Skip to main content

Advertisement

Log in

T Cell Populations and Functions Are Altered in Human Obesity and Type 2 Diabetes

  • Immunology, Transplantation, and Regenerative Medicine (L Piemonti and V Sordi, Section Editors)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

Obesity and type 2 diabetes (T2D) are considered chronic inflammatory diseases. While early publications have reported the implication of innate immune cells such as macrophages to promote systemic inflammation and metabolic dysfunctions, recent publications underline the alterations of the T cell compartment in human obesity and type 2 diabetes. These recent findings are the focus of this review.

Recent Findings

In humans, obesity and T2D induce the expansion of proinflammatory T cells such as CD4 Th1, Th17, and CD8 populations, whereas innate T cells such as MAIT and iNKT cells are decreased. These alterations reflect a loss of total T cell homeostasis that may contribute to tissue and systemic inflammation.

Summary

Whether these changes are adaptive to nutritional variations and/or contribute to the progression of metabolic diseases remains to be clarified. T cell phenotyping may improve obese and/or T2D patient stratification with therapeutic and prognostic implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Cancello R, Clément K. Is obesity an inflammatory illness? Role of low-grade inflammation and macrophage infiltration in human white adipose tissue. BJOG. 2006;113(10):1141–7. doi:10.1111/j.1471-0528.2006.01004.x.

    Article  CAS  PubMed  Google Scholar 

  2. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993;259(5091):87–91.

    Article  CAS  PubMed  Google Scholar 

  3. Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science. 1996;271(5249):665–8.

    Article  CAS  PubMed  Google Scholar 

  4. Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest. 1995;95(5):2409–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dalmas E, Rouault C, Abdennour M, Rovere C, Rizkalla S, Bar-Hen A, et al. Variations in circulating inflammatory factors are related to changes in calorie and carbohydrate intakes early in the course of surgery-induced weight reduction. Am J Clin Nutr. 2011;94(2):450–8. doi:10.3945/ajcn.111.013771.

    Article  CAS  PubMed  Google Scholar 

  6. Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444(7121):860–7. doi:10.1038/nature05485.

    Article  CAS  PubMed  Google Scholar 

  7. Poitou C, Viguerie N, Cancello R, De Matteis R, Cinti S, Stich V, et al. Serum amyloid a: production by human white adipocyte and regulation by obesity and nutrition. Diabetologia. 2005;48(3):519–28. doi:10.1007/s00125-004-1654-6.

    Article  CAS  PubMed  Google Scholar 

  8. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112(12):1796–808. doi:10.1172/JCI19246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003;112(12):1821–30. doi:10.1172/JCI19451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cipolletta D, Kolodin D, Benoist C, Mathis D. Tissular T(regs): a unique population of adipose-tissue-resident Foxp3+CD4+ T cells that impacts organismal metabolism. Semin Immunol. 2011;23(6):431–7. doi:10.1016/j.smim.2011.06.002.

    Article  CAS  PubMed  Google Scholar 

  11. Osborn O, Olefsky JM. The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med. 2012;18(3):363–74. doi:10.1038/nm.2627.

    Article  CAS  PubMed  Google Scholar 

  12. Wu H, Ghosh S, Perrard XD, Feng L, Garcia GE, Perrard JL, et al. T-cell accumulation and regulated on activation, normal T cell expressed and secreted upregulation in adipose tissue in obesity. Circulation. 2007;115(8):1029–38. doi:10.1161/CIRCULATIONAHA.106.638379.

    Article  CAS  PubMed  Google Scholar 

  13. Duffaut C, Zakaroff-Girard A, Bourlier V, Decaunes P, Maumus M, Chiotasso P, et al. Interplay between human adipocytes and T lymphocytes in obesity: CCL20 as an adipochemokine and T lymphocytes as lipogenic modulators. Arterioscler Thromb Vasc Biol. 2009;29(10):1608–14. doi:10.1161/ATVBAHA.109.192583.

