Skip to main content

Advertisement

Log in

Updates on Diabetic Foot and Charcot Osteopathic Arthropathy

  • Microvascular Complications—Neuropathy (R Pop-Busui, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Diabetes mellitus affects approximately 30.8 million people currently living in the USA. Chronic diabetes complications, including diabetic foot complications, remain prevalent and challenging to treat. We review clinical diagnosis and challenges providers may encounter when managing diabetic foot ulcers and Charcot neuroarthropathy.

Recent Findings

Mechanisms controlling these diseases are being elucidated and not fully understood. Offloading is paramount to heal and manage diabetic foot ulcers and Charcot neuroarthropathy. Diabetic foot ulcers recur and the importance of routine surveillance and multidisciplinary approach is essential. Several predictors of failure in Charcot foot include a related diabetic foot ulcer, midfoot or rearfoot location of the Charcot event, and progressive bony changes on interval radiographs.

Summary

Patients with diabetic foot ulcer and/or Charcot neuroarthropathy are in need of consistent and regular special multidisciplinary care. If not diagnosed early and managed effectively, morbidity and mortality significantly increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ogurtsova K, da Rocha Fernandes J, Huang Y, Linnenkamp U, Guariguata L, Cho N, et al. IDF diabetes atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. 2017;128:40–50.

    Article  CAS  PubMed  Google Scholar 

  2. •• Pop-Busui R, Boulton AJ, Feldman EL, Bril V, Freeman R, Malik RA, et al. Diabetic neuropathy: a position statement by the American Diabetes Association. Diabetes Care. 2017;40(1):136–54. The identification of diabetic peripheral neuropathy is essential and this paper highlights importance in examination to assess for its presence. The diagnosis will assist in management of these individuals and improve quality of life.

    Article  CAS  PubMed  Google Scholar 

  3. Thiruvoipati T, Kielhorn CE, Armstrong EJ. Peripheral artery disease in patients with diabetes: epidemiology, mechanisms, and outcomes. World J Diabetes. 2015;6(7):961–9.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Armstrong DG, Boulton AJM, Bus SA. Diabetic foot ulcers and their recurrence. N Engl J Med. 2017;376(24):2367–75.

    Article  PubMed  Google Scholar 

  5. Prompers L, Schaper N, Apelqvist J, Edmonds M, Jude E, Mauricio D, et al. Prediction of outcome in individuals with diabetic foot ulcers: focus on the differences between individuals with and without peripheral arterial disease. The EURODIALE Study. Diabetologia. 2008;51(5):747–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wu SC, Driver VR, Wrobel JS, Armstrong DG. Foot ulcers in the diabetic patient, prevention and treatment. Vasc Health Risk Manag. 2007;3(1):65–76.

    PubMed  PubMed Central  Google Scholar 

  7. Schmidt BM, Wrobel JS, Holmes CM. Physician knowledge of a rare foot condition - influence of diabetic patient population on self-described knowledge and treatment. Clin Diabetes Endocrinol. 2017;3:2.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chantelau E. The perils of procrastination: effects of early vs. delayed detection and treatment of incipient Charcot fracture. Diabet Med. 2005;22(12):1707–12.

    Article  CAS  PubMed  Google Scholar 

  9. Hingsammer AM, Bauer D, Renner N, Borbas P, Boeni T, Berli M. Correlation of systemic inflammatory markers with radiographic stages of Charcot Osteoarthropathy. Foot Ankle Int. 2016;37(9):924–8.

    Article  PubMed  Google Scholar 

  10. Wukich DK, Sung W, Wipf SA, Armstrong DG. The consequences of complacency: managing the effects of unrecognized Charcot feet. Diabet Med. 2011;28(2):195–8.

