Skip to main content

Advertisement

Log in

Transformation of a Chronic Myeloproliferative Neoplasm to Acute Myelogenous Leukemia: Does Anything Work?

  • Acute Myelogenous Leukemia (EJ Feldman, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

The BCR/ABL-negative myeloproliferative neoplasms (MPNs) of essential thrombocythemia, polycythemia vera, and primary myelofibrosis, over the natural course of their disease, have an increasing predisposition to transform to overt acute myeloid leukemia (AML)—most appropriately referred to as MPN-blast phase (MPN-BP). Although this transformation is a rare event, once AML has occurred, it is associated with a poor response to therapy and short survival. The molecular events leading to transformation are poorly defined. Currently, no therapy other than allogeneic stem cell transplantation (ASCT) has been demonstrated to alter the natural history of this disease. Multiple therapeutic investigations are currently ongoing, including early ASCT, hypomethylating agents, and JAK2 inhibition, to try to alter the course of the disease and improve outcomes. This review focuses on the latest advances in our understanding of the biology of leukemic transformation and current clinical therapies that are available for this patient population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. • Vardiman JW, Thiele J, Arber DA, et al. The 2008 revision of the world health organization (who) classification of myeloid neoplasms and acute leukemia: Rationale and important changes. Blood 2009;114:937–951. This key reference addresses the current diagnostic WHO criteria changes for the diagnosis of MPNs.

    Article  PubMed  CAS  Google Scholar 

  2. Dameshek W. Some speculations on the myeloproliferative syndromes. Blood. 1951;6:372–5.

    PubMed  CAS  Google Scholar 

  3. Baxter EJ, Scott LM, Campbell PJ, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005;365:1054–61.

    PubMed  CAS  Google Scholar 

  4. James C, Ugo V, Le Couedic JP, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434:1144–8.

    Article  PubMed  CAS  Google Scholar 

  5. Kralovics R, Passamonti F, Buser AS, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352:1779–90.

    Article  PubMed  CAS  Google Scholar 

  6. Levine RL, Wadleigh M, Cools J, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7:387–97.

    Article  PubMed  CAS  Google Scholar 

  7. Mesa RA, Verstovsek S, Cervantes F, et al. Primary myelofibrosis (PMF), post polycythemia vera myelofibrosis (POST-PV MF), post essential thrombocythemia myelofibrosis (POST-ET MF), blast phase pmf (PMF-BP): Consensus on terminology by the International Working Group for Myelofibrosis Research and Treatment (IWG-MRT). Leukemia Res. 2007;31:737–40.

    Article  Google Scholar 

  8. Mesa RA, Li CY, Ketterling RP, et al. Leukemic transformation in myelofibrosis with myeloid metaplasia: A single-institution experience with 91 cases. Blood. 2005;105:973–7.

    Article  PubMed  CAS  Google Scholar 

  9. Finazzi G, Caruso V, Marchioli R, et al. Acute leukemia in polycythemia vera: an analysis of 1638 patients enrolled in a prospective observational study. Blood. 2005;105:2664–70.

    Article  PubMed  CAS  Google Scholar 

  10. Tefferi A, Vainchenker W. Myeloproliferative neoplasms: molecular pathophysiology, essential clinical understanding, and treatment strategies. J Clin Oncol. 2011;29:573–82.

    Article  PubMed  CAS  Google Scholar 

  11. Aaronson DS, Horvath CM. A road map for those who don’t know JAK-STAT. Science. 2002;296:1653–5.

    Article  PubMed  CAS  Google Scholar 

  12. Tiedt R, Hao-Shen H, Sobas MA, et al. Ratio of mutant JAK2-V617F to wild-type Jak2 determines the MPD phenotypes in transgenic mice. Blood. 2008;111:3931–40.

    Article  PubMed  CAS  Google Scholar 

  13. Mesa RA, Powell H, Lasho T, et al. JAK2(V617F) and leukemic transformation in myelofibrosis with myeloid metaplasia. Leukemia Res. 2006;30:1457–60.