    Article  CAS  PubMed  Google Scholar 

  14. Womack J, Tien PC, Feldman J, Shin JH, Fennie K, Anastos K, et al. Obesity and immune cell counts in women. Metabolism. 2007;56(7):998–1004. doi:10.1016/j.metabol.2007.03.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. •• Monteiro-Sepulveda M, Touch S, Mendes-Sá C, André S, Poitou C, Allatif O, et al. Jejunal T cell inflammation in human obesity correlates with decreased enterocyte insulin signaling. Cell Metab. 2015;22(1):113–24. doi:10.1016/j.cmet.2015.05.020. This work explores for the first time in a large cohort of obese and diabetic patients compared to lean individuals the phenotype of immune cells and notably T cells and their impact on enterocyte insulin sensitivity.

    Article  CAS  PubMed  Google Scholar 

  16. Kintscher U, Hartge M, Hess K, Foryst-Ludwig A, Clemenz M, Wabitsch M, et al. T-lymphocyte infiltration in visceral adipose tissue: a primary event in adipose tissue inflammation and the development of obesity-mediated insulin resistance. Arterioscler Thromb Vasc Biol. 2008;28(7):1304–10. doi:10.1161/ATVBAHA.108.165100.

    Article  CAS  PubMed  Google Scholar 

  17. O'Rourke RW, Metcalf MD, White AE, Madala A, Winters BR, Maizlin II, et al. Depot-specific differences in inflammatory mediators and a role for NK cells and IFN-gamma in inflammation in human adipose tissue. Int J Obes. 2009;33(9):978–90. doi:10.1038/ijo.2009.133.

    Article  Google Scholar 

  18. Zeyda M, Huber J, Prager G, Stulnig TM. Inflammation correlates with markers of T-cell subsets including regulatory T cells in adipose tissue from obese patients. Obesity (Silver Spring). 2011;19(4):743–8. doi:10.1038/oby.2010.123.

    Article  CAS  Google Scholar 

  19. Pacifico L, Di Renzo L, Anania C, Osborn JF, Ippoliti F, Schiavo E, et al. Increased T-helper interferon-gamma-secreting cells in obese children. Eur J Endocrinol. 2006;154(5):691–7. doi:10.1530/eje.1.02138.

    Article  CAS  PubMed  Google Scholar 

  20. McLaughlin T, Liu L-F, Lamendola C, Shen L, Morton J, Rivas H, et al. T-cell profile in adipose tissue is associated with insulin resistance and systemic inflammation in humans. Arterioscler Thromb Vasc Biol. 2014;34(12):2637–43. doi:10.1161/ATVBAHA.114.304636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Winer S, Chan Y, Paltser G, Truong D, Tsui H, Bahrami J, et al. Normalization of obesity-associated insulin resistance through immunotherapy. Nat Med. 2009;15(8):921–9. doi:10.1038/nm.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Luck H, Tsai S, Chung J, Clemente-Casares X, Ghazarian M, Revelo XS, et al. Regulation of obesity-related insulin resistance with gut anti-inflammatory agents. Cell Metab. 2015;21(4):527–42. doi:10.1016/j.cmet.2015.03.001.

    Article  CAS  PubMed  Google Scholar 

  23. Garidou L, Pomié C, Klopp P, Waget A, Charpentier J, Aloulou M, et al. The gut microbiota regulates intestinal CD4 T cells expressing RORγt and controls metabolic disease. Cell Metab. 2015;22(1):100–12. doi:10.1016/j.cmet.2015.06.001.

    Article  CAS  PubMed  Google Scholar 

  24. Sumarac-Dumanovic M, Stevanovic D, Ljubic A, Jorga J, Simic M, Stamenkovic-Pejkovic D, et al. Increased activity of interleukin-23/interleukin-17 proinflammatory axis in obese women. Int J Obes. 2009;33(1):151–6. doi:10.1038/ijo.2008.216.

    Article  CAS  Google Scholar 

  25. Jagannathan-Bogdan M, McDonnell ME, Shin H, Rehman Q, Hasturk H, Apovian CM, et al. Elevated proinflammatory cytokine production by a skewed T cell compartment requires monocytes and promotes inflammation in type 2 diabetes. J Immunol. 2011;186(2):1162–72. doi:10.4049/jimmunol.1002615.

    Article  CAS  PubMed  Google Scholar 

  26. Zeng C, Shi X, Zhang B, Liu H, Zhang L, Ding W, et al. The imbalance of Th17/Th1/Tregs in patients with type 2 diabetes: relationship with metabolic factors and complications. J Mol Med. 2012;90(2):175–86. doi:10.1007/s00109-011-0816-5.