    Article  CAS  PubMed  Google Scholar 

  11. Sohn MW, Lee TA, Stuck RM, Frykberg RG, Budiman-Mak E. Mortality risk of Charcot arthropathy compared with that of diabetic foot ulcer and diabetes alone. Diabetes Care. 2009;32(5):816–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Armstrong DG, Lavery LA. Diabetic foot ulcers: prevention, diagnosis and classification. Am Fam Physician. 1998;57(6):1325–32. 37-8

    CAS  PubMed  Google Scholar 

  13. National Diabetes Statistics Report [article online], 2017. Available from: https://www.cdc.gov/diabetes/pubs/statsreport14/national-diabetes-report-web.pdf.

  14. Boulton AJ. Pressure and the diabetic foot: clinical science and offloading techniques. Am J Surg. 2004;187(5):S17–24.

    Article  Google Scholar 

  15. van Baal J, Hubbard R, Game F, Jeffcoate W. Mortality associated with acute Charcot foot and neuropathic foot ulceration. Diabetes Care. 2010;33(5):1086–9.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Centers for Disease Control and Prevention. National Diabetes Statistics Report, 2017. Atlanta: Centers for Disease Control and Prevention, U.S. Dept of Health and Human Services; 2017.

  17. Rice JB, Desai U, Cummings AKG, Birnbaum HG, Skornicki M, Parsons NB. Burden of diabetic foot ulcers for medicare and private insurers. Diabetes Care. 2014;37(3):651–8.

    Article  PubMed  Google Scholar 

  18. Wrobel JS, Najafi B. Diabetic Foot Biomechanics and Gait Dysfunction. J Diabetes Sci Technol. 2010;4(4):833–45.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sumpio BE. Foot ulcers. N Engl J Med. 2000;343(11):787–93.

    Article  CAS  PubMed  Google Scholar 

  20. Boulton AJ, Armstrong DG, Albert SF, Frykberg RG, Hellman R, Kirkman MS, et al. Comprehensive foot examination and risk assessment: a report of the task force of the foot care interest group of the American Diabetes Association, with endorsement by the American Association of Clinical Endocrinologists. Diabetes Care. 2008;31(8):1679–85.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Birke JA, Franks BD, Foto JG. First ray joint limitation, pressure, and ulceration of the first metatarsal head in diabetes mellitus. Foot Ankle Int. 1995;16(5):277–84.

    Article  CAS  PubMed  Google Scholar 

  22. Wagner FW. The Dysvascular foot: a system for diagnosis and treatment. Foot Ankle. 1981;2(2):64–122.

    Article  PubMed  Google Scholar 

  23. Armstrong DG, Lavery LA, Harkless LB. Validation of a diabetic wound classification system. The contribution of depth, infection, and ischemia to risk of amputation. Diabetes Care. 1998;21(5):855–9.

    Article  CAS  PubMed  Google Scholar 

  24. Mills JL Sr, Conte MS, Armstrong DG, Pomposelli FB, Schanzer A, Sidawy AN, et al. The Society for Vascular Surgery Lower Extremity Threatened Limb Classification System: Risk stratification based on Wound, Ischemia, and foot Infection (WIfI). J Vasc Surg. 2014;59(1):220–34.e2.

    Article  PubMed  Google Scholar 

  25. Oyibo SO, Jude EB, Tarawneh I, Nguyen HC, Harkless LB, Boulton AJM. A comparison of two diabetic foot ulcer classification systems. The Wagner and the University of Texas wound classification systems. Diadetes Care. 2001;24(1):84–8.

    Article  CAS  Google Scholar 

  26. Hicks CW, Canner JK, Mathioudakis N, Sherman R, Malas MB, Black III JH, Abularrage CJ. The Society for Vascular Surgery Wound, Ischemia, and foot Infection (WIfI) classification independently predicts wound healing in diabetic foot ulcers. J Vasc Surg. 2018.

  27. Grayson ML, Gibbons GW, Balogh K, Levin E, Karchmer AW. Probing to bone in infected pedal ulcers. A clinical sign of underlying osteomyelitis in diabetic patients. JAMA. 1995;273(9):721–3.

