Skip to main content

Advertisement

Log in

Interleukin 2 in the Pathogenesis and Therapy of Type 1 Diabetes

  • Pathogenesis of Type 1 Diabetes (A Pugliese, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Regulatory T cells (Tregs) play a major role in controlling effector T cells (Teffs) responding to self-antigens, which cause autoimmune diseases. An improper Treg/Teff balance contributes to most autoimmune diseases, including type 1 diabetes (T1D). To restore a proper balance, blocking Teffs with immunosuppressants has been the only option, which was partly effective and too toxic. It now appears that expanding/activating Tregs with low-dose interleukin-2 (IL-2) could provide immunoregulation without immunosuppression. This is particularly interesting in T1D as Tregs from T1D patients are reported as dysfunctional and a relative deficiency in IL-2 production and/or IL-2-mediated signaling could contribute to this phenotype. A clinical study of low-dose IL-2 showed a very good safety profile and good Treg expansion/activation in T1D patients. This opens the way for efficacy trials to test low-dose IL-2 in prevention and treatment of T1D and to establish in which condition restoration of a proper Treg/Teff balance would be beneficial in the field of autoimmune and inflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 2008;133:775.

    Article  PubMed  CAS  Google Scholar 

  2. Campbell DJ, Koch MA. Phenotypical and functional specialization of FOXP3+ regulatory T cells. Nat Rev Immunol. 2011;11:119.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Wing K, Sakaguchi S. Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat Immunol. 2010;11:7.

    Article  PubMed  CAS  Google Scholar 

  4. Brusko TM, Wasserfall CH, Clare-Salzler MJ, Schatz DA, Atkinson MA. Functional defects and the influence of age on the frequency of CD4+ CD25+ T-cells in type 1 diabetes. Diabetes. 2005;54:1407.

    Article  PubMed  CAS  Google Scholar 

  5. Lindley S, Dayan CM, Bishop A, Roep BO, Peakman M, Tree TI. Defective suppressor function in CD4 (+) CD25 (+) T-cells from patients with type 1 diabetes. Diabetes. 2005;54:92.

    Article  PubMed  CAS  Google Scholar 

  6. Long SA, Cerosaletti K, Bollyky PL, Tatum M, Shilling H, Zhang S, et al. Defects in IL-2R signaling contribute to diminished maintenance of FOXP3 expression in CD4(+)CD25(+) regulatory T-cells of type 1 diabetic subjects. Diabetes. 2010;59:407.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Grinberg-Bleyer Y, Baeyens A, You S, Elhage R, Fourcade G, Gregoire S, et al. IL-2 reverses established type 1 diabetes in NOD mice by a local effect on pancreatic regulatory T cells. J Exp Med. 2010;207:1871.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Tang Q, Henriksen KJ, Bi M, Finger EB, Szot G, Ye J, et al. In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J Exp Med. 2004;199:1455.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Bougneres PF, Carel JC, Castano L, Boitard C, Gardin JP, Landais P, et al. Factors associated with early remission of type I diabetes in children treated with cyclosporine. N Engl J Med. 1988;318:663.

    Article  PubMed  CAS  Google Scholar 

  10. Feutren G, Papoz L, Assan R, Vialettes B, Karsenty G, Vexiau P, et al. Cyclosporin increases the rate and length of remissions in insulin-dependent diabetes of recent onset. Results of a multicentre double-blind trial. Lancet. 1986;2:119.

    Article  PubMed  CAS  Google Scholar 

  11. Stiller CR, Dupre J, Gent M, Jenner MR, Keown PA, Laupacis A, et al. Effects of cyclosporine immunosuppression in insulin-dependent diabetes mellitus of recent onset. Science. 1984;223:1362.

    Article  PubMed  CAS  Google Scholar 

  12. Herold KC, Hagopian W, Auger JA, Poumian-Ruiz E, Taylor L, Donaldson D, et al. Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N Engl J Med. 2002;346:1692.

    Article  PubMed  CAS  Google Scholar 

  13. Keymeulen B, Vandemeulebroucke E, Ziegler AG, Mathieu C, Kaufman L, Hale G, et al. Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes. N Engl J Med. 2005;352:2598.

    Article  PubMed  CAS  Google Scholar 

  14. Waldron-Lynch F, Herold KC. Immunomodulatory therapy to preserve pancreatic beta-cell function in type 1 diabetes. Nat Rev Drug Discov. 2011;10:439.

