Skip to main content

Advertisement

Log in

Shared Neurobiological Pathways Between Type 2 Diabetes and Depressive Symptoms: a Review of Morphological and Neurocognitive Findings

  • Psychosocial Aspects (KK Hood, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Type 2 diabetes (T2D) patients are twice as likely to experience depressive symptoms than people without T2D, resulting in greater economic burden, worse clinical outcomes, and reduced quality of life. Several overlapping pathophysiological processes including hypothalamic-pituitary-adrenal axis hyperactivity, sympathetic nervous system activation, and elevated pro-inflammatory biomarkers are recognized as playing a role between T2D and depressive symptoms. However, other neurobiological mechanisms that may help to further link these comorbidities have not been extensively reviewed. Reduced neuroplasticity in brain regions sensitive to stress (e.g., hippocampus) may be associated with T2D and depressive symptoms. T2D patients demonstrate reduced neuroplasticity including morphological/volumetric abnormalities and subsequent neurocognitive deficits, similar to those reported by patients with depressive symptoms. This review aims to summarize recent studies on morphological/volumetric abnormalities in T2D and correlated neurocognitive deficits. Modifying factors that contribute to reduced neuroplasticity will also be discussed. Integrating reduced neuroplasticity with other biological correlates of T2D and depressive symptoms could enhance future therapeutic interventions and further disentangle the bidirectional associations between these comorbidities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Anderson RJ, Freedland KE, Clouse RE, Lustman PJ. The prevalence of comorbid depression in adults with diabetes: a meta-analysis. Diabetes Care. 2001;24:1069–78.

    Article  PubMed  CAS  Google Scholar 

  2. Gavard JA, Lustman PJ, Clouse RE. Prevalence of depression in adults with diabetes: an epidemiological evaluation. Diabetes Care. 1993;16:1167–78.

    Article  PubMed  CAS  Google Scholar 

  3. de Groot M, Doyle T, Hockman E, Wheeler C, Pinkerman B, Shubrook J, et al. Depression among type 2 diabetes rural Appalachian clinic attendees. Diabetes Care. 2007;30:1602–4.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Lustman PJ, Anderson RJ, Freedland KE, de Groot M, Carney RM, Clouse RE. Depression and poor glycemic control: a meta-analytic review of the literature. Diabetes Care. 2000;23:934–42.

    Article  PubMed  CAS  Google Scholar 

  5. de Groot M, Anderson RJ, Freedland KE, Clouse RE, Lustman PJ. Association of depression and diabetes complications: a meta-analysis. Psychosom Med. 2001;63:619–30.

    Article  PubMed  Google Scholar 

  6. Ciechanowski PS, Katon WJ, Russo JE. Depression and diabetes. Impact of depressive symptoms on adherence, function, and costs. Arch Intern Med. 2000;160:3278–85.

    Article  PubMed  CAS  Google Scholar 

  7. Jacobson AM, de Groot M, Samson JA. The effects of psychiatric disorders and symptoms on quality of life in patients with type I and type II diabetes. Qual Life Res. 1997;6(1):11–20.

    Article  PubMed  CAS  Google Scholar 

  8. Egede L, Osborn C. Role of motivation in the relationship between depression, self-care and glycemic control in adults with type 2 diabetes. Diabetes Educ. 2010;36(2):276–83.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Katon W, Von Korff M, Ciechanowski P, Russo J, Lin E, et al. Behavioral and clinical factors associated with depression among individuals with diabetes. Diabetes Care. 2004;27:914–20.

    Article  PubMed  Google Scholar 

  10. Katon W, Rutter C, Simon G, Lin EB, Ludman E, et al. The association of comorbid depression with mortality in patients with type 2 diabetes. Diabetes Care. 2005;28:2668–72.

    Article  PubMed  Google Scholar 

  11. Simon G, von Korff M, Barlow W. Health care costs of primary care patients with recognized depression. Arch Gen Psychiatry. 1995;52:850–6.