    Article  CAS  PubMed  Google Scholar 

  28. Eming SA, Martin P, Tomic-Canic M. Wound repair and regeneration: mechanisms, signaling, and translation. Sci Transl Med. 2014;6(265):265sr6–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Falanga V. Wound healing and its impairment in the diabetic foot. Lancet. 2005;366(9498):1736–43.

    Article  PubMed  Google Scholar 

  30. Brownrigg J, Hinchliffe R, Apelqvist J, Boyko E, Fitridge R, Mills J, et al. Performance of prognostic markers in the prediction of wound healing or amputation among patients with foot ulcers in diabetes: a systematic review. Diabetes Metab Res Rev. 2016;32:128–35.

    Article  CAS  PubMed  Google Scholar 

  31. Schaper N, Apelqvist J, Bakker K. Reducing lower leg amputations in diabetes: a challenge for patients, healthcare providers and the healthcare system. Diabetologia. 2012;55(7):1869–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sheehan P, Jones P, Caselli A, Giurini JM, Veves A. Percent change in wound area of diabetic foot ulcers over a 4-week period is a robust predictor of complete healing in a 12-week prospective trial. Diabetes Care. 2003;26(6):1879–82.

    Article  PubMed  Google Scholar 

  33. Muller M, Trocme C, Lardy B, Morel F, Halimi S, Benhamou PY. Matrix metalloproteinases and diabetic foot ulcers: the ratio of MMP-1 to TIMP-1 is a predictor of wound healing. Diabet Med. 2008;25(4):419–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Boulton AJ, Betts RP, Newrick PG, Ward JD. Foot pressure abnormalities-a sensitive marker of early sensory neuropathy. Diabetes. 1986;35:A12.

    Google Scholar 

  35. Chantelau E, Haage P. An audit of cushioned diabetic footwear: relation to patient compliance. Diabet Med. 1994;11(1):114–6.

    Article  CAS  PubMed  Google Scholar 

  36. Lavery LA, Armstrong DG, Vela SA, Quebedeaux TL, Fleischli JG. Practical criteria for screening patients at high risk for diabetic foot ulceration. Arch Intern Med. 1998;158(2):157–62.

    Article  CAS  PubMed  Google Scholar 

  37. Murdoch DP, Armstrong DG, Dacus JB, Laughlin TJ, Morgan CB, Lavery LA. The natural history of great toe amputations. J Foot Ankle Surg. 1997;36(3):204–8.

    Article  CAS  PubMed  Google Scholar 

  38. Uccioli L, Sinistro A, Almerighi C, Ciaprini C, Cavazza A, Giurato L, et al. Proinflammatory modulation of the surface and cytokine phenotype of monocytes in patients with acute Charcot foot. Diabetes Care. 2010;33(2):350–5.

    Article  CAS  PubMed  Google Scholar 

  39. Peters EJG, Armstrong DG, Lavery LA. Risk factors for recurrent diabetic foot ulcers. Site Matters. 2007;30(8):2077–9.

    Google Scholar 

  40. Waaijman R, de Haart M, Arts ML, Wever D, Verlouw AJ, Nollet F, et al. Risk factors for plantar foot ulcer recurrence in neuropathic diabetic patients. Diabetes Care. 2014;37(6):1697–705.

    Article  PubMed  Google Scholar 

  41. DeNamur C, Pupp G. Diabetic limb salvage: a team approach at a teaching institution. J Am Podiatr Med Assoc. 2002;92(8):457–62.

    Article  PubMed  Google Scholar 

  42. Driver VR, Madsen J, Goodman RA. Reducing amputation rates in patients with diabetes at a military medical center: the limb preservation service model. Diabetes Care. 2005;28(2):248–53.