    Article  PubMed  CAS  Google Scholar 

  15. Pescovitz MD, Greenbaum CJ, Krause-Steinrauf H, Becker DJ, Gitelman SE, Goland R, et al. Rituximab, B-lymphocyte depletion, and preservation of beta-cell function. N Engl J Med. 2009;361:2143.

    Article  PubMed  CAS  Google Scholar 

  16. Orban T, Bundy B, Becker DJ, DiMeglio LA, Gitelman SE, Goland R, et al. Co-stimulation modulation with abatacept in patients with recent-onset type 1 diabetes: a randomised, double-blind, placebo-controlled trial. Lancet. 2011;378:412.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Pescovitz MD, Greenbaum CJ, Bundy B, Becker DJ, Gitelman SE, Goland R, et al. B-lymphocyte depletion with rituximab and beta-cell function: two-year results. Diabetes Care. 2014;37:453.

    Article  PubMed  CAS  Google Scholar 

  18. Orban T, Bundy B, Becker DJ, Dimeglio LA, Gitelman SE, Goland R, et al. Costimulation modulation with abatacept in patients with recent-onset type 1 diabetes: follow-up 1 year after cessation of treatment. Diabetes Care. 2014;37:1069.

    Article  PubMed  CAS  Google Scholar 

  19. Herold KC, Gitelman SE, Ehlers MR, Gottlieb PA, Greenbaum CJ, Hagopian W, et al. Teplizumab (anti-CD3 mAb) treatment preserves C-peptide responses in patients with new-onset type 1 diabetes in a randomized controlled trial: metabolic and immunologic features at baseline identify a subgroup of responders. Diabetes. 2013;62:3766.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Marek-Trzonkowska N, Mysliwiec M, Dobyszuk A, Grabowska M, Techmanska I, Juscinska J, et al. Administration of CD4+CD25highCD127-regulatory T cells preserves beta-cell function in type 1 diabetes in children. Diabetes Care. 2012;35:1817. Proof of concept for using ex vivo expanded Treg in human T1D.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Morgan DA, Ruscetti FW, Gallo R. Selective in vitro growth of T lymphocytes from normal human bone marrows. Science. 1976;193:1007.

    Article  PubMed  CAS  Google Scholar 

  22. Chang AE, Rosenberg SA. Overview of interleukin-2 as an immunotherapeutic agent. Semin Surg Oncol. 1989;5:385.

    Article  PubMed  CAS  Google Scholar 

  23. Giedlin MA, Zimmerman RJ. The use of recombinant human interleukin-2 in treating infectious diseases. Curr Opin Biotechnol. 1993;4:722.

    Article  PubMed  CAS  Google Scholar 

  24. Smith KA. Interleukin-2: inception, impact, and implications. Science. 1988;240:1169.

    Article  PubMed  CAS  Google Scholar 

  25. Abrams D, Levy Y, Losso MH, Babiker A, Collins G, Cooper DA, et al. Interleukin-2 therapy in patients with HIV infection. N Engl J Med. 2009;361:1548.

    Article  PubMed  CAS  Google Scholar 

  26. Siegel JP, Puri RK. Interleukin-2 toxicity. J Clin Oncol. 1991;9:694.

    PubMed  CAS  Google Scholar 

  27. Lemoine FM, Cherai M, Giverne C, Dimitri D, Rosenzwajg M, Trebeden-Negre H, et al. Massive expansion of regulatory T-cells following interleukin 2 treatment during a phase I-II dendritic cell-based immunotherapy of metastatic renal cancer. Int J Oncol. 2009;35:569.

    Article  PubMed  CAS  Google Scholar 

  28. Ahmadzadeh M, Rosenberg SA. IL-2 administration increases CD4+ CD25(hi) Foxp3+ regulatory T cells in cancer patients. Blood. 2006;107:2409.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Bayer AL, Pugliese A, Malek TR. The IL-2/IL-2R system: from basic science to therapeutic applications to enhance immune regulation. Immunol Res. 2013;57:197. Excellent review.

    Article  PubMed  CAS  Google Scholar 

  30. Williams MA, Tyznik AJ, Bevan MJ. Interleukin-2 signals during priming are required for secondary expansion of CD8+ memory T cells. Nature. 2006;441:890.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Malek TR, Bayer AL. Tolerance, not immunity, crucially depends on IL-2. Nat Rev Immunol. 2004;4:665.

    Article  PubMed  CAS  Google Scholar 

  32. Suzuki H, Kundig TM, Furlonger C, Wakeham A, Timms E, Matsuyama T, et al. Deregulated T cell activation and autoimmunity in mice lacking interleukin-2 receptor beta. Science. 1995;268:1472.