    Article  CAS  Google Scholar 

  14. Tefferi A, Lasho TL, Huang J, et al. Low JAK2V617F allele burden in primary myelofibrosis, compared to either a higher allele burden or unmutated status, is associated with inferior overall and leukemia-free survival. Leukemia. 2008;22:756–61.

    Article  PubMed  CAS  Google Scholar 

  15. Theocharides A, Boissinot M, Girodon F, et al. Leukemic blasts in transformed JAK2-V617F-positive myeloproliferative disorders are frequently negative for the JAK2-V617F mutation. Blood. 2007;110:375–9.

    Article  PubMed  CAS  Google Scholar 

  16. Swierczek SI, Yoon D, Prchal JT. Blast transformation in a patient with primary myelofibrosis initiated from JAK2 V617F progenitor. Blood. 2007;110:a4665.

    Google Scholar 

  17. Tam CS, Nussenzveig RM, Popat U, et al. The natural history and treatment outcome of blast phase BCR-ABL myeloproliferative neoplasms. Blood. 2008;112:1628–37.

    Article  PubMed  CAS  Google Scholar 

  18. Lopes da Silva R, Ribeiro P, Lourenco A, et al. What is the role of JAK2V617F mutation in leukemic transformation of myeloproliferative neoplasms? Lab Hematol. 2011;17:12–6.

    Article  PubMed  Google Scholar 

  19. Beer PA, Delhommeau F, LeCouedic JP, et al. Two routes to leukemic transformation after a JAK2 mutation-positive myeloproliferative neoplasm. Blood. 2010;115:2891–900.

    Article  PubMed  CAS  Google Scholar 

  20. Schaub FX, Looser R, Li S, et al. Clonal analysis of TET2 and JAK2 mutations suggests that TET2 can be a late event in the progression of myeloproliferative neoplasms. Blood. 2010;115:2003–7.

    Article  PubMed  CAS  Google Scholar 

  21. Kralovics R. Genetic complexity of myeloproliferative neoplasms Leukemia. 2008;22:1841–8.

    CAS  Google Scholar 

  22. Scott LM, Tong W, Levine RL, et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med. 2007;356:459–68.

    Article  PubMed  CAS  Google Scholar 

  23. Pietra D, Li S, Brisci A, et al. Somatic mutations of JAK2 exon 12 in patients with JAK2 (V617F)-negative myeloproliferative disorders. Blood. 2008;111:1686–9.

    Article  PubMed  CAS  Google Scholar 

  24. Pancrazzi A, Guglielmelli P, Ponziani V, et al. A sensitive detection method for MPLW515l or MPLW515K mutation in chronic myeloproliferative disorders with locked nucleic acid-modified probes and real-time polymerase chain reaction. J Mol Diagn. 2008;10:435–41.

    Article  PubMed  CAS  Google Scholar 

  25. Pikman Y, Lee BH, Mercher T, et al. MPLW515l is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med. 2006;3:e270.

    Article  PubMed  Google Scholar 

  26. Tahiliani M, Koh KP, Shen Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324:930–5.

    Article  PubMed  CAS  Google Scholar 

  27. Tefferi A, Pardanani A, Lim KH, et al. TET2 mutations and their clinical correlates in polycythemia vera, essential thrombocythemia and myelofibrosis. Leukemia. 2009;23:905–11.

    Article  PubMed  CAS  Google Scholar 

  28. Carbuccia N, Murati A, Trouplin V, et al. Mutations of ASXL1 gene in myeloproliferative neoplasms. Leukemia. 2009;23:2183–6.

    Article  PubMed  CAS  Google Scholar 

  29. Boultwood J, Perry J, Zaman R, et al. High-density single nucleotide polymorphism array analysis and ASXL1 gene mutation screening in chronic myeloid leukemia during disease progression. Leukemia. 2010;24:1139–45.

    Article  PubMed  CAS  Google Scholar 

  30. Makishima H, Jankowska AM, McDevitt MA, et al. CBL, CBLB, TET2, ASXL1, and IDH1/2 mutations and additional chromosomal aberrations constitute molecular events in chronic myelogenous leukemia. Blood. 2011;117(21):e198–206.