    Article  PubMed  Google Scholar 

  43. Huang DY, Wilkins CJ, Evans DR, Ammar T, Deane C, Vas PR, et al. The diabetic foot: the importance of coordinated care. Semin Interv Radiol. 2014;31(4):307–12.

    Article  Google Scholar 

  44. Keyser JE. Foot wounds in diabetic patients: a comprehensive approach incorporating use of topical growth factors. Postgrad Med. 1992;91(4):98–109.

    Article  CAS  PubMed  Google Scholar 

  45. • Schmidt BM, Wrobel JS, Munson M, Rothenberg G, Holmes CM. Podiatry impact on high-low amputation ratio characteristics: a 16-year retrospective study. Diabetes Res Clin Pract. 2017;126:272–7. This article shows the impact of establishing podiatric care on a health system. The rate of change from high to low amputations increased by 3-fold over a 16-year period.

    Article  PubMed  Google Scholar 

  46. Steed DL, Edington H, Moosa HH, Webster MW. Organization and development of a university multidisciplinary wound care clinic. Surgery. 1993;114(4):775–9.

    CAS  PubMed  Google Scholar 

  47. Strauss MB. The Orthopaedic Surgeon's Role in the Treatment and Prevention of Diabetic Foot Wounds. Foot Ankle Int. 2005;26(1):5–14.

    Article  PubMed  Google Scholar 

  48. Sumpio BE, Aruny J, Blume PA. The multidisciplinary approach to limb salvage. Acta Chir Belg. 2004;104(6):647–53.

    Article  CAS  PubMed  Google Scholar 

  49. Vartanian SM, Robinson KD, Ofili K, Eichler CM, Hiramoto JS, Reyzelman AM, et al. Outcomes of neuroischemic wounds treated by a multidisciplinary amputation prevention service. Ann Vasc Surg. 2015;29(3):534–42.

    Article  PubMed  Google Scholar 

  50. McEwen LN, Ylitalo KR, Munson M, Herman WH, Wrobel JS. Foot complications and mortality: results from translating research into action for diabetes (TRIAD). J Am Podiatr Med Assoc. 2016;106(1):7–14.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Skrepnek GH, Mills JL, Armstrong DG. Foot-in-wallet disease: tripped up by “cost-saving” reductions? Diabetes Care. 2014;37(9):e196–e7.

    Article  PubMed  Google Scholar 

  52. Lipsky BA, Berendt AR, Cornia PB, Pile JC, Peters EJ, Armstrong DG, et al. 2012 Infectious Diseases Society of America clinical practice guideline for the diagnosis and treatment of diabetic foot infections. Clin Infect Dis. 2012;54(12):e132–e73.

    Article  PubMed  Google Scholar 

  53. Huang Y, Cao Y, Zou M, Luo X, Jiang Y, Xue Y, et al. A comparison of tissue versus swab culturing of infected diabetic foot wounds. Int J Endocrinol. 2016;2016:1–6.

    CAS  Google Scholar 

  54. Bakker K, Apelqvist J, Schaper NC. Board IWGotDFE. Practical guidelines on the management and prevention of the diabetic foot 2011. Diabetes Metab Res Rev. 2012;28:225–31.

    Article  PubMed  Google Scholar 

  55. Edwards J, Stapley S. Debridement of diabetic foot ulcers. Cochrane Database Syst Rev. 2010;(1):CD003556. https://doi.org/10.1002/14651858.CD003556.pub2.

  56. Steed DL, Donohoe D, Webster MW, Lindsley L. Effect of extensive debridement and treatment on the healing of diabetic foot ulcers. Diabetic ulcer study group. J Am Coll Surg. 1996;183(1):61–4.

    CAS  PubMed  Google Scholar 

  57. Snyder RJ, Kirsner RS, Warriner R 3rd, Lavery LA, Hanft JR, Sheehan P. Consensus recommendations on advancing the standard of care for treating neuropathic foot ulcers in patients with diabetes. Ostomy Wound Manage. 2010;56(4 Suppl):S1–24.