    Article  PubMed  CAS  Google Scholar 

  33. Sadlack B, Merz H, Schorle H, Schimpl A, Feller AC, Horak I. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell. 1993;75:253.

    Article  PubMed  CAS  Google Scholar 

  34. Willerford DM, Chen J, Ferry JA, Davidson L, Ma A, Alt FW. Interleukin-2 receptor alpha chain regulates the size and content of the peripheral lymphoid compartment. Immunity. 1995;3:521.

    Article  PubMed  CAS  Google Scholar 

  35. Hafler DA, Compston A, Sawcer S, Lander ES, Daly MJ, De Jager PL, et al. Risk alleles for multiple sclerosis identified by a genomewide study. N Engl J Med. 2007;357:851.

    Article  PubMed  CAS  Google Scholar 

  36. Cerosaletti K, Schneider A, Schwedhelm K, Frank I, Tatum M, Wei S, et al. Multiple autoimmune-associated variants confer decreased IL-2R signaling in CD4+ CD25(hi) T cells of type 1 diabetic and multiple sclerosis patients. PLoS ONE. 2013;8:e83811.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Katsiari CG, Kyttaris VC, Juang YT, Tsokos GC. Protein phosphatase 2A is a negative regulator of IL-2 production in patients with systemic lupus erythematosus. J Clin Invest. 2005;115:3193.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Concannon P, Chen WM, Julier C, Morahan G, Akolkar B, Erlich HA, et al. Genome-wide scan for linkage to type 1 diabetes in 2,496 multiplex families from the Type 1 Diabetes Genetics Consortium. Diabetes. 2009;58:1018.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Lowe CE, Cooper JD, Brusko T, Walker NM, Smyth DJ, Bailey R, et al. Large-scale genetic fine mapping and genotype-phenotype associations implicate polymorphism in the IL2RA region in type 1 diabetes. Nat Genet. 2007;39:1074.

    Article  PubMed  CAS  Google Scholar 

  40. Yamanouchi J, Rainbow D, Serra P, Howlett S, Hunter K, Garner VE, et al. Interleukin-2 gene variation impairs regulatory T cell function and causes autoimmunity. Nat Genet. 2007;39:329.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Cheng G, Yu A, Malek TR. T-cell tolerance and the multi-functional role of IL-2R signaling in T-regulatory cells. Immunol Rev. 2011;241:63.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Yu A, Zhu L, Altman NH, Malek TR. A low interleukin-2 receptor signaling threshold supports the development and homeostasis of T regulatory cells. Immunity. 2009;30:204.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Humrich JY, Morbach H, Undeutsch R, Enghard P, Rosenberger S, Weigert O, et al. Homeostatic imbalance of regulatory and effector T cells due to IL-2 deprivation amplifies murine lupus. Proc Natl Acad Sci U S A. 2010;107:204.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Tang Q, Adams JY, Penaranda C, Melli K, Piaggio E, Sgouroudis E, et al. Central role of defective interleukin-2 production in the triggering of islet autoimmune destruction. Immunity. 2008;28:687.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Rabinovitch A, Suarez-Pinzon WL, Shapiro AM, Rajotte RV, Power R. Combination therapy with sirolimus and interleukin-2 prevents spontaneous and recurrent autoimmune diabetes in NOD mice. Diabetes. 2002;51:638.

    Article  PubMed  CAS  Google Scholar 

  46. Goudy KS, Johnson MC, Garland A, Li C, Samulski RJ, Wang B, et al. Inducible adeno-associated virus-mediated IL-2 gene therapy prevents autoimmune diabetes. J Immunol. 2011;186:3779.

    Article  PubMed  CAS  Google Scholar 

  47. Churlaud G, Jimenez V, Ruberte J, Amadoudji Zin M, Fourcade G, Gottrand G, et al. Sustained stimulation and expansion of Tregs by IL2 control autoimmunity without impairing immune responses to infection, vaccination and cancer. Clin Immunol. 2014;151:114–26. This study reports the safety and preservation of antiviral and antitumor immune responses upon long term low dose IL-2 delivery in mice.

    Article  PubMed  CAS  Google Scholar 

  48. Darrasse-Jeze G, Bergot AS, Durgeau A, Billiard F, Salomon BL, Cohen JL, et al. Tumor emergence is sensed by self-specific CD44hi memory Tregs that create a dominant tolerogenic environment for tumors in mice. J Clin Invest. 2009;119:2648.