    Article  PubMed  CAS  Google Scholar 

  31. Abdel-Wahab O, Pardanani A, Patel J, et al. Concomitant analysis of EZH2 and ASXL1 mutations in myelofibrosis, chronic myelomonocytic leukemia and blast-phase myeloproliferative neoplasms. Leukemia 2011

  32. Dang L, White DW, Gross S, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009;462:739–44.

    Article  PubMed  CAS  Google Scholar 

  33. Gross S, Cairns RA, Minden MD, et al. Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations. J Exp Med. 2010;207:339–44.

    Article  PubMed  CAS  Google Scholar 

  34. Pardanani A, Lasho T, Finke C, et al. LNK mutation studies in blast-phase myeloproliferative neoplasms, and in chronic-phase disease with TET2, IDH, JAK2 or MPL mutations. Leukemia. 2010;24:1713–8.

    Article  PubMed  CAS  Google Scholar 

  35. Jager R, Gisslinger H, Passamonti F, et al. Deletions of the transcription factor IKAROS in myeloproliferative neoplasms. Leukemia. 2010;24:1290–8.

    Article  PubMed  CAS  Google Scholar 

  36. Osgood EE. Contrasting incidence of acute monocytic and granulocytic leukemias in p32-treated patients with polycythemia vera and chronic lymphocytic leukemia. J Lab Clin Med. 1964;64:560–73.

    PubMed  CAS  Google Scholar 

  37. Parmentier C. Use and risks of phosphorus-32 in the treatment of polycythaemia vera. Eur J Nucl Med Mol Imaging. 2003;30:1413–7.

    Article  PubMed  CAS  Google Scholar 

  38. Petti MC, Latagliata R, Spadea T, et al. Melphalan treatment in patients with myelofibrosis with myeloid metaplasia. Br J Haematol. 2002;116:576–81.

    Article  PubMed  CAS  Google Scholar 

  39. Kiladjian JJ, Rain JD, Bernard JF, et al. Long-term incidence of hematological evolution in three French prospective studies of hydroxyurea and pipobroman in polycythemia vera and essential thrombocythemia. Semin Thromb Hemost. 2006;32:417–21.

    Article  PubMed  CAS  Google Scholar 

  40. Najean Y, Rain JD. Treatment of polycythemia vera: The use of hydroxyurea and pipobroman in 292 patients under the age of 65 years. Blood. 1997;90:3370–7.

    PubMed  CAS  Google Scholar 

  41. Steinberg MH, Barton F, Castro O, et al. Effect of hydroxyurea on mortality and morbidity in adult sickle cell anemia: Risks and benefits up to 9 years of treatment. JAMA. 2003;289:1645–51.

    Article  PubMed  CAS  Google Scholar 

  42. Huang J, Li CY, Mesa RA, et al. Risk factors for leukemic transformation in patients with primary myelofibrosis. Cancer. 2008;112:2726–32.

    Article  PubMed  Google Scholar 

  43. Barosi G, Ambrosetti A, Centra A, et al. Splenectomy and risk of blast transformation in myelofibrosis with myeloid metaplasia. Italian cooperative study group on myeloid with myeloid metaplasia. Blood. 1998;91:3630–6.

    PubMed  CAS  Google Scholar 

  44. Mesa RA, Nagorney DS, Schwager S, et al. Palliative goals, patient selection, and perioperative platelet management: Outcomes and lessons from 3 decades of splenectomy for myelofibrosis with myeloid metaplasia at the Mayo Clinic. Cancer. 2006;107:361–70.

    Article  PubMed  Google Scholar 

  45. Wang JC, Chen W, Nallusamy S, et al. Hypermethylation of the P15INK4b and P16INK4a in agnogenic myeloid metaplasia (AMM) and AMM in leukaemic transformation. Br J Haematol. 2002;116:582–6.

    Article  PubMed  CAS  Google Scholar 

  46. • Thepot S, Itzykson R, Seegers V, et al. Treatment of progression of Philadelphia-negative myeloproliferative neoplasms to myelodysplastic syndrome or acute myeloid leukemia by azacitidine: a report on 54 cases on the behalf of the Groupe Francophone des Myelodysplasies (GFM). Blood 2010;116:3735–3742. This is first therapy paper that demonstrates success using azacitidine in treating patients with MPNs that had transformed to AML.

