Skip to main content

Advertisement

Log in

Use of Technology When Assessing Adherence to Diabetes Self-Management Behaviors

  • Psychosocial Aspects (KK Hood, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

During the last several decades, a proliferation of sophisticated technology has taken place to facilitate diabetes self-management and improve health outcomes. Blood glucose monitors, insulin pumps, and continuous glucose monitors have significant data storage capacity, which can be used to summarize diabetes health management and outcomes. In the absence of technology errors or failures, and in the context of the multiple psychosocial factors associated with nonadherence, these data have the potential to elucidate diabetes care because they reflect actual patient behaviors. This review provides a summary of the diabetes adherence literature in the context of current American Diabetes Association Clinical Practice Recommendations with a focus on studies that have used objective methods (ie, data derived from technology) to assess diabetes care provider and patient adherence in the areas of glucose monitoring; insulin administration and antihyperglycemic medications; medical nutrition therapy; and physical activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Clarke SF, Foster JR. A history of blood glucose meters and their role in self-monitoring of diabetes mellitus. Br J Biomed Sci. 2012;69:83–93.

    CAS  PubMed  Google Scholar 

  2. Hood KK, Peterson CM, Rohan JM, Drotar D. Association between adherence and glycemic control in pediatric type 1 diabetes: a meta-analysis. Pediatrics. 2009;124:e1171–9.

    Article  PubMed  Google Scholar 

  3. Heaton PC, Tundia NL, Luder HR. U.S. emergency departments visits resulting from poor medication adherence: 2005-07. J Am Pharm Assoc. 2013;53:513–9.

    Article  Google Scholar 

  4. Gonzalez JS, Schneider HE. Methodological issues in the assessment of diabetes treatment adherence. Curr Diab Rep. 2011;11:472–9. This article provides a recent overview of medication adherence in type 1 diabetes and highlights the associated measurement issues.

    Article  PubMed  Google Scholar 

  5. Laffel L. Psychosocial considerations regarding adoption of intensive management. Psychosocial care for people with diabetes. Alexandria: American Diabetes Association; 2012. This chapter provides an overview of the current literature on the psychosocial benefits and potential barriers to blood glucose monitoring, continuous glucose monitoring, and insulin pens.

    Google Scholar 

  6. Johnson SB. Adherence to medical regimens. psychosocial care for people with diabetes. Alexandria: American Diabetes Association; 2012. This chapter provides an overview of medical treatment regimen adherence, the relation between adherence and glycemic control, assessing patient and provider adherence, and strategies to improve patient and provider adherence.

    Google Scholar 

  7. Drotar D. Strategies of adherence promotion in the management of pediatric chronic conditions. J Dev Behav Pediatr. 2013;34:716–29. This article proposes a comprehensive approach to improving adherence by describing a core approach to adherence promotion implemented by pediatric health care providers) follow-up and ongoing management; and tailoring and targeting specific more intensive family-centered interventions to children and adolescents who demonstrate clinically significant treatment nonadherence or risk for nonadherence.

    Article  PubMed  Google Scholar 

  8. Pulgaron ER, Sanders LM, Patino-Fernandez AM, Wile D, Sanchez J, Rothman RL, et al. Glycemic control in young children with diabetes: the role of parental health literacy. Patient Educ Couns. 2014;94:67–70.

    Article  PubMed  Google Scholar 

  9. Scheiner G, Boyer BA. Characteristics of basal insulin requirements by age and gender in Type-1 diabetes patients using insulin pump therapy. Diabetes Res Clin Pract. 2005;69:14–21.

    Article  CAS  PubMed  Google Scholar 

  10. DCCT. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med. 1993;329:977–86.

    Article  Google Scholar 

  11. Amed S, Nuernberger K, McCrea P, Reimer K, Krueger H, Aydede SK, et al. Adherence to clinical practice guidelines in the management of children, youth, and young adults with type 1 diabetes—a prospective population cohort study. J Pediatr. 2013;163:543–8. This study provides evidence that patients with type 1 diabetes do not adhere to clinical practice guidelines regarding number of visits per year with the diabetes care providers, glucagon prescriptions, and A1C tests performed.