    PubMed  Google Scholar 

  58. Snyder RJ, Frykberg RG, Rogers LC, Applewhite AJ, Bell D, Bohn G, et al. The management of diabetic foot ulcers through optimal off-loading: building consensus guidelines and practical recommendations to improve outcomes. J Am Podiatr Med Assoc. 2014;104(6):555–67.

    Article  PubMed  Google Scholar 

  59. Fife CE, Carter MJ, Walker D, Thomson B, Eckert KA. Diabetic foot ulcer off-loading: the gap between evidence and practice. Data from the US wound registry. Adv Skin Wound Care. 2014;27(7):310–6.

    Article  PubMed  Google Scholar 

  60. Jones V, Grey JE, Harding KG. ABC of wound healing: wound dressings. BMJ. 2006;332(7544):777–80.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Bishop S, Walker M, Rogers A, Chen W. Importance of moisture balance at the wound-dressing interface. J Wound Care. 2003;12(4):125–8.

    Article  CAS  PubMed  Google Scholar 

  62. Donaghue VM, Chrzan JS, Rosenblum BI, Giurini JM, Habershaw GM, Veves A. Evaluation of a collagen-alginate wound dressing in the management of diabetic foot ulcers. Adv Wound Care. 1998;11(3):114–9.

    CAS  PubMed  Google Scholar 

  63. Armstrong DG, Nguyen HC, Lavery LA, van Schie CH, Boulton AJ, Harkless LB. Off-loading the diabetic foot wound: a randomized clinical trial. Diabetes Care. 2001;24(6):1019–22.

    Article  CAS  PubMed  Google Scholar 

  64. Veves A, Sheehan P, Pham HT. For the Promogran diabetic foot ulcer S. A randomized, controlled trial of promogran (a collagen/oxidized regenerated cellulose dressing) vs standard treatment in the management of diabetic foot ulcers. Arch Surg. 2002;137(7):822–7.

    Article  CAS  PubMed  Google Scholar 

  65. Marston WA, Hanft J, Norwood P, Pollak R. The efficacy and safety of Dermagraft in improving the healing of chronic diabetic foot ulcers: results of a prospective randomized trial. Diabetes Care. 2003;26(6):1701–5.

    Article  PubMed  Google Scholar 

  66. Armstrong DG, Lavery LA, Wu S, Boulton AJ. Evaluation of removable and irremovable cast walkers in the healing of diabetic foot wounds: a randomized controlled trial. Diabetes Care. 2005;28(3):551–4.

    Article  PubMed  Google Scholar 

  67. Driver VR, Hanft J, Fylling CP, Beriou JM. A prospective, randomized, controlled trial of autologous platelet-rich plasma gel for the treatment of diabetic foot ulcers. Ostomy Wound Manage. 2006;52(6):68–70. 2, 4 passim

    PubMed  Google Scholar 

  68. Blume PA, Walters J, Payne W, Ayala J, Lantis J. Comparison of negative pressure wound therapy utilizing vacuum-assisted closure to advanced moist wound therapy in the treatment of diabetic foot ulcers–A multicenter randomized controlled trial. Diabetes Care. 2007;31(4):631–6.

    Article  PubMed  Google Scholar 

  69. Kamaratos AV, Tzirogiannis KN, Iraklianou SA, Panoutsopoulos GI, Kanellos IE, Melidonis AI. Manuka honey-impregnated dressings in the treatment of neuropathic diabetic foot ulcers. Int Wound J. 2014;11(3):259–63.

    Article  PubMed  Google Scholar 

  70. Lantis Ii JC, Gordon I. Clostridial collagenase for the Management of Diabetic Foot Ulcers: results of four randomized controlled trials. Wounds. 2017;29(10):297–305.