    Article  PubMed  CAS  Google Scholar 

  47. Scott B, Deeg HJ. Hemopoietic cell transplantation as curative therapy of myelodysplastic syndromes and myeloproliferative disorders. Best Pract Res Clin Haematol. 2006;19:519–33.

    Article  PubMed  Google Scholar 

  48. Scott BL, Storer BE, Greene JE, et al. Marrow fibrosis as a risk factor for posttransplantation outcome in patients with advanced myelodysplastic syndrome or acute myeloid leukemia with multilineage dysplasia. Biol Blood Marrow Transplant. 2007;13:345–54.

    Article  PubMed  Google Scholar 

  49. Ramakrishnan A, Sandmaier BM. Optimizing reduced-intensity conditioning regimens for myeloproliferative neoplasms. Expert Rev Hematol. 2010;3:23–33.

    Article  PubMed  Google Scholar 

  50. Tefferi A, Verstovsek S, Barosi G, et al. Pomalidomide is active in the treatment of anemia associated with myelofibrosis. J Clin Oncol. 2009;27:4563–9.

    Article  PubMed  CAS  Google Scholar 

  51. Tefferi A, Elliot MA. Serious myeloproliferative reactions associated with the use of thalidomide in myelofibrosis with myeloid metaplasia. Blood. 2000;96:4007.

    PubMed  CAS  Google Scholar 

  52. Tefferi A, Cortes J, Verstovsek S, et al. Lenalidomide therapy in myelofibrosis with myeloid metaplasia. Blood. 2006;108:1158–64.

    Article  PubMed  CAS  Google Scholar 

  53. Bejar R, Levine R, Ebert BL. Unraveling the molecular pathophysiology of myelodysplastic syndromes. J Clin Oncol. 2011;29:504–15.

    Article  PubMed  CAS  Google Scholar 

  54. Eghtedar A, Verstovsek S, Cortes JE, et al. Phase II study of the JAK2 inhibitor, INCB018424, in patients with refractory leukemias including post-myeloproliferative disorder (MPD) acute myeloid leukemia (SAML) (Abstract 509). Blood 2010.

  55. LoRusso PM, Rudin CM, Reddy JC, et al. Phase I trial of hedgehog pathway inhibitor VISMODEGIB (GDC-0449) in patients with refractory, locally advanced or metastatic solid tumors. Clin Cancer Res. 2011;17:2502–11.

    Article  PubMed  CAS  Google Scholar 

  56. Von Hoff DD, LoRusso PM, Rudin CM, et al. Inhibition of the hedgehog pathway in advanced basal-cell carcinoma. N Engl J Med. 2009;361:1164–72.

    Article  Google Scholar 

  57. Tolcher AW, Mita A, Lewis LD, et al. Phase I and pharmacokinetic study of YM155, a small-molecule inhibitor of survivin. J Clin Oncol. 2008;26:5198–203.

    Article  PubMed  CAS  Google Scholar 

  58. Tibes R, McDonagh KT, Lekakis L, et al. Phase I study of the novel survivin and CDC2/CDK1 inhibitor terameprocol in patients with advanced leukemias. Blood 2009; ASH Annual Meeting Abstract #1039.

  59. Vannucchi AM, Guglielmelli P, Lupo L, et al. A phase 1/2 study of RAD001, an mTOR inhibitor, in patients with myelofibrosis: Final results. ASH Annual Meeting Abstracts. 2010;116:314.

    Google Scholar 

  60. Mascarenhas J, Wang X, Rodriguez A, et al. A phase I study of LBH589, a novel histone deacetylase inhibitor in patients with primary myelofibrosis (PMF) and post-polycythemia/essential thrombocythemia myelofibrosis (post-PV/ET MF). ASH Annual Meeting Abstracts. 2009;114:308.

    Google Scholar 

  61. Rambaldi A, Dellacasa CM, Salmoiraghi S, et al. A phase 2a study of the histone-deacetylase inhibitor ITF2357 in patients with JAK2V617F positive chronic myeloproliferative neoplasms. Blood. 2008;112:100.