    Article  PubMed  Google Scholar 

  12. McGrady ME, Peugh JL, Hood KK. Illness representations predict adherence in adolescents and young adults with type 1 diabetes. Psychol Health. 2014;29:985–98.

  13. Yawn B, Zyzanski SJ, Goodwin MA, Gotler RS, Stange KC. Is diabetes treated as an acute or chronic illness in community family practice? Diabetes Care. 2001;24:1390–6.

    Article  CAS  PubMed  Google Scholar 

  14. Kruse RL, Olsberg JE, Oliver DP, Shigaki CL, Vetter-Smith MJ, LeMaster JW. Patient-provider communication about diabetes self-care activities. Fam Med. 2013;45:319–22.

    PubMed  Google Scholar 

  15. Krane NK, Anderson D, Lazarus CJ, Termini M, Bowdish B, Chauvin S, et al. Physician practice behavior and practice guidelines: using unannounced standardized patients to gather data. J Gen Intern Med. 2009;24:53–6.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Siminoff LA, Rogers HL, Waller AC, Harris-Haywood S, Esptein RM, Carrio FB, et al. The advantages and challenges of unannounced standardized patient methodology to assess healthcare communication. Patient Educ Couns. 2011;82:318–24.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Driscoll KA, Johnson SB, Hogan J, Gill E, Wright N, Deeb LC. Insulin bolusing software: the potential to optimize health outcomes in type 1 diabetes mellitus. J Diabetes Sci Technol. 2013;7:646–52.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Summary of revisions to the 2014 clinical practice recommendations. Diabetes Care. 2014;37(Suppl 1):S4.

  19. Stetson B, Schlundt D, Peyrot M, Ciechanowski P, Austin MM, Young-Hyman D, et al. Monitoring in diabetes self-management: issues and recommendations for improvement. PHM. 2011;14:189–97.

    PubMed  Google Scholar 

  20. Wahowiak L. Blood glucose meters: what to look for and what to know. Diabetes Forecast. 2013;66(1):38–47.

  21. Miller KM, Beck RW, Bergenstal RM, Goland RS, Haller MJ, McGill JB, et al. Evidence of a strong association between frequency of self-monitoring of blood glucose and hemoglobin A1c levels in T1D exchange clinic registry participants. Diabetes Care. 2013;36:2009–14. This study demonstrates that higher BGM frequency is associated with better glycemic control in more than 20,000 participants with type 1 and type 2 diabetes.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Karter AJ, Ackerson LM, Darbinian JA, D'Agostino Jr RB, Ferrara A, Liu J, et al. Self-monitoring of blood glucose levels and glycemic control: the Northern California Kaiser Permanente Diabetes registry. Am J Med. 2001;111:1–9.

    Article  CAS  PubMed  Google Scholar 

  23. O'Connell MA, Donath S, Cameron FJ. Poor adherence to integral daily tasks limits the efficacy of CSII in youth. Pediatr Diabetes. 2011;12:556–9.

    PubMed  Google Scholar 

  24. Driscoll KA, Johnson SB, Resmini A, McGinnity K, Deeb LC. White coat adherence in children and adolescents with type 1 diabetes. Diabetes. 2011;60 Suppl 1:A222.

    Google Scholar 

  25. Guilfoyle SM, Crimmins NA, Hood KK. Blood glucose monitoring and glycemic control in adolescents with type 1 diabetes: meter downloads vs self-report. Pediatr Diabetes. 2011;12:560–6.

    PubMed  Google Scholar 

  26. Herzer M, Vesco A, Ingerski LM, Dolan LM, Hood KK. Explaining the family conflict-glycemic control link through psychological variables in adolescents with type 1 diabetes. J Behav Med. 2011;34:268–74.