    Article  PubMed  CAS  Google Scholar 

  12. Penckofer S, Doyle T, Byrn, M, Lustman PJ. State of the science: depression and type 2 diabetes. W J Nurs Res. 2014;1–25.

  13. Mezuk B, Eaton WW, Albrecht S, Golden SH. Depression and type 2 diabetes over the lifespan. Diabetes Care. 2008;31:2382–90.

    Article  Google Scholar 

  14. Nefs G, Pouwer F, Denollet J, Pop V. The course of depressive symptoms in primary care patients with type 2 diabetes: results from the Diabetes, Depression, Type D Personality Zuidoost-Brabant (DiaDDZoB) study. Diabetologia. 2012;55:608–16.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Nouwen A, Winkley K, Twisk J, Lloyd CE, Peyrot M, Ismail K, et al. Type 2 diabetes as a risk factor for the onset of depression: a systematic review and meta-analysis. Diabetologia. 2010;53:2480–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Cosgrove MP, Sargeant LA, Griffin SJ. Does depression increase the risk of developing type 2 diabetes? Occup Med. 2008;58:7–14.

    Article  Google Scholar 

  17. Champaneri S, Wand GS, Malhotra SS, Casagrande SS, Golden SH. Biological basis of depression in adults with diabetes. Curr Diabetes Rep. 2010;10:396–405.

    Article  CAS  Google Scholar 

  18. Stuart MJ, Baune BT. Depression and type 2 diabetes: inflammatory mechanisms of a psychoneuroendocrine co-morbidity. Neurosci Biobehav Rev. 2012;36:658–76. Well written review paper that highlights several biological mechanisms associated with T2D and depression with a particular emphasis on cellular and molecular research.

    Article  PubMed  CAS  Google Scholar 

  19. Pickup JC. Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care. 2004;27:813–23.

    Article  PubMed  Google Scholar 

  20. Knol MJ, Twisk JWR, Beekman ATF, Heine RJ, Snoek FJ, Pouwer F. Depression as a risk factor for the onset of type 2 diabetes. A meta-analysis. Diabetologia. 2006;49:837–45.

    Article  PubMed  CAS  Google Scholar 

  21. Raison CL, Capuron L, Miller AH. Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol. 2006;27:24–31.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Ruhe HG, Mason NS, Schene AH. Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans: a meta-analysis of monoamine depletion studies. Mol Psychiatry. 2007;12:331–59.

    Article  PubMed  CAS  Google Scholar 

  23. Dantzer R, O’Connor JC, Freund GC, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nature. 2008;9:46–7.

    CAS  Google Scholar 

  24. Doyle TA, de Groot M, Harris T, Schwartz F, Strotmeyer ES, Johnson KC, et al. Diabetes, depressive symptoms, and inflammation in older adults: results from the Health, Aging, and Body Composition Study. J Psychosom Res. 2013;75:419–24. First empirical study to confirm that previously hypothesized markers of inflammation are elevated in participants with both T2D and self-reported depressive symptoms to a greater degree than participants with either disorder alone or people without T2D and depressive symptoms.

    Article  PubMed  Google Scholar 

  25. Alvarez A, Faccioli J, Guinzbourg M, Castex MM, Bayon C, Masson W. Endocrine and inflammatory profiles in type 2 diabetic patients with and without major depressive disorder. BMC Res Notes. 2013;6:61. Provides corroborating evidence that previously hypothesized markers of inflammation are elevated in participants with both T2D and clinically diagnosed MDD as well as the first reported evidence that 24-hour urine free cortisol levels are higher among participants with both disorders compared to participants with T2D alone.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Fossati P, Radtchenko A, Boyer P. Neuroplasticity: from MRI to depressive symptoms. Eur Neuropsychopharmacol. 2004;14(5):S503–10.

