantifiable in dried blood spots. Conference on Retroviruses and Opportunistic Infections (CROI); February 13-16, 2017; Seattle, Washington; Abstract 405. Accessible at: https://www.croiconference.org/abstract/tenofovir-diphosphate-arising-taf-quantifiable-dried-blood-spots/.

  104. Yager J, Castillo-Mancilla J, Ibrahim M, Brooks K, McHugh C, MaWhinney S et al. Tenofovir diphosphate in dried blood spots following escalating TAF/FTC dosing. Accepted for Themed Discusison presentation CROI 2019 Seattle, WA. 2019.

  105. Castillo-Mancilla J, Seifert S, Campbell K, Coleman S, McAllister K, Zheng JH, et al. Emtricitabine-triphosphate in dried blood spots as a marker of recent dosing. Antimicrob Agents Chemother. 2016;60(11):6692–7. https://doi.org/10.1128/AAC.01017-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Grant RM, Anderson PL, McMahan V, Liu A, Amico KR, Mehrotra M, et al. Uptake of pre-exposure prophylaxis, sexual practices, and HIV incidence in men and transgender women who have sex with men: a cohort study. Lancet Infect Dis. 2014;14(9):820–9. https://doi.org/10.1016/S1473-3099(14)70847-3.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Liu AY, Cohen SE, Vittinghoff E, Anderson PL, Doblecki-Lewis S, Bacon O, et al. Preexposure prophylaxis for HIV infection integrated with municipal- and community-based sexual health services. JAMA Intern Med. 2016;176(1):75–84. https://doi.org/10.1001/jamainternmed.2015.4683.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Hosek SG, Rudy B, Landovitz R, Kapogiannis B, Siberry G, Rutledge B, et al. An HIV Preexposure prophylaxis demonstration project and safety study for young MSM. J Acquir Immune Defic Syndr. 2017;74(1):21–9. https://doi.org/10.1097/QAI.0000000000001179.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Hare C, Coll J, Ruane P, Molina J, Mayer K, Jessen H, editors. The phase 3 DISCOVER Study: Daily F/TAF or F/TDF for HIV pre-exposure prophylaxis. annual Conference on Retroviruses and Opportunistic Infections (CROI). Seattle; 2019.

  110. Knox DC, Anderson PL, Harrigan PR, Tan DH. Multidrug-resistant HIV-1 infection despite preexposure prophylaxis. N Engl J Med. 2017 ;376(5):501–2. https://doi.org/10.1056/NEJMc1611639.

  111. Markowitz M, Grossman H, Anderson PL, Grant R, Gandhi M, Horng H, et al. Newly acquired infection with multi-drug resistant HIV-1 in a patient adherent to pre-exposure prophylaxis. J Acquir Immune Defic Syndr. 2017.

  112. Seifert SM, Castillo-Mancilla JR, Erlandson K, Morrow M, Gandhi M, Kuncze K, et al. Adherence biomarker measurements in older and younger HIV-infected adults receiving tenofovir-based therapy. J Acquir Immune Defic Syndr. 2018 ;77(3):295–8. https://doi.org/10.1097/QAI.0000000000001596.

  113. Pu F, Pandey S, Bushman LR, Anderson PL, Ouyang Z, Cooks RG. Direct quantitation of tenofovir diphosphate in human blood with mass spectrometry for adherence monitoring. Anal Bioanal Chem. 2020. https://doi.org/10.1007/s00216-019-02304-0.