    Article  CAS  PubMed  Google Scholar 

  27. Sumarac-Dumanovic M, Jeremic D, Pantovic A, Janjetovic K, Stamenkovic-Pejkovic D, Cvijovic G, et al. Therapeutic improvement of glucoregulation in newly diagnosed type 2 diabetes patients is associated with a reduction of IL-17 levels. Immunobiology. 2013;218(8):1113–8. doi:10.1016/j.imbio.2013.03.002.

    Article  CAS  PubMed  Google Scholar 

  28. • Zhao R, Tang D, Yi S, Li W, Wu C, Lu Y, et al. Elevated peripheral frequencies of Th22 cells: a novel potent participant in obesity and type 2 diabetes. PLoS One. 2014;9(1):e85770. doi:10.1371/journal.pone.0085770. One of the first studies exploring Th22 subset and cytokine production in the blood of obese and type 2 diabetic patients.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Guo H, Xu BC, Yang XG, Peng D, Wang Y, Liu XB, et al. A high frequency of peripheral blood IL-22(+) CD4(+) T cells in patients with new onset type 2 diabetes mellitus. J Clin Lab Anal. 2016;30(2):95–102. doi:10.1002/jcla.21821.

    Article  PubMed  Google Scholar 

  30. Bertola A, Ciucci T, Rousseau D, Bourlier V, Duffaut C, Bonnafous S, et al. Identification of adipose tissue dendritic cells correlated with obesity-associated insulin-resistance and inducing Th17 responses in mice and patients. Diabetes. 2012;61(9):2238–47. doi:10.2337/db11-1274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. •• Dalmas E, Venteclef N, Caer C, Poitou C, Cremer I, Aron-Wisnewsky J, et al. T cell-derived IL-22 amplifies IL-1β-driven inflammation in human adipose tissue: relevance to obesity and type 2 diabetes. Diabetes. 2014;63(6):1966–77. doi:10.2337/db13-1511. This paper provides new insights into the dialogue between macrophages and T cells through the secretions of IL-1β and Th17-derived cytokines in the obese adipose tissue.

    Article  CAS  PubMed  Google Scholar 

  32. Fabbrini E, Cella M, McCartney SA, Fuchs A, Abumrad NA, Pietka TA, et al. Association between specific adipose tissue CD4+ T-cell populations and insulin resistance in obese individuals. Gastroenterology. 2013;145(2):366-74.e1-3. doi:10.1053/j.gastro.2013.04.010.

    Article  PubMed  Google Scholar 

  33. Cavallari JF, Denou E, Foley KP, Khan WI, Schertzer JD. Different Th17 immunity in gut, liver, and adipose tissues during obesity: the role of diet, genetics, and microbes. Gut Microbes. 2016;7(1):82–9. doi:10.1080/19490976.2015.1127481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cox LM, Yamanishi S, Sohn J, Alekseyenko AV, Leung JM, Cho I, et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell. 2014;158(4):705–21. doi:10.1016/j.cell.2014.05.052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zúñiga LA, Shen W-J, Joyce-Shaikh B, Pyatnova EA, Richards AG, Thom C, et al. IL-17 regulates adipogenesis, glucose homeostasis, and obesity. J Immunol. 2010;185(11):6947–59. doi:10.4049/jimmunol.1001269.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lee SH, Jhun J, Byun JK, Kim EK, Jung K, Lee JE, et al. IL-17 axis accelerates the inflammatory progression of obese in mice via TBK1 and IKBKE pathway. Immunol Lett. 2017;184:67–75. doi:10.1016/j.imlet.2017.02.004.

    Article  CAS  PubMed  Google Scholar 

  37. van der Weerd K, Dik WA, Schrijver B, Schweitzer DH, Langerak AW, Drexhage HA, et al. Morbidly obese human subjects have increased peripheral blood CD4+ T cells with skewing toward a Treg- and Th2-dominated phenotype. Diabetes. 2012;61(2):401–8. doi:10.2337/db11-1065.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wagner NM, Brandhorst G, Czepluch F, Lankeit M, Eberle C, Herzberg S, et al. Circulating regulatory T cells are reduced in obesity and may identify subjects at increased metabolic and cardiovascular risk. Obesity (Silver Spring). 2013;21(3):461–8. doi:10.1002/oby.20087.