    Article  PubMed  CAS  Google Scholar 

  27. Reagan L. Diabetes as a chronic metabolic stressor: causes, consequences and clinical complications. Exp Neurol. 2012;233(1):68–78.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Ho N, Sommers MS, Lucki I. Effects of diabetes on hippocampal neurogenesis: links to cognition and depression. Neurosci Biobehav Rev. 2013;37:1346–62.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Maes M, Yirmyia R, Noraberg J, Brene S, Hibbein J, Perini G, et al. The inflammatory & neurodegenerative (I&ND) hypothesis of depression: leads for future research and new drug developments in depression. Metab Brain Dysfunct. 2009;24:27–53.

    Article  CAS  Google Scholar 

  30. Koehl M, Abrous DN. A new chapter in the field of memory: adult hippocampal neurogenesis. Eur J Neurosci. 2011;33:1101–14.

    Article  PubMed  Google Scholar 

  31. Snyder JS, Soumier A, Brewer M, Pickel J, Cameron HA. A role for adult neurogenesis in spatial long-term memory. Neuroscience. 2011;130:843–52.

    Article  Google Scholar 

  32. Black P. The inflammatory consequences of psychologic stress: relationship to insulin resistance, obesity, atherosclerosis and diabetes, type II. Med Hypotheses. 2006;67:879–91.

    Article  PubMed  CAS  Google Scholar 

  33. Black PH. The inflammatory response is an integral part of the stress response: implications for atherosclerosis, insulin resistance, type II diabetes and metabolic syndrome X. Brain Behav Immun. 2003;17(5):350–64.

    Article  PubMed  CAS  Google Scholar 

  34. McEwen BS. Protective and damaging effects of stress mediators: central role of the brain. Dialogues Clin Neurosci. 2006;8:367–81.

    PubMed Central  PubMed  Google Scholar 

  35. Konarski JZ, McIntyre RS, Kennedy SH, Rafi-Tari S, Soczynska JK, Ketter TA, et al. Volumetric neuroimaging investigations in mood disorders: bipolar disorder versus major depressive disorder. Bipolar Disord. 2008;10:1–37.

    Article  PubMed  Google Scholar 

  36. Eker C, Gonul AS. Volumetric MRI studies of the hippocampus in major depressive disorder: meanings of inconsistency and directions for future research. World J Biol Psychiatry. 2010;11:19–35.

    Article  PubMed  Google Scholar 

  37. Campbell S, MacQueen G. An update on regional brain volume differences associated with mood disorders. Curr Opin Psychiatr. 2006;19(1):25–33.

    Article  Google Scholar 

  38. Stockmeier CA, Mahajan GJ, Konick LC, Overholser JC, Jurjus GJ, Meltzer HY, et al. Cellular changes in the postmortem hippocampus in major depression. Biol Psychiatry. 2004;56(9):640–50.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Fontan-Lozano A, Saez-Cassanelli JL, Inda MC, de los Santos-Artaga M, Sierra-Dominguez SA, Lopez-Lluch G, et al. Caloric restriction increases learning consolidation and facilitates synaptic plasticity through mechanisms dependent on NR28 subunits of the NMDA receptor. J Neurosci. 2007;27:10185–95.

    Article  PubMed  CAS  Google Scholar 

  40. Morris RG. Episodic-like memory in animals: psychological criteria, neural mechanisms and the value of episodic-like tasks to investigate animal models of neurodegenerative disease. Philos Trans R Soc Lond B Biol Sci. 2001;356:1453–65.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. McIntyre RS, Cha DS, Soczynska JK, Woldeyohannes HO, Gallaugher LA, Kudlow P, et al. Cognitive deficits and functional outcomes in major depressive disorder: determinants, substrates, and treatment interventions. Depression Anxiety. 2013;30:515–27. One of the most comprehensive reviews of cognitive deficits and functional outcomes in depression.