  114. Sharma A, Stephenson R, Sallabank G, Merrill L, Sullivan S, Gandhi M. Acceptability and feasibility of self-collecting biological specimens for HIV, sexually transmitted infection, and adherence testing among high-risk populations (Project Caboodle!): protocol for an exploratory mixed-methods study. JMIR Res Protoc. 2019;8(5):e13647. https://doi.org/10.2196/13647.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Koester KA, Liu A, Eden C, Amico KR, McMahan V, Goicochea P, et al. Acceptability of drug detection monitoring among participants in an open-label pre-exposure prophylaxis study. AIDS Care. 2015;27(10):1199–204. https://doi.org/10.1080/09540121.2015.1039958.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Spinelli MA, Glidden DV, Rodrigues WC, Wang G, Vincent M, Okochi H, et al. Low tenofovir level in urine by a novel immunoassay is associated with seroconversion in a preexposure prophylaxis demonstration project. AIDS. 2019;33(5):867–72. https://doi.org/10.1097/QAD.0000000000002135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kebaabetswe PM, Stirratt MJ, McLellan-Lemal E, Henderson FL, Gray SC, Rose CE, et al. Factors associated with adherence and concordance between measurement strategies in an HIV daily Oral tenofovir/emtricitibine as pre-exposure prophylaxis (Prep) clinical trial, Botswana, 2007-2010. AIDS Behav. 2015;19(5):758–69. https://doi.org/10.1007/s10461-014-0891-z.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Haberer JE, Kiwanuka J, Nansera D, Muzoora C, Hunt PW, So J, et al. Realtime adherence monitoring of antiretroviral therapy among HIV-infected adults and children in rural Uganda. AIDS. 2013;27(13):2166–8. https://doi.org/10.1097/QAD.0b013e328363b53f.

    Article  PubMed  Google Scholar 

  119. Haberer JE, Robbins GK, Ybarra M, Monk A, Ragland K, Weiser SD, et al. Real-time electronic adherence monitoring is feasible, comparable to unannounced pill counts, and acceptable. AIDS Behav. 2012;16(2):375–82. https://doi.org/10.1007/s10461-011-9933-y.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Haberer JE, Kahane J, Kigozi I, Emenyonu N, Hunt P, Martin J, et al. Real-time adherence monitoring for HIV antiretroviral therapy. AIDS Behav. 2010;14(6):1340–6. https://doi.org/10.1007/s10461-010-9799-4.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Bachman Desilva M, Gifford AL, Keyi X, Li Z, Feng C, Brooks M, et al. Feasibility and acceptability of a real-time adherence device among HIV-positive IDU patients in China. AIDS Res Treat. 2013;2013:957862. https://doi.org/10.1155/2013/957862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Craker L, Tarantino N, Whiteley L, Brown L. Measuring antiretroviral adherence among young people living with HIV: observations from a real-time monitoring device versus self-report. AIDS Behav. 2019;23(8):2138–45. https://doi.org/10.1007/s10461-019-02448-1.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Pyra M, Brown ER, Haberer JE, Heffron R, Celum C, Bukusi EA, et al. Patterns of Oral PrEP adherence and HIV risk among eastern African women in HIV serodiscordant partnerships. AIDS Behav. 2018;22(11):3718–25. https://doi.org/10.1007/s10461-018-2221-3.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Mimiaga MJ, Kuhns LM, Biello KB, Olson J, Hoehnle S, Santostefano CM, et al. Positive STEPS - a randomized controlled efficacy trial of an adaptive intervention for strengthening adherence to antiretroviral HIV treatment among youth: study protocol. BMC Public Health. 2018;18(1):867. https://doi.org/10.1186/s12889-018-5815-9.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Grant RM, Mannheimer S, Hughes JP, Hirsch-Moverman Y, Loquere A, Chitwarakorn A, et al. Daily and nondaily oral preexposure prophylaxis in men and transgender women who have sex with men: the human immunodeficiency virus prevention trials network 067/ADAPT study. Clin Infect Dis. 2018;66(11):1712–21. https://doi.org/10.1093/cid/cix1086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Haberer JE, Kidoguchi L, Heffron R, Mugo N, Bukusi E, Katabira E, et al. Alignment of adherence and risk for HIV acquisition in a demonstration project of pre-exposure prophylaxis among HIV serodiscordant couples in Kenya and Uganda: a prospective analysis of prevention-effective adherence. J Int AIDS Soc. 2017;20(1):21842. https://doi.org/10.7448/IAS.20.1.21842.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Pyra M, Haberer JE, Heffron R, Kidoguchi L, Brown ER, Bukusi EA, et al. Brief report: PrEP use during periods of HIV risk among east African women in Serodiscordant relationships. J Acquir Immune Defic Syndr. 2018;77(1):41–5. https://doi.org/10.1097/QAI.0000000000001561.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Mallayasamy S, Chaturvedula A, Fossler MJ, Sale M, Goti V, Bumpus NN, et al. Tenofovir plasma concentration from preexposure prophylaxis at the time of potential HIV exposure: a population pharmacokinetic modeling and simulation study involving serodiscordant couples in East Africa. Antimicrob Agents Chemother. 2019;63(8). https://doi.org/10.1128/AAC.00446-19.