    Article  CAS  Google Scholar 

  39. Travers RL, Motta AC, Betts JA, Bouloumie A, Thompson D. The impact of adiposity on adipose tissue-resident lymphocyte activation in humans. Int J Obes. 2015;39(5):762–9. doi:10.1038/ijo.2014.195.

    Article  CAS  Google Scholar 

  40. Pereira S, Teixeira L, Aguilar E, Oliveira M, Savassi-Rocha A, Pelaez JN, et al. Modulation of adipose tissue inflammation by FOXP3+ Treg cells, IL-10, and TGF-β in metabolically healthy class III obese individuals. Nutrition. 2014;30(7–8):784–90. doi:10.1016/j.nut.2013.11.023.

    Article  CAS  PubMed  Google Scholar 

  41. Esser N, L'homme L, De Roover A, Kohnen L, Scheen AJ, Moutschen M, et al. Obesity phenotype is related to NLRP3 inflammasome activity and immunological profile of visceral adipose tissue. Diabetologia. 2016;56(11):2487–97. doi:10.1007/s00125-013-3023-9.

    Article  Google Scholar 

  42. Rausch ME, Weisberg S, Vardhana P, Tortoriello DV. Obesity in C57BL/6J mice is characterized by adipose tissue hypoxia and cytotoxic T-cell infiltration. Int J Obes. 2008;32(3):451–63. doi:10.1038/sj.ijo.0803744.

    Article  CAS  Google Scholar 

  43. Nishimura S, Manabe I, Nagasaki M, Eto K, Yamashita H, Ohsugi M, et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med. 2009;15(8):914–20. doi:10.1038/nm.1964.

    Article  CAS  PubMed  Google Scholar 

  44. Godfrey DI, Uldrich AP, McCluskey J, Rossjohn J, Moody DB. The burgeoning family of unconventional T cells. Nat Immunol. 2015;16(11):1114–23. doi:10.1038/ni.3298.

    Article  CAS  PubMed  Google Scholar 

  45. Tard C, Rouxel O, Lehuen A. Regulatory role of natural killer T cells in diabetes. Biom J. 2015;38(6):484–95. doi:10.1016/j.bj.2015.04.001.

    Google Scholar 

  46. Sugimoto C, Fujita H, Wakao H. Mucosal-associated invariant T cells from induced pluripotent stem cells: a novel approach for modeling human diseases. World J Stem Cells. 2016;8(4):158–69. doi:10.4252/wjsc.v8.i4.158.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lynch L, Nowak M, Varghese B, Clark J, Hogan AE, Toxavidis V, et al. Adipose tissue invariant NKT cells protect against diet-induced obesity and metabolic disorder through regulatory cytokine production. Immunity. 2012;37(3):574–87. doi:10.1016/j.immuni.2012.06.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lynch L, O'Shea D, Winter DC, Geoghegan J, Doherty DG, O'Farrelly C. Invariant NKT cells and CD1d(+) cells amass in human omentum and are depleted in patients with cancer and obesity. Eur J Immunol. 2009;39(7):1893–901. doi:10.1002/eji.200939349.

    Article  CAS  PubMed  Google Scholar 

  49. Mathis D. Immunological goings-on in visceral adipose tissue. Cell Metab. 2013;17(6):851–9. doi:10.1016/j.cmet.2013.05.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Treiner E, Duban L, Bahram S, Radosavljevic M, Wanner V, Tilloy F, et al. Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature. 2003;422(6928):164–9. doi:10.1038/nature01433.

    Article  CAS  PubMed  Google Scholar 

  51. • Carolan E, Tobin LM, Mangan BA, Corrigan M, Gaoatswe G, Byrne G, et al. Altered distribution and increased IL-17 production by mucosal-associated invariant T cells in adult and childhood obesity. J Immunol. 2015;194(12):5775–80. doi:10.4049/jimmunol.1402945. This is the first study exploring MAIT cells frequency in the adipose tissue of obese versus lean subjects; the authors show that MAIT cell frequency is decreased in the obese adipose tissue.