    Article  PubMed  Google Scholar 

  71. Game F, Apelqvist J, Attinger C, Hartemann A, Hinchliffe R, Löndahl M, et al. Effectiveness of interventions to enhance healing of chronic ulcers of the foot in diabetes: a systematic review. Diabetes Metab Res Rev. 2016;32:154–68.

    Article  PubMed  Google Scholar 

  72. Wu L, Norman G, Dumville JC, O'Meara S, Bell-Syer SE. Dressings for treating foot ulcers in people with diabetes: an overview of systematic reviews. Cochrane Database Syst Rev. 2015 (7).

  73. Fabrin J, Larsen K, Holstein PE. Long-term follow-up in diabetic Charcot feet with spontaneous onset. Diabetes Care. 2000;23(6):796–800.

    Article  CAS  PubMed  Google Scholar 

  74. Lavery LA, Armstrong DG, Wunderlich RP, Tredwell J, Boulton AJ. Diabetic foot syndrome: evaluating the prevalence and incidence of foot pathology in Mexican Americans and non-Hispanic whites from a diabetes disease management cohort. Diabetes Care. 2003;26(5):1435–8.

    Article  PubMed  Google Scholar 

  75. Sinha S, Munichoodappa CS, Kozak GP. Neuro-arthropathy (Charcot joints) in diabetes mellitus (clinical study of 101 cases). Medicine. 1972;51(3):191–210.

    Article  CAS  PubMed  Google Scholar 

  76. Hoché G, Sanders LJ. On some arthropathies apparently related to a lesion of the brain or spinal cord, by Dr J.-M. Charcot, January 1868. J Hist Neurosci. 1992;1(1):75–87.

    Article  PubMed  Google Scholar 

  77. Armstrong DG, Todd WF, Lavery LA, Harkless LB, Bushman TR. The natural history of acute Charcot's arthropathy in a diabetic foot specialty clinic. Diabet Med. 1997;14(5):357–63.

    Article  CAS  PubMed  Google Scholar 

  78. Armstrong DG, Lavery LA, Liswood PJ, Todd WF, Tredwell JA. Infrared dermal thermometry for the high-risk diabetic foot. Phys Ther. 1997;77(2):169–75.

    Article  CAS  PubMed  Google Scholar 

  79. Holmes C, Schmidt B, Munson M, Wrobel JS. Charcot stage 0: a review and consideratons for making the correct diagnosis early. Clin Diabetes Endocrinol. 2015;1(1):18.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Petrova N, Edmonds M. Charcot neuro-osteoarthropathy—current standards. Diabetes Metab Res Rev. 2008;24(S1):S58–61.

    Article  PubMed  Google Scholar 

  81. Eichenholtz SN. Charcot joints. J Bone Joint Surg. 1962;44:1485.

    Google Scholar 

  82. Sanders L, Mrdjenovich D. Anatomical patterns of bone and joint destruction in neuropathic diabetics. Diabetes. 1991;40(Suppl 1):529A.

    Google Scholar 

  83. Shibata T, Tada K, Hashizume C. The results of arthrodesis of the ankle for leprotic neuroarthropathy. J Bone Joint Surg Am. 1990;72(5):749–56.

    Article  CAS  PubMed  Google Scholar 

  84. Rogers LC, Frykberg RG. The Charcot foot. Med Clin North Am. 2013;97(5):847–56.

    Article  PubMed  Google Scholar 

  85. Chantelau EA, Grützner G. Is the Eichenholtz classification still valid for the diabetic Charcot foot. Swiss Med Wkly. 2014;144:w13948.

    PubMed  Google Scholar 

  86. Palestro C, Mehta M, Patel M, Freemanm S. Marrow versus infection in the Charcot joint: indium-ill leukocyte and technetium-99 m sulfur colloid scintigraphy. J Nucl Med. 1998;39(346):50.