    Article  PubMed  Google Scholar 

  27. Cohen ND, Hong ES, Van Drie C, Balkau B, Shaw J. Long-term metabolic effects of continuous subcutaneous insulin infusion therapy in type 1 diabetes. Diabetes Technol Ther. 2013;15:544–9.

    Article  CAS  PubMed  Google Scholar 

  28. Driscoll KA, Johnson SB, Wang Y, Tang Y, Gill EC, Mitchell A, et al. Importance of manually entering blood glucose readings when wireless-compatible meters are not being used with an insulin pump. J Diabetes Sci Technol. 2013;7:898–903.

    PubMed Central  PubMed  Google Scholar 

  29. Helgeson VS, Honcharuk E, Becker D, Escobar O, Siminerio L. A focus on blood glucose monitoring: relation to glycemic control and determinants of frequency. Pediatr Diabetes. 2011;12:25–30.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Driscoll KA, Johnson SB, Tang Y, Yang F, Deeb LC, Silverstein JH. Does blood glucose monitoring increase prior to clinic visits in children with type 1 diabetes? Diabetes Care. 2011;34:2170–3.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Ingerski LM, Anderson BJ, Dolan LM, Hood KK. Blood glucose monitoring and glycemic control in adolescence: contribution of diabetes-specific responsibility and family conflict. J Adolesc Health. 2010;47:191–7.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Larson NS, Pinsker JE. The role of continuous glucose monitoring in the care of children with type 1 diabetes. Int J Pediatr Endocrinol. 2013;2013:8.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Bergenstal RM, Tamborlane WV, Ahmann A, Buse JB, Dailey G, Davis SN, et al. Effectiveness of sensor-augmented insulin-pump therapy in type 1 diabetes. N Engl J Med. 2010;363:311–20.

    Article  CAS  PubMed  Google Scholar 

  34. Gandrud LM, Xing D, Kollman C, Block JM, Kunselman B, Wilson DM, et al. The Medtronic Minimed Gold continuous glucose monitoring system: an effective means to discover hypo- and hyperglycemia in children under 7 years of age. Diabetes Technol Ther. 2007;9:307–16.

    Article  CAS  PubMed  Google Scholar 

  35. Schiaffini R, Ciampalini P, Fierabracci A, Spera S, Borrelli P, Bottazzo GF, et al. The continuous glucose monitoring system (CGMS) in type 1 diabetic children is the way to reduce hypoglycemic risk. Diabetes Metab Res Rev. 2002;18:324–9.

    Article  CAS  PubMed  Google Scholar 

  36. Maia FF, Araujo LR. Efficacy of continuous glucose monitoring system (CGMS) to detect postprandial hyperglycemia and unrecognized hypoglycemia in type 1 diabetic patients. Diabetes Res Clin Pract. 2007;75:30–4.

    Article  CAS  PubMed  Google Scholar 

  37. Patton SR, Williams LB, Eder SJ, Crawford MJ, Dolan L, Powers SW. Use of continuous glucose monitoring in young children with type 1 diabetes: implications for behavioral research. Pediatr Diabetes. 2011;12:18–24.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Bode BW, Battelino T. Continuous glucose monitoring in 2012. Diabetes Technol Ther. 2013;15 Suppl 1:S13–23.

    PubMed  Google Scholar 

  39. Cemeroglu AP, Stone R, Kleis L, Racine MS, Postellon DC, Wood MA. Use of a real-time continuous glucose monitoring system in children and young adults on insulin pump therapy: patients’ and caregivers’ perception of benefit. Pediatr Diabetes. 2010;11:182–7.

    Article  CAS  PubMed  Google Scholar 

  40. Mazze RS, Strock E, Wesley D, Borgman S, Morgan B, Bergenstal R, et al. Characterizing glucose exposure for individuals with normal glucose tolerance using continuous glucose monitoring and ambulatory glucose profile analysis. Diabetes Technol Ther. 2008;10:149–59.