    Article  Google Scholar 

  62. Saberwal G, Horvath E, Hu L, et al. The interferon consensus sequence binding protein (ICSBP/IRF8) activates transcription of the FANCF gene during myeloid differentiation. J Biol Chem. 2009;284:33242–54.

    Article  PubMed  CAS  Google Scholar 

  63. Kiladjian JJ, Cassinat B, Chevret S, et al. Pegylated interferon alfa-2a induces complete hematologic and molecular responses with low toxicity in polycythemia vera. Blood. 2008;112:3065–72.

    Article  PubMed  CAS  Google Scholar 

  64. Quintas-Cardama A, Kantarjian H, Manshouri T, et al. Pegylated interferon alfa-2a yields high rates of hematologic and molecular response in patients with advanced essential thrombocythemia and polycythemia vera. J Clin Oncol. 2009;27:5418–24.

    Article  PubMed  CAS  Google Scholar 

  65. Konieczna I, Horvath E, Wang H, et al. Constitutive activation of Shp2 in mice cooperates with ICSBP deficiency to accelerate progression to acute myeloid leukemia. J Clin Invest. 2008;118:853–67.

    PubMed  CAS  Google Scholar 

  66. Invernizzi R, Travaglino E, Benatti C, et al. Survivin expression, apoptosis and proliferation in chronic myelomonocytic leukemia. Eur J Haematol. 2006;76:494–501.

    Article  PubMed  CAS  Google Scholar 

  67. Tefferi A, Lasho TL, Abdel-Wahab O, et al. IDH1 and IDH2 mutation studies in 1473 patients with chronic-, fibrotic- or blast-phase essential thrombocythemia, polycythemia vera or myelofibrosis. Leukemia. 2010;24:1302–9.

    Article  PubMed  CAS  Google Scholar 

  68. Green A, Beer P. Somatic mutations of IDH1 and IDH2 in the leukemic transformation of myeloproliferative neoplasms. N Engl J Med. 2010;362:369–70.

    Article  PubMed  CAS  Google Scholar 

  69. Ding Y, Harada Y, Imagawa J, et al. AML1/RUNX1 point mutation possibly promotes leukemic transformation in myeloproliferative neoplasms. Blood. 2009;114:5201–5.

    Article  PubMed  CAS  Google Scholar 

  70. Verstovsek S, Kantarjian H, et al. Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis. N Engl J Med. 2010;363(12):1117–27.

    Article  PubMed  CAS  Google Scholar 

  71. Verstovsek S, Passamonti F, et al. Durable Responses with the JAK1/ JAK2 Inhibitor, INCB018424, In Patients with Polycythemia Vera (PV) and Essential Thrombocythemia (ET) Refractory or Intolerant to Hydroxyurea (HU). Blood. 2010;116(21):313. ASH Annual Meeting Abstracts.

    Google Scholar 

  72. Pardanani A, Gotlib JR, Jamieson C, et al. Safety and efficacy of TG101348, a selective JAK2 inhibitor, in myelofibrosis. J Clin Oncol. 2011;29(7):789–96.

    Article  PubMed  CAS  Google Scholar 

  73. Verstovsek S, Deeg HJ, et al. Phase 1/2 Study of SB1518, a Novel JAK2/FLT3 Inhibitor, In the Treatment of Primary Myelofibrosis. Blood. 2010;116(21):3082. ASH Annual Meeting Abstracts.

    Google Scholar 

  74. Moliterno AR, Roboz GJ, et al. An Open-Label Study of CEP-701 in Patients with JAK2 V617F-Positive Polycythemia Vera and Essential Thrombocytosis. Blood. 2008;112(11):99. ASH Annual Meeting Abstracts.

    Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruben A. Mesa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kundranda, M.N., Tibes, R. & Mesa, R.A. Transformation of a Chronic Myeloproliferative Neoplasm to Acute Myelogenous Leukemia: Does Anything Work?. Curr Hematol Malig Rep 7, 78–86 (2012). https://doi.org/10.1007/s11899-011-0107-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-011-0107-9

Keywords

Navigation