    Google Scholar 

  87. Palestro CJ, Torres MA. Radionuclide imaging in orthopedic infections (Vol. 27, No. 4, p 334–345). In: Seminars in nuclear medicine 1997 Oct 1. WB Saunders.

  88. • Wukich DK, Sadoskas D, Vaudreuil NJ, Fourman M. Comparison of diabetic Charcot patients with and without foot wounds. Foot Ankle Int. 2017;38(2):140–8. This study provides a nice comparison between Charcot patients with charcot-related foot wounds versus charcot patients alone. It also thoroughly describes patients who undergo operative (reconstruction) attempts for Charcot foot management and their outcomes.

    Article  PubMed  Google Scholar 

  89. Labovitz JM, Shapiro JM, Satterfield VK, Smith NT. Excess Cost and Healthcare Resources Associated With Delayed Diagnosis of Charcot Foot. J Foot Ankle Surg. 2018.

  90. Pinzur M. Surgical versus accommodative treatment for Charcot arthropathy of the midfoot. Foot Ankle Int. 2004;25(8):545–9.

    Article  PubMed  Google Scholar 

  91. Saltzman CL, Hagy ML, Zimmerman B, Estin M, Cooper R. How effective is intensive nonoperative initial treatment of patients with diabetes and Charcot arthropathy of the feet? Clin Orthop Relat Res. 2005;435:185–90.

    Article  Google Scholar 

  92. Sinkin JC, Reilly M, Cralley A, Kim PJ, Steinberg JS, Cooper P, et al. Multidisciplinary approach to soft-tissue reconstruction of the diabetic Charcot foot. Plast Reconstr Surg. 2015;135(2):611–6.

    Article  CAS  PubMed  Google Scholar 

  93. Wukich DK, Raspovic KM, Hobizal KB, Rosario B. Radiographic analysis of diabetic midfoot charcot neuroarthropathy with and without midfoot ulceration. Foot Ankle Int. 2014;35(11):1108–15.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Milne TE, Rogers JR, Kinnear EM, Martin HV, Lazzarini PA, Quinton TR, et al. Developing an evidence-based clinical pathway for the assessment, diagnosis and management of acute Charcot neuro-Arthropathy: a systematic review. J Foot Ankle Surg. 2013;6(1):30.

    Google Scholar 

  95. Sella EJ, Barrette C. Staging of Charcot neuroarthropathy along the medial column of the foot in the diabetic patient. J Foot Ankle Surg. 1999;38(1):34–40.

    Article  CAS  PubMed  Google Scholar 

  96. Thewjitcharoen Y, Sripatpong J, Parksook W, Krittiyawong S, Porramatikul S, Srikummoon T, et al. Salient features and outcomes of Charcot foot - an often-overlooked diabetic complication: a 17-year-experience at a diabetic center in Bangkok. J Clin Transl Endocrinol. 2018;11:1–6.

    PubMed  PubMed Central  Google Scholar 

  97. Jude EB, Selby PL, Burgess J, Lilleystone P, Mawer EB, Page SR, et al. Bisphosphonates in the treatment of Charcot neuroarthropathy: a double-blind randomised controlled trial. Diabetologia. 2001;44(11):2032–7.

    Article  CAS  PubMed  Google Scholar 

  98. Pitocco D, Ruotolo V, Caputo S, Mancini L, Collina CM, Manto A, et al. Six-month treatment with alendronate in acute Charcot neuroarthropathy: a randomized controlled trial. Diabetes Care. 2005;28(5):1214–5.

    Article  CAS  PubMed  Google Scholar 

  99. Bem R, Jirkovská A, Fejfarová V, Skibová J, Jude EB. Intranasal calcitonin in the treatment of acute Charcot neuroosteoarthropathy: a randomized controlled trial. Diabetes Care. 2006;29(6):1392–4.