    Article  CAS  PubMed  Google Scholar 

  41. Bergenstal RM, Ahmann AJ, Bailey T, Beck RW, Bissen J, Buckingham B, et al. Recommendations for standardizing glucose reporting and analysis to optimize clinical decision making in diabetes: the ambulatory glucose profile (AGP). Diabetes Technol Ther. 2013;15:198–211.

    Article  PubMed  Google Scholar 

  42. Davies MJ, Gagliardino JJ, Gray LJ, Khunti K, Mohan V, Hughes R. Real-world factors affecting adherence to insulin therapy in patients with Type 1 or Type 2 diabetes mellitus: a systematic review. Diabetes Med. 2013;30:512–24.

    Article  CAS  Google Scholar 

  43. Kheir N, Greer W, Yousif A, Al-Geed H, Okkah RA, Zirie M, et al. The utility of an electronic adherence assessment device in type 2 diabetes mellitus: a pilot study of single medication. Patient Prefer Adherence. 2010;4:247–54.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Bogner HR, Morales KH, de Vries HF, Cappola AR. Integrated management of type 2 diabetes mellitus and depression treatment to improve medication adherence: a randomized controlled trial. Ann Fam Med. 2012;10:15–22.

    Article  PubMed Central  PubMed  Google Scholar 

  45. White AJ, Kellar I, Prevost AT, Kinmonth AL, Sutton S, Canny M, et al. Adherence to hypoglycaemic medication among people with type 2 diabetes in primary care. Prim Care Diabetes. 2012;6:27–33.

    Article  PubMed  Google Scholar 

  46. Park LG, Howie-Esquivel J, Dracup K. Electronic measurement of medication adherence. West J Nurs Res. 2014

  47. Osborn CY, Mayberry LS, Wallston KA, Johnson KB, Elasy TA. Understanding patient portal use: implications for medication management. J Med Internet Res. 2013;15:e133.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Olsen BS, Lilleore SK, Korsholm CN, Kracht T. Novopen Echo(R) for the delivery of insulin: a comparison of usability, functionality and preference among pediatric subjects, their parents, and health care professionals. J Diabetes Sci Technol. 2010;4:1468–75.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Israel-Bultman H, Hyllested-Winge J, Kolaczynski M, Steindorf J, Garon J. Comparison of preference for NovoPen 4 with previous insulin pen treatments after 12 weeks in adult patients with type 1 and type 2 diabetes: a multicenter observational study. Clin Ther. 2011;33:346–57.

    Article  PubMed  Google Scholar 

  50. Penfornis A. Performance of a new reusable insulin pen. Diabetes Technol Ther. 2011;13:373–9.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Seggelke SA, Hawkins RM, Gibbs J, Rasouli N, Low CC, Draznin B. Effect of glargine insulin delivery method (pen-device vs vial-syringe) on glycemic control and patient preferences in patients with type 1 and type 2 diabetes. Endocr Pract. 2014;20(6):536–9.

  52. Sommavilla B, Pietranera G. A randomized, open-label, comparative crossover handling trial between two durable pens in patients with type 1 or 2 diabetes mellitus. J Diabetes Sci Technol. 2011;5:1212–21.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Klausmann G, Hramiak I, Qvist M, Mikkelsen KH, Guo X. Evaluation of preference for a novel durable insulin pen with memory function among patients with diabetes and health care professionals. Patient Prefer Adherence. 2013;7:285–92.

    PubMed Central  PubMed  Google Scholar 

  54. Kreugel G, Keers JC, Kerstens MN, Wolffenbuttel BH. Randomized trial on the influence of the length of two insulin pen needles on glycemic control and patient preference in obese patients with diabetes. Diabetes Technol Ther. 2011;13:737–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Danne T, Forst T, Deinhard J, Rose L, Moennig E, Haupt A. No effect of insulin pen with memory function on glycemic control in a patient cohort with poorly controlled type 1 diabetes: a randomized open-label study. J Diabetes Sci Technol. 2012;6:1392–7.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Hanas R, de Beaufort C, Hoey H, Anderson B. Insulin delivery by injection in children and adolescents with diabetes. Pediatr Diabetes. 2011;12:518–26.