    PubMed Central  PubMed  CAS  Google Scholar 

  49. Nishikawa H, Sakaguchi S. Regulatory T cells in tumor immunity. Int J cancer J. 2010;127:759.

    CAS  Google Scholar 

  50. Yao X, Ahmadzadeh M, Lu YC, Liewehr DJ, Dudley ME, Liu F, et al. Levels of peripheral CD4 (+) FoxP3 (+) regulatory T cells are negatively associated with clinical response to adoptive immunotherapy of human cancer. Blood. 2012;119:5688.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  51. Maury S, Lemoine FM, Hicheri Y, Rosenzwajg M, Badoual C, Cherai M, et al. CD4+CD25+ regulatory T cell depletion improves the graft-versus-tumor effect of donor lymphocytes after allogeneic hematopoietic stem cell transplantation. Sci Transl Med. 2010;2:41–52.

    Article  CAS  Google Scholar 

  52. Ernerudh J, Berg G, Mjosberg J. Regulatory T helper cells in pregnancy and their roles in systemic versus local immune tolerance. Am J Reprod Immunol. 2011;66(1):31.

    Article  PubMed  Google Scholar 

  53. Rowe JH, Ertelt JM, Xin L, Way SS. Listeria monocytogenes cytoplasmic entry induces fetal wastage by disrupting maternal Foxp3+ regulatory T cell-sustained fetal tolerance. PLoS Pathog. 2012;8:e1002873.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  54. Landau DA, Rosenzwajg M, Saadoun D, Trebeden-Negre H, Klatzmann D, Cacoub P. Correlation of clinical and virologic responses to antiviral treatment and regulatory T cell evolution in patients with hepatitis C virus-induced mixed cryoglobulinemia vasculitis. Arthritis Rheum. 2008;58:2897.

    Article  PubMed  Google Scholar 

  55. Saadoun D, Rosenzwajg M, Joly F, Six A, Carrat F, Thibault V, et al. Regulatory T-cell responses to low-dose interleukin-2 in HCV-induced vasculitis. N Engl J Med. 2011;365:2067–77. This is the first clinical trial using low dose IL-2 in a human AID.

    Article  PubMed  CAS  Google Scholar 

  56. Cacoub P, Poynard T, Ghillani P, Charlotte F, Olivi M, Piette JC, et al. Extrahepatic manifestations of chronic hepatitis C. MULTIVIRC Group. Multidepartment Virus C. Arthritis Rheum. 1999;42:2204.

    Article  PubMed  CAS  Google Scholar 

  57. Ait-Oufella H, Salomon BL, Potteaux S, Robertson AK, Gourdy P, Zoll J, et al. Natural regulatory T cells control the development of atherosclerosis in mice. Nat Med. 2006;12:178.

    Article  PubMed  CAS  Google Scholar 

  58. Koreth J, Matsuoka K, Kim HT, McDonough SM, Bindra B, Alyea 3rd EP, et al. Interleukin-2 and regulatory T cells in graft-versus-host disease. N Engl J Med. 2011;365:2055.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  59. Todd JA, Walker NM, Cooper JD, Smyth DJ, Downes K, Plagnol V, et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet. 2007;39:857.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Dendrou CA, Wicker LS. The IL-2/CD25 pathway determines susceptibility to T1D in humans and NOD mice. J Clin Immunol. 2008;28:685.

    Article  PubMed  CAS  Google Scholar 

  61. Qu HQ, Montpetit A, Ge B, Hudson TJ, Polychronakos C. Toward further mapping of the association between the IL2RA locus and type 1 diabetes. Diabetes. 2007;56:1174.

    Article  PubMed  CAS  Google Scholar 

  62. Vella A, Cooper JD, Lowe CE, Walker N, Nutland S, Widmer B, et al. Localization of a type 1 diabetes locus in the IL2RA/CD25 region by use of tag single-nucleotide polymorphisms. Am J Hum Genet. 2005;76:773.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  63. Wang WY, Barratt BJ, Clayton DG, Todd JA. Genome-wide association studies: theoretical and practical concerns. Nat Rev Genet. 2005;6:109.