    Article  CAS  PubMed  Google Scholar 

  52. •• Magalhaes I, Pingris K, Poitou C, Bessoles S, Venteclef N, Kiaf B, et al. Mucosal-associated invariant T cell alterations in obese and type 2 diabetic patients. J Clin Invest. 2015;125(4):1752–62. doi:10.1172/JCI78941. This paper reports that circulating MAIT cells are decreased in obesity and type 2 diabetic subjects with increased proinflammatory cytokine production.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Dusseaux M, Martin E, Serriari N, Péguillet I, Premel V, Louis D, et al. Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells. Blood. 2011;117(4):1250–9. doi:10.1182/blood-2010-08-303339.

    Article  CAS  PubMed  Google Scholar 

  54. Kurioka A, Walker LJ, Klenerman P, Willberg CB. MAIT cells: new guardians of the liver. Clin Trans Immunol. 2016;5(8):e98. doi:10.1038/cti.2016.51.

    Article  Google Scholar 

  55. Tang X-Z, Jo J, Tan AT, Sandalova E, Chia A, Tan KC, et al. IL-7 licenses activation of human liver intrasinusoidal mucosal-associated invariant T cells. J Immunol. 2013;190(7):3142–52. doi:10.4049/jimmunol.1203218.

    Article  CAS  PubMed  Google Scholar 

  56. Eckle SBG, Corbett AJ, Keller AN, Chen Z, Godfrey DI, Liu L, et al. Recognition of vitamin B precursors and byproducts by mucosal associated invariant T cells. J Biol Chem. 2015;290(51):30204–11. doi:10.1074/jbc.R115.685990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Franciszkiewicz K, Salou M, Legoux F, Zhou Q, Cui Y, Bessoles S, et al. MHC class I-related molecule, MR1, and mucosal-associated invariant T cells. Immunol Rev. 2016;272(1):120–38. doi:10.1111/imr.12423.

    Article  CAS  PubMed  Google Scholar 

  58. Kjer-Nielsen L, Patel O, Corbett AJ, Le Nours J, Meehan B, Liu L, et al. MR1 presents microbial vitamin B metabolites to MAIT cells. Nature. 2012;491(7426):717–23. doi:10.1038/nature11605.

    CAS  PubMed  Google Scholar 

  59. McWilliam HEG, Birkinshaw RW, Villadangos JA, McCluskey J, Rossjohn J. MR1 presentation of vitamin B-based metabolite ligands. Curr Opin Immunol. 2015;34:28–34. doi:10.1016/j.coi.2014.12.004.

    Article  CAS  PubMed  Google Scholar 

  60. Le Bourhis L, Martin E, Péguillet I, Guihot A, Froux N, Coré M, et al. Antimicrobial activity of mucosal-associated invariant T cells. Nat Immunol. 2010;11(8):701–8. doi:10.1038/ni.1890.

    Article  PubMed  Google Scholar 

  61. Gold MC, Cerri S, Smyk-Pearson S, Cansler ME, Vogt TM, Delepine J, et al. Human mucosal associated invariant T cells detect bacterially infected cells. PLoS Biol. 2010;8(6):e1000407. doi:10.1371/journal.pbio.1000407.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Napier RJ, Adams EJ, Gold MC, Lewinsohn DM. The role of mucosal associated invariant T cells in antimicrobial immunity. Front Immunol. 2015;6:344. doi:10.3389/fimmu.2015.00344.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Hiejima E, Kawai T, Nakase H, Tsuruyama T, Morimoto T, Yasumi T, et al. Reduced numbers and Proapoptotic features of mucosal-associated invariant T cells as a characteristic finding in patients with inflammatory bowel disease. Inflamm Bowel Dis. 2015;21(7):1529–40. doi:10.1097/MIB.0000000000000397.

    Article  PubMed  Google Scholar 

  64. Lee OJ, Cho Y-N, Kee S-J, Kim M-J, Jin H-M, Lee S-J, et al. Circulating mucosal-associated invariant T cell levels and their cytokine levels in healthy adults. Exp Gerontol. 2014;49:47–54. doi:10.1016/j.exger.2013.11.003.