  129. Haberer JE, Musinguzi N, Tsai AC, Boum Y 2nd, Bwana BM, Muzoora C, et al. Real-time electronic adherence monitoring plus follow-up improves adherence compared with standard electronic adherence monitoring. AIDS. 2017;31(1):169–71. https://doi.org/10.1097/QAD.0000000000001310.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Campbell JI, Eyal N, Musiimenta A, Burns B, Natukunda S, Musinguzi N, et al. Ugandan study participants experience electronic monitoring of antiretroviral therapy adherence as welcomed pressure to adhere. AIDS Behav. 2018;22(10):3363–72. https://doi.org/10.1007/s10461-018-2200-8.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Stringer KL, Azuero A, Ott C, Psaros C, Jagielski CH, Safren SA, et al. Feasibility and acceptability of real-time antiretroviral adherence monitoring among depressed women living with HIV in the deep south of the US. AIDS Behav. 2019;23(5):1306–14. https://doi.org/10.1007/s10461-018-2322-z.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Davis A, Sarsembayeva L, Gulyaev V, Primbetova S, Terlikbayeva A, Mergenova G, et al. If you build it, will they use it? Preferences for antiretroviral therapy (ART) adherence monitoring among people who inject drugs (PWID) in Kazakhstan. AIDS Behav. 2019;23(12):3294–305. https://doi.org/10.1007/s10461-019-02421-y.

    Article  PubMed  Google Scholar 

  133. Bionghi N, Daftary A, Maharaj B, Msibi Z, Amico KR, Friedland G, et al. Pilot evaluation of a second-generation electronic pill box for adherence to Bedaquiline and antiretroviral therapy in drug-resistant TB/HIV co-infected patients in KwaZulu-Natal, South Africa. BMC Infect Dis. 2018;18(1):171. https://doi.org/10.1186/s12879-018-3080-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Dworkin MS, Panchal P, Wiebel W, Garofalo R, Haberer JE, Jimenez A. A triaged real-time alert intervention to improve antiretroviral therapy adherence among young African American men who have sex with men living with HIV: focus group findings. BMC Public Health. 2019;19(1):394. https://doi.org/10.1186/s12889-019-6689-1.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Beauchemin M, Gradilla M, Baik D, Cho H, Schnall R. A multi-step usability evaluation of a self-management app to support medication adherence in persons living with HIV. Int J Med Inform. 2019;122:37–44. https://doi.org/10.1016/j.ijmedinf.2018.11.012.

    Article  PubMed  Google Scholar 

  136. Shacham E, Lew D, Xiao T, Lopez J, Trull T, Schootman M, et al. Testing the feasibility of using ecological momentary assessment to collect real-time behavior and mood to predict technology-measured HIV medication adherence. AIDS Behav. 2019;23(8):2176–84. https://doi.org/10.1007/s10461-018-2378-9.

    Article  PubMed  Google Scholar 

  137. Chai PR, Pereira LM, Jambaulikar GD, Carrico AW, O'Cleirigh C, Mayer KH, et al. Short communication: bioequivalence of tenofovir component of tenofovir/rilpivirine/emtricitabine in digital pills. AIDS Res Hum Retrovir. 2019;35(4):361–3. https://doi.org/10.1089/AID.2018.0073.