    Article  PubMed  Google Scholar 

  42. Reiman EM, Chen K, Alexander GE, et al. Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer’s dementia. Proc Natl Acad Sci U S A. 2004;101:284–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Sheline YI, Raichle ME, Snyder AZ, et al. Amyloid plaques disrupt resting state default mode network connectivity in cognitively normal elderly. Biol Psychiatry. 2010;67:584–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  44. Ajilore O, Narr K, Rosenthal J, Pham D, Hamilton L, Watari K, et al. Regional cortical gray matter thickness differences associated with type 2 diabetes and major depression. Psychiatry Res. 2010;184(2):63–70. Demonstrated that volumetric changes were greatest among patients with T2D + MDD compared to other groups/controls; one of only a few recent investigations to collect data from patients with both T2D + MDD.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Anan F, Masaki T, Shimomura T, Fujiki M, Umeno Y, Eshima N, et al. High-sensitivity C-reactive protein is associated with hippocampus volume in nondementia patients with type 2 diabetes. Metab Clin Exp. 2011;60:460–6.

    Article  PubMed  CAS  Google Scholar 

  46. de Bresser J, Tiehuis AM, van den Berg E, Reijmer YD, Jongen C. & jaap Kappelle, L et al.: progression of cerebral atrophy and white matter hyperintensities in patients with type 2 diabetes. Diabetes Care. 2010;33:1309–14.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Bruehl H, Wolf OT, Convit AA. Blunted cortisol awakening response and hippocampal atrophy in type 2 diabetes. Psychoneuroendocrinology. 2009a;34(6):815–21.

    Article  CAS  Google Scholar 

  48. Bruehl H, Wolf OT, Sweat V, Tirsi A, Richardson S, Convit A. Modifiers of cognitive function and brain structure in middle-aged and elderly individuals with type 2 diabetes. Brain Res. 2009;1280:186–94.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Brundel M, van den Heuvel M, de Bresser J, jaap Kappelle L, jan Biessels G. Cerebral cortical thickness in patients with type 2 diabetes. J Neurol Sci. 2010;299:126–30.

    Article  PubMed  Google Scholar 

  50. Cui X, Abduljalil A, Manor BD, Peng C, Novak V. Multi-scale glycemic variability: a link to gray matter atrophy and cognitive decline in type 2 diabetes. PLoS One. 2014;9(1):e86284.

    Article  PubMed Central  PubMed  Google Scholar 

  51. van Elderen SGC, de Roos A, de Craen AJM, Westendorp RGJ, Blauw GJ, Jukema JW. Progression of brain atrophy and cognitive decline in diabetes: a 3-year follow-up. Neurology. 2010;75:997–1002.

    Article  PubMed  Google Scholar 

  52. Falvey CM, Rosano C, Simonsick EM, Harris T, Strotmeyer ES, Satterfield S. Macro- and microstructural magnetic resonance imaging indices associated with diabetes among community-dwelling older adults. Diabetes Care. 2013;36:677–82. Provides results on structural abnormalities in T2D patients compared to controls using one of the largest population-based studies to date, the Healthy, Aging, and Body Composition Study.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Hapel R, Onopa R, Convit A. Type 2 diabetes affects brain health differentially in men and women. Diabetes Metab Res Rev. 2012;28(1):76–83.

    Article  Google Scholar 

  54. Hayaski K, Kurioka S, Yamaguchi T, Morita M, Kanazawa I, Takase H, et al. Association of cognitive dysfunction with hippocampal atrophy in elderly Japanese people with type 2 diabetes. Diabetes Res Clin Pract. 2011;94:180–5.

    Article  Google Scholar 

  55. Kamiyama K, Wada A, Suqihara M, Kurioka S, Hayashi K, Hayashi T, et al. Potential hippocampal region atrophy in diabetes type 2: a voxel-based morphometry VSRAD study. Jpn J Radiol. 2010;28(4):266–72.

    Article  PubMed  Google Scholar 

  56. Kumar A, Gupta R, Thomas A, Ajilore O, Hellemann G. Focal subcortical biophysical abnormalities in patients diagnosed with type 2 diabetes and depression. Arch Gen Psychiatry. 2009;66(3):324–30.