    Article  CAS  PubMed  Google Scholar 

  65. Novak J, Dobrovolny J, Novakova L, Kozak T. The decrease in number and change in phenotype of mucosal-associated invariant T cells in the elderly and differences in men and women of reproductive age. Scand J Immunol. 2014;80(4):271–5. doi:10.1111/sji.12193.

    Article  CAS  PubMed  Google Scholar 

  66. Howson LJ, Salio M, Cerundolo V. MR1-restricted mucosal-associated invariant T cells and their activation during infectious diseases. Front Immunol. 2015;6:303. doi:10.3389/fimmu.2015.00303.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Hinks TSC. Mucosal-associated invariant T cells in autoimmunity, immune-mediated diseases and airways disease. Immunology. 2016;148(1):1–12. doi:10.1111/imm.12582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Treiner E. Mucosal-associated invariant T cells in inflammatory bowel diseases: bystanders, defenders, or offenders? Front Immunol. 2015;6:27. doi:10.3389/fimmu.2015.00027.

    PubMed  PubMed Central  Google Scholar 

  69. Costanzo AE, Taylor KR, Dutt S, Han PP, Fujioka K, Jameson JM. Obesity impairs γδ T cell homeostasis and antiviral function in humans. PLoS One. 2015;10(3) doi:10.1371/journal.pone.0120918.

  70. Muller LM, Gorter KJ, Hak E, Goudzwaard WL, Schellevis FG, Hoepelman AI, et al. Increased risk of common infections in patients with type 1 and type 2 diabetes mellitus. Clin Infect Dis. 2005;41(3):281–8. doi:10.1086/431587.

    Article  CAS  PubMed  Google Scholar 

  71. Paich HA, Sheridan PA, Handy J, Karlsson EA, Schultz-Cherry S, Hudgens MG, et al. Overweight and obese adult humans have a defective cellular immune response to pandemic H1N1 influenza a virus. Obesity (Silver Spring). 2013;21(11):2377–86. doi:10.1002/oby.20383.

    Article  CAS  Google Scholar 

  72. Tagliabue C, Principi N, Giavoli C, Esposito S. Obesity: impact of infections and response to vaccines. Eur J Clin Microbiol Infect Dis. 2016;35(3):325–31. doi:10.1007/s10096-015-2558-8.

    Article  CAS  PubMed  Google Scholar 

  73. Delgoffe GM, Pollizzi KN, Waickman AT, Heikamp E, Meyers DJ, Horton MR, et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat Immunol. 2011;12(4):295–303. doi:10.1038/ni.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Procaccini C, De Rosa V, Galgani M, Carbone F, Cassano S, Greco D, et al. Leptin-induced mTOR activation defines a specific molecular and transcriptional signature controlling CD4+ effector T cell responses. J Immunol. 2012;189(6):2941–53. doi:10.4049/jimmunol.1200935.

    Article  CAS  PubMed  Google Scholar 

  75. Topalian SL, Taube JM, Anders RA, Pardoll DM. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer. 2016;16(5):275–87. doi:10.1038/nrc.2016.36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The laboratory is supported by the European Union’s Seventh Framework Program for research, technological development and demonstration under grant agreement HEALTH-F4-2012-305312 (METACARDIS), the French National Agency of Research (ANR-2014 OBE-MAIT and ADIPOFIB), and French Foundation for Medical Research. Assistance Publique-Hôpitaux de Paris (APHP) is the promoter of the clinical investigations performed at the Human Research Nutrition Center by the authors mentioned in this review. The authors would like to thank Timothy Swartz (Institute of Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, Paris) for manuscript language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien André.

Ethics declarations

Conflict of Interest

Sothea Touch, Karine Clément, and Sébastien André declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article describes results from studies with human subjects performed by the three authors. All reported studies have been previously published. An informed consent was obtained for all subjects. The Ethics Committee (Comité de protection des personnes, CPP Ile-de-France) approved the studies, which were conducted in accordance with the Helsinki Declaration and are registered in clinical trials. This article does not contain any studies with animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Immunology, Transplantation, and Regenerative Medicine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Touch, S., Clément, K. & André, S. T Cell Populations and Functions Are Altered in Human Obesity and Type 2 Diabetes. Curr Diab Rep 17, 81 (2017). https://doi.org/10.1007/s11892-017-0900-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-017-0900-5

Keywords

Navigation