    Article  PubMed  Google Scholar 

  57. Pfutzner A, Bailey T, Campos C, Kahn D, Ambers E, Niemeyer M, et al. Accuracy and preference assessment of prefilled insulin pen vs vial and syringe with diabetes patients, caregivers, and healthcare professionals. Curr Med Res Opin. 2013;29:475–81.

    Article  PubMed  Google Scholar 

  58. Cuddihy RM, Borgman SK. Considerations for diabetes: treatment with insulin pen devices. Am J Therapeut. 2013;20:694–702.

    Article  Google Scholar 

  59. Becker S, Kribben A, Meister S, Diamantidis CJ, Unger N, Mitchell A. User profiles of a smartphone application to support drug adherence–experiences from the iNephro project. PLoS One. 2013;8:e78547.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Dayer L, Heldenbrand S, Anderson P, Gubbins PO, Martin BC. Smartphone medication adherence apps: potential benefits to patients and providers: response to Aungst. J Am Pharm Assoc. 2013;53:345.

    Article  Google Scholar 

  61. Mednick L, Cogen FR, Streisand R. Satisfaction and quality of life in children with type 1 diabetes and their parents following transition to insulin pump therapy. Children's Health Care. 2004;33:169–83.

    Article  Google Scholar 

  62. Fox LA, Buckloh LM, Smith SD, Wysocki T, Mauras N. A randomized controlled trial of insulin pump therapy in young children with type 1 diabetes. Diabetes Care. 2005;28:1277–81.

    Article  CAS  PubMed  Google Scholar 

  63. Mack-Fogg JE, Orlowski CC, Jospe N. Continuous subcutaneous insulin infusion in toddlers and children with type 1 diabetes mellitus is safe and effective. Pediatr Diabetes. 2005;6:17–21.

    Article  PubMed  Google Scholar 

  64. Pickup J, Keen H. Continuous subcutaneous insulin infusion at 25 years: evidence base for the expanding use of insulin pump therapy in type 1 diabetes. Diabetes Care. 2002;25:593–8.

    Article  PubMed  Google Scholar 

  65. Plotnick LP, Clark LM, Brancati FL, Erlinger T. Safety and effectiveness of insulin pump therapy in children and adolescents with type 1 diabetes. Diabetes Care. 2003;26:1142–6.

    Article  PubMed  Google Scholar 

  66. Wood JR, Moreland EC, Volkening LK, Svoren BM, Butler DA, Laffel LM. Durability of insulin pump use in pediatric patients with type 1 diabetes. Diabetes Care. 2006;29:2355–60.

    Article  PubMed  Google Scholar 

  67. Maahs DM, Horton LA, Chase HP. The use of insulin pumps in youth with type 1 diabetes. Diabetes Technol Ther. 2010;12 Suppl 1:S59–65.

    CAS  PubMed  Google Scholar 

  68. Phillip M, Battelino T, Rodriguez H, Danne T, Kaufman F. Use of insulin pump therapy in the pediatric age-group: consensus statement from the European Society for Paediatric Endocrinology, the Lawson Wilkins Pediatric Endocrine Society, and the International Society for Pediatric and Adolescent Diabetes, endorsed by the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care. 2007;30:1653–62.

    Article  PubMed  Google Scholar 

  69. Tamborlane WV, Fredrickson LP, Ahern JH. Insulin pump therapy in childhood diabetes mellitus: guidelines for use. Treat Endocrinol. 2003;2:11–21.

    Article  PubMed  Google Scholar 

  70. Hilliard ME, Goeke-Morey M, Cogen FR, Henderson C, Streisand R. Predictors of diabetes-related quality of life after transitioning to the insulin pump. J Pediatr Psychol. 2009;34:137–46.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Juliusson PB, Graue M, Wentzel-Larsen T, Sovik O. The impact of continuous subcutaneous insulin infusion on health-related quality of life in children and adolescents with type 1 diabetes. Acta Paediatr. 2006;95:1481–7.