    Article  CAS  PubMed  Google Scholar 

  100. Pakarinen T-K, Laine H-J, Mäenpää H, Mattila P, Lahtela J. The effect of zoledronic acid on the clinical resolution of Charcot neuroarthropathy: a pilot randomized controlled trial. Diabetes Care. 2011;34(7):1514–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Busch-Westbroek TE, Delpeut K, Balm R, Bus SA, Schepers T, Peters EJ, et al. Effect of single dose of RANKL antibody treatment on acute Charcot neuro-osteoarthropathy of the foot. Diabetes Care. 2018;41(3):e21–e2.

    Article  PubMed  Google Scholar 

  102. Ndip A, Williams A, Jude EB, Serracino-Inglott F, Richardson S, Smyth JV, et al. The RANKL/RANK/OPG signaling pathway mediates medial arterial calcification in diabetic Charcot neuroarthropathy. Diabetes. 2011;60(8):2187–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wang L, Shi X, Zhao R, Halloran BP, Clark DJ, Jacobs CR, et al. Calcitonin-gene-related peptide stimulates stromal cell osteogenic differentiation and inhibits RANKL induced NF-kappaB activation, osteoclastogenesis and bone resorption. Bone. 2010;46(5):1369–79.

    Article  CAS  PubMed  Google Scholar 

  104. La Fontaine J, Shibuya N, Sampson HW, Valderrama P. Trabecular quality and cellular characteristics of normal, diabetic, and charcot bone. J Foot Ankle Surg. 2011;50(6):648–53.

    Article  PubMed  Google Scholar 

  105. Richard JL, Almasri M, Schuldiner S. Treatment of acute Charcot foot with bisphosphonates: a systematic review of the literature. Diabetologia. 2012;55(5):1258–64.

    Article  CAS  PubMed  Google Scholar 

  106. Imai S, Matsusue Y. Neuronal regulation of bone metabolism and anabolism: calcitonin gene-related peptide-, substance P-, and tyrosine hydroxylase-containing nerves and the bone. Microsc Res Tech. 2002;58(2):61–9.

    Article  CAS  PubMed  Google Scholar 

  107. Akopian A, Demulder A, Ouriaghli F, Corazza F, Fondu P, Bergmann P. Effects of CGRP on human osteoclast-like cell formation: a possible connection with the bone loss in neurological disorders? Peptides. 2000;21(4):559–64.

    Article  CAS  PubMed  Google Scholar 

  108. La Fontaine J, Harkless LB, Sylvia VL, Carnes D, Heim-Hall J, Jude E. Levels of endothelial nitric oxide synthase and calcitonin gene-related peptide in the Charcot foot: a pilot study. J Foot Ankle Surg. 2008;47(5):424–9.

    Article  PubMed  Google Scholar 

  109. Nilforoushan D, Gramoun A, Glogauer M, Manolson MF. Nitric oxide enhances osteoclastogenesis possibly by mediating cell fusion. Nitric Oxide Biol Chem. 2009;21(1):27–36.

    Article  CAS  Google Scholar 

  110. • Pasquier J, Thomas B, Hoarau-Vechot J, Odeh T, Robay A, Chidiac O, et al. Circulating microparticles in acute diabetic Charcot foot exhibit a high content of inflammatory cytokines, and support monocyte-to-osteoclast cell induction. Sci Rep. 2017;7(1):16450. This paper is the newest on the importance of microparticles and their potential contribution to Charcot foot in diabetes. It investigates microparticles role in osteoclastic differentiation.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian M. Schmidt.

Ethics declarations

Conflict of Interest

Brian M. Schmidt and Crystal M. Holmes declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This research has been fully approved by the University of Michigan Institutional Review Board.

Additional information

This article is part of the Topical Collection on Microvascular Complications—Neuropathy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidt, B.M., Holmes, C.M. Updates on Diabetic Foot and Charcot Osteopathic Arthropathy. Curr Diab Rep 18, 74 (2018). https://doi.org/10.1007/s11892-018-1047-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-018-1047-8

Keywords

Navigation