    Article  PubMed  Google Scholar 

  57. Masaki T, Anan F, Shimomura T, Fujiki M, Saikawa T, Yoshimatsu H. Association between hippocampal volume and serum adiponectin in patients with type 2 diabetes. Metab Clin Exp. 2012;61:1197–200.

    Article  PubMed  CAS  Google Scholar 

  58. Novak V, Zhao P, Manor B, Sejdic E, Alsop D, Abduljalil A, et al. Adhesion molecules, altered vasoreactivity, and brain atrophy in type 2 diabetes. Diabetes Care. 2011;34:2438–41.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Tan ZS, Beiser AS, Fox CS, Au R, Himali JJ, Debette S. Association of metabolic dysregulation with volumetric brain magnetic resonance imaging and cognitive markers of subclinical brain aging in middle-aged adults. Diabetes Care. 2011;34:1766–70.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Reijmer YD, van den Berg E, de Bresser J, Kessels RPC, Kappelle LJ, Algra A, et al. Accelerated cognitive decline in patients with type 2 diabetes: MRI correlates and risk factors. Diabetes Metab Res Rev. 2011;27:195–202.

    Article  PubMed  Google Scholar 

  61. Reijmer YD, Brundel M, de Bresser J, Kappelle LJ, Leemans A, Biessels GJ, et al. Microstructural white matter abnormalities and cognitive functioning in type 2 diabetes. Diabetes Care. 2013;36:137–44.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Musen G, Jacobson AM, Bolo NR, Simonson DC, Shenton ME, McCartney RL, et al. Resting-state brain functional connectivity is altered in type 2 diabetes. Diabetes. 2012;61:2375–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  63. Zhou H, Lu W, Shi Y, Bai F, Chang J, Yuan Y, et al. Impairments in cognition and resting-state connectivity of the hippocampus in elderly subjects with type 2 diabetes. Neurosci Lett. 2010;473:5–10.

    Article  PubMed  CAS  Google Scholar 

  64. Caetano SC, Kaur S, Brambilla P, Nicoletti M, Hatch JP, Sassi RB, et al. Smaller cingulate volumes in unipolar depressed patients. Biol Psychiatry. 2006;59:702–6.

    Article  PubMed  Google Scholar 

  65. Diez JJ, Iglesias P. The role of the novel adipocyte-derived hormone adiponectin in human disease. Eur J Endocrinol. 2003;148(3):293–300.

    Article  PubMed  CAS  Google Scholar 

  66. Ridker PM. Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation. 2003;107:363–9.

    Article  PubMed  Google Scholar 

  67. Wong RHX, Scholey A, Howe, PRC. Assessing premorbid cognitive ability in adults with type 2 diabetes mellitus: a review with implications for future intervention studies. Curr Diab Rep. (In Press).

  68. Kumar A, Haroon E, Darwin C, Pham D, Ajilore O, Rodriguez G, et al. Gray matter prefrontal changes in type 2 diabetes detected using MRI. J Magn Reson Imaging. 2008;27(1):14–9.

    Article  PubMed  Google Scholar 

  69. Awad N, Gagnon M, Messier C. The relationship between impaired glucose tolerance, type 2 diabetes, and cognitive function. J Clin Exp Neuropsychol. 2004;26(8):1044–80.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Todd Doyle, Angelos Halaris, and Murali Rao declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd Doyle.

Additional information

This article is part of the Topical Collection on Psychosocial Aspects

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doyle, T., Halaris, A. & Rao, M. Shared Neurobiological Pathways Between Type 2 Diabetes and Depressive Symptoms: a Review of Morphological and Neurocognitive Findings. Curr Diab Rep 14, 560 (2014). https://doi.org/10.1007/s11892-014-0560-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-014-0560-7

Keywords

Navigation