    Article  CAS  PubMed  Google Scholar 

  138. Ibrahim ME, Brooks KM, Castillo-Mancilla JR, McHugh C, Morrow M, Brothers J, et al. short communication: bioequivalence of tenofovir and emtricitabine after coencapsulation with the Proteus ingestible sensor. AIDS Res Hum Retrovir. 2018;34(10):835–7. https://doi.org/10.1089/AID.2018.0081.

    Article  CAS  PubMed  Google Scholar 

  139. Liu H, Daar E, Wang Y, Siqueiros L, Campbell K, Shen J, et al. Pharmacokinetics of coencapsulated antiretrovirals with ingestible sensors. AIDS Res Hum Retrovir. 2020;36(1):65–74. https://doi.org/10.1089/AID.2019.0202.

    Article  CAS  PubMed  Google Scholar 

  140. Frias J, Virdi N, Raja P, Kim Y, Savage G, Osterberg L. Effectiveness of digital medicines to improve clinical outcomes in patients with uncontrolled hypertension and type 2 diabetes: prospective, open-label, cluster-randomized pilot clinical trial. J Med Internet Res. 2017;19(7):e246. https://doi.org/10.2196/jmir.7833.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Browne SH, Behzadi Y, Littlewort G. Let visuals tell the story: medication adherence in patients with type II diabetes captured by a novel ingestion sensor platform. JMIR Mhealth Uhealth. 2015;3(4):e108. https://doi.org/10.2196/mhealth.4292.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Belknap R, Weis S, Brookens A, Au-Yeung KY, Moon G, DiCarlo L, et al. Feasibility of an ingestible sensor-based system for monitoring adherence to tuberculosis therapy. PLoS One. 2013;8(1):e53373. https://doi.org/10.1371/journal.pone.0053373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Peters-Strickland T, Pestreich L, Hatch A, Rohatagi S, Baker RA, Docherty JP, et al. Usability of a novel digital medicine system in adults with schizophrenia treated with sensor-embedded tablets of aripiprazole. Neuropsychiatr Dis Treat. 2016;12:2587–94. https://doi.org/10.2147/NDT.S116029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Browne SH, Umlauf A, Tucker AJ, Low J, Moser K, Gonzalez Garcia J, et al. Wirelessly observed therapy compared to directly observed therapy to confirm and support tuberculosis treatment adherence: a randomized controlled trial. PLoS Med. 2019;16(10):e1002891. https://doi.org/10.1371/journal.pmed.1002891.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Chai PR, Carreiro S, Innes BJ, Chapman B, Schreiber KL, Edwards RR, et al. Oxycodone ingestion patterns in acute fracture pain with digital pills. Anesth Analg. 2017;125(6):2105–12. https://doi.org/10.1213/ANE.0000000000002574.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

M.A.S. was supported by NIAID/NIH T32AI060530 (P.I. Havlir) and NIMH/NIH K23MH122286. J.E.H. is supported by NIMH K24MH114732. P.R.C. is supported by NIDA/NIH K23DA044874. J.C.M. is supported by NIAID R01AI145453. P.L.A is supported by NIAID R01AI122298.. M.G. is supported by NIAID R01AI143340, 2R01AI098472, and R03AI152773.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Gandhi.

Ethics declarations

Conflict of Interest

M.A.S., P.R.C., J.C.M., and M.G. have no relevant conflicts of interest to report. P.L.A. has received grant funding from Gilead. J.E.H. has accepted consulting funds from Merck Pharmaceuticals.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Behavioral-Bio-Medical Interface

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spinelli, M.A., Haberer, J.E., Chai, P.R. et al. Approaches to Objectively Measure Antiretroviral Medication Adherence and Drive Adherence Interventions. Curr HIV/AIDS Rep 17, 301–314 (2020). https://doi.org/10.1007/s11904-020-00502-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-020-00502-5

Keywords

Navigation