    Article  PubMed  Google Scholar 

  72. Valenzuela JM, Patino AM, McCullough J, Ring C, Sanchez J, Eidson M, et al. Insulin pump therapy and health-related quality of life in children and adolescents with type 1 diabetes. J Pediatr Psychol. 2006;31:650–60.

    Article  PubMed  Google Scholar 

  73. Nabhan ZM, Rardin L, Meier J, Eugster EA, Dimeglio LA. Predictors of glycemic control on insulin pump therapy in children and adolescents with type I diabetes. Diabetes Res Clin Pract. 2006;74:217–21.

    Article  CAS  PubMed  Google Scholar 

  74. Weissberg-Benchell J, Antisdel-Lomaglio J, Seshadri R. Insulin pump therapy: a meta-analysis. Diabetes Care. 2003;26:1079–87.

    Article  PubMed  Google Scholar 

  75. Burdick J, Chase HP, Slover RH, Knievel K, Scrimgeour L, Maniatis AK, et al. Missed insulin meal boluses and elevated hemoglobin A1c levels in children receiving insulin pump therapy. Pediatrics. 2004;113:e221–4.

    Article  PubMed  Google Scholar 

  76. Pankowska E, Skorka A, Szypowska A, Lipka M. Memory of insulin pumps and their record as a source of information about insulin therapy in children and adolescents with type 1 diabetes. Diabetes Technol Ther. 2005;7:308–14.

    Article  PubMed  Google Scholar 

  77. Olinder AL, Kernell A, Smide B. Missed bolus doses: devastating for metabolic control in CSII-treated adolescents with type 1 diabetes. Pediatr Diabetes. 2009;10:142–8.

    Article  CAS  PubMed  Google Scholar 

  78. Vanderwel BW, Messer LH, Horton LA, McNair B, Cobry EC, McFann KK, et al. Missed insulin boluses for snacks in youth with type 1 diabetes. Diabetes Care. 2010;33:507–8.

    Article  PubMed Central  PubMed  Google Scholar 

  79. Patton SR, Midyett LK, Dolan LM, Powers SW. A comparison of average daily risk range scores for young children with type 1 diabetes mellitus using continuous glucose monitoring and self-monitoring data. Diabetes Technol Ther. 2012;14:239–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. O'Loughlin G, Cullen SJ, McGoldrick A, O'Connor S, Blain R, O'Malley S, et al. Using a wearable camera to increase the accuracy of dietary analysis. Am J Prev Med. 2013;44:297–301.

    Article  PubMed  Google Scholar 

  81. Patton SR, Dolan LM, Powers SW. Mealtime interactions relate to dietary adherence and glycemic control in young children with type 1 diabetes. Diabetes Care. 2006;29:1002–6.

    Article  PubMed  Google Scholar 

  82. Patton SR, Piazza-Waggoner C, Modi AC, Dolan LM, Powers SW. Family functioning at meals relates to adherence in young children with type 1 diabetes. J Pediatr Child Health. 2009;45:736–41.

    Article  Google Scholar 

  83. Patton SR, Dolan LM, Smith LB, Brown MB, Powers SW. Examining mealtime behaviors in families of young children with type 1 diabetes on intensive insulin therapy. Eat Behav. 2013;14:464–7.

    Article  PubMed  Google Scholar 

  84. Smith A. Smartphone Ownership 2013. Pew Research Center, (http://www.pewinternet.org/2013/06/05/smartphone-ownership-2013/). 2013. Accessed 11 April 2014.

  85. Karstoft K, Winding K, Knudsen SH, Nielsen JS, Thomsen C, Pedersen BK, et al. The effects of free-living interval-walking training on glycemic control, body composition, and physical fitness in type 2 diabetic patients: a randomized, controlled trial. Diabetes Care. 2013;36:228–36.

    Article  PubMed Central  PubMed  Google Scholar 

  86. Zhao G, Ford ES, Li C, Balluz LS. Physical activity in U.S. older adults with diabetes mellitus: prevalence and correlates of meeting physical activity recommendations. J Am Geriatr Soc. 2011;59:132–7.