    Article  PubMed  CAS  Google Scholar 

  64. Fraser HI, Dendrou CA, Healy B, Rainbow DB, Howlett S, Smink LJ, et al. Nonobese diabetic congenic strain analysis of autoimmune diabetes reveals genetic complexity of the Idd18 locus and identifies Vav3 as a candidate gene. J Immunol. 2010;184:5075.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  65. Long SA, Cerosaletti K, Wan JY, Ho JC, Tatum M, Wei S, et al. An autoimmune-associated variant in PTPN2 reveals an impairment of IL-2R signaling in CD4(+) T cells. Genes Immun. 2011;12:116.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  66. Hartemann A, Bensimon G, Payan C, Jacqueminet S, Bourron O, Nicolas N, et al. Low-dose interleukin-2 in patients with type-1 diabetes: a phase 1/2 randomized, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2013;1:295–305. Double-blind placebo controlled evaluation of dose-dependent safety and biological efficacy of low doses of IL-2 in human T1D.

    Article  PubMed  CAS  Google Scholar 

  67. Long SA, Rieck M, Sanda S, Bollyky JB, Samuels PL, Goland R, et al. Rapamycin/IL-2 combination therapy in patients with type 1 diabetes augments Tregs yet transiently impairs beta-cell function. Diabetes. 2012;61:2340.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  68. Valle A, Jofra T, Stabilini A, Atkinson M, Roncarolo MG, Battaglia M. Rapamycin prevents and breaks the anti-CD3-induced tolerance in NOD mice. Diabetes. 2009;58:875.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  69. Yang SB, Lee HY, Young DM, Tien AC, Rowson-Baldwin A, Shu YY, et al. Rapamycin induces glucose intolerance in mice by reducing islet mass, insulin content, and insulin sensitivity. J Mol Med (Berl). 2011;90:575–85.

    Article  CAS  Google Scholar 

  70. Tanemura M, Ohmura Y, Deguchi T, Machida T, Tsukamoto R, Wada H, et al. Rapamycin causes upregulation of autophagy and impairs islets function both in vitro and in vivo. Am J Transplant. 2012;12:102.

    Article  PubMed  CAS  Google Scholar 

  71. Baeyens A, Perol L, Fourcade G, Cagnard N, Carpentier W, Woytschak J, et al. Limitations of IL-2 and rapamycin in immunotherapy of type 1 diabetes. Diabetes. 2013;62:3120–31.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  72. Castela E, Le Duff F, Butori C, Ticchioni M, Hofman P, Bahadoran P, et al. Effects of low-dose recombinant interleukin 2 to promote T-regulatory cells in alopecia areata. JAMA Dermatol. 2014;150:748–51.

    Article  PubMed  CAS  Google Scholar 

  73. Klatzmann D. Immunoregulation without immunosuppression: the promise of low dose. 2014. FOCIS meeting Chicago.

    Google Scholar 

  74. S. E. Von Spee-Mayer C, Rose A, Humrich J, Riemekasten G. Low-dose interleukin-2 therapy caused selective expansion of Tregs together with rapid reduction of disease activity in a patient with severe refractory SLE. 2014. EULAR meeting Paris.

  75. Yu D. Low-dose interleukin-2 in active systemic lupus erythematosus. 2014. FOCIS meeting Chicago.

Download references

Acknowledgments

This work was supported by our academic institution (AP-HP, UPMC, INSERM), by the Inflammation-Immunopathology-Biotherapy Department (DHU i2B; http://www.dhu-i2b.fr), by French state funds managed by the ANR within the “Investissements d’Avenir” program under reference ANR-11-IDEX-0004-02, and by DIABIL-2, part of the Seventh Framework Program collaborative project for type 1 diabetes under the grant agreement #305380 (http://www.diabil-2.eu).

Compliance with Ethics Guidelines

Conflict of Interest

Michelle Rosenzwajg is a shareholder of ILTOO Pharma and is an inventor on a patent application related to the therapeutic use of low-dose IL-2, which belongs to her academic institution and has been licensed to ILTOO Pharma. Guillaume Churlaud is a shareholder of ILTOO Pharma. Agnès Hartemann declares that she has no conflict of interest. David Klatzmann is a shareholder of ILTOO Pharma and is an inventor on a patent application related to the therapeutic use of low-dose IL-2, which belongs to his academic institution and has been licensed to ILTOO Pharma.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Klatzmann.

Additional information

This article is part of the Topical Collection on Pathogenesis of Type 1 Diabetes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosenzwajg, M., Churlaud, G., Hartemann, A. et al. Interleukin 2 in the Pathogenesis and Therapy of Type 1 Diabetes. Curr Diab Rep 14, 553 (2014). https://doi.org/10.1007/s11892-014-0553-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-014-0553-6

Keywords

Navigation