    Article  PubMed  Google Scholar 

  87. Sundberg F, Forsander G, Fasth A, Ekelund U. Children younger than 7 years with type 1 diabetes are less physically active than healthy controls. Acta Paediatr. 2012;101:1164–9.

    Article  CAS  PubMed  Google Scholar 

  88. Trigona B, Aggoun Y, Maggio A, Martin XE, Marchand LM, Beghetti M, et al. Preclinical noninvasive markers of atherosclerosis in children and adolescents with type 1 diabetes are influenced by physical activity. J Pediatr. 2010;157:533–9.

    Article  PubMed  Google Scholar 

  89. Marrero DG, Trief PM. Lifestyle modification: exercise. psychosocial care for people with diabetes. Alexandria: American Diabetes Association; 2012.

    Google Scholar 

  90. Cichosz SL, Fleischer J, Hoeyem P, Laugesen E, Poulsen PL, Christiansen JS, et al. Objective measurements of activity patterns in people with newly diagnosed Type 2 diabetes demonstrate a sedentary lifestyle. Diabetes Med. 2013;30:1063–6.

    Article  CAS  Google Scholar 

  91. Andre D, Wolf DL. Recent advances in free-living physical activity monitoring: a review. J Diabetes Sci Technol. 2007;1:760–7.

    Article  PubMed Central  PubMed  Google Scholar 

  92. Plasqui G, Bonomi AG, Westerterp KR. Daily physical activity assessment with accelerometers: new insights and validation studies. Obes Rev. 2013;14:451–62.

    Article  CAS  PubMed  Google Scholar 

  93. Freedson P, Pober D, Janz KF. Calibration of accelerometer output for children. Med Sci Sports Exerc. 2005;37:S523–30.

    Article  PubMed  Google Scholar 

  94. Corder K, Brage S, Ekelund U. Accelerometers and pedometers: methodology and clinical application. Curr Opin Clin Nutr Metab Care. 2007;10:597–603.

    Article  PubMed  Google Scholar 

  95. Otto AD, Garcia DO, Jakicic JM. Lifestyle intervention strategies to prevent and control type 2 diabetes. Curr Diab Rep. 2008;8:407–12.

    Article  PubMed  Google Scholar 

  96. Rathleff MS, Bandholm T, Ahrendt P, Olesen JL, Thorborg K. Novel stretch-sensor technology allows quantification of adherence and quality of home-exercises: a validation study. Br J Sports Med. 2014;48:724–8.

    Article  PubMed  Google Scholar 

  97. Breton ER, Fuemmeler BF, Abroms LC. Weight loss-there is an app for that! But does it adhere to evidence-informed practices? Transl Behav Med. 2011;1:523–9.

    Article  PubMed Central  PubMed  Google Scholar 

  98. Pagoto S, Schneider K, Jojic M, DeBiasse M, Mann D. Evidence-based strategies in weight-loss mobile apps. Am J Prev Med. 2013;45:576–82.

    Article  PubMed  Google Scholar 

  99. Miller GD, Jakicic JM, Rejeski WJ, Whit-Glover MC, Lang W, Walkup MP, et al. Effect of varying accelerometry criteria on physical activity: the look ahead study. Obesity. 2013;21:32–44.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The content is solely the responsibility of the authors and does not necessarily represent the official views of the Office of Behavioral and Social Sciences Research (DYH) or the NIH.

Compliance with Ethics Guidelines

Conflict of Interest  Kimberly A. Driscoll and Deborah Young-Hyman declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimberly A. Driscoll.

Additional information

This article is part of the Topical Collection on Psychosocial Aspects

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Driscoll, K.A., Young-Hyman, D. Use of Technology When Assessing Adherence to Diabetes Self-Management Behaviors. Curr Diab Rep 14, 521 (2014). https://doi.org/10.1007/s11892-014-0521-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-014-0521-1

Keywords

Navigation