Skip to main content

Advertisement

Log in

Progression of β-Cell Dysfunction in Obese Youth

  • Pediatric Type 2 Diabetes (PS Zeitler, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

The epidemic of childhood obesity has led to a remarkable increase in the prevalence of type 2 diabetes (T2D) among youth worldwide. The decreasing age at onset of T2D has alarming public health implications. In particular, the longer duration of the disease, as well as the faster onset and progression of T2D related complications, will present a considerable burden for young adults and a strain on public health. Therefore, it is important to understand the pathophysiology of early phases of disruption of glucose tolerance and identify those critical points in which diabetes may be prevented. β-Cell dysfunction has been shown to represent one of the key pathogenetic defects underlying the progression to diabetes in obese youth. In the present review, we describe longitudinal and cross-sectional studies of changes in insulin sensitivity and secretion across the spectrum of glucose tolerance in obese adolescents. Further, the role of ectopic fat accumulation is discussed in relation to its association with both β-cell dysfunction and insulin resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of obesity and trends in body mass index among US children and adolescents, 1999–2010. JAMA. 2012;307(5):483–90

    Google Scholar 

  2. Berrington de Gonzalez A, Hartge P, Cerhan JR, Flint AJ, Hannan L, MacInnis RJ, et al. Body-mass index and mortality among 1.46 million white adults. N Engl J Med. 2011;363(23):2211–9.

    Google Scholar 

  3. Han JC, Lawlor DA, Kimm SY. Childhood obesity. Lancet. 2010;375:1737–48.

    Google Scholar 

  4. Pinhas-Hamiel O, Zeitler P. The global spread of type 2 diabetes mellitus in children and adolescents. J Pediatr. 2005;146:693–700.

    Article  PubMed  Google Scholar 

  5. • Copeland KC, Zeitler P, Geffner M, Guandalini C, Higgins J, Hirst K, et al. Characteristics of adolescents and youth with recent-onset type 2 diabetes: the TODAY cohort at baseline. J Clin Endocrinol Metab. 2011;96:159–67. This paper is important because the large sample size (a prospective cross-sectional study of 704 adolescents with recent-onset T2D) and ethnic/racial diversity of the TODAY study participants represents the largest and best characterized sample of American youth with recent-onset T2D. Results from this study provide the most current data on the prevalence of autoimmunity in phenotypic T2D youth in the United States and particularly show youth with type 2 diabetes are: high percentage of women; Hispanics and non-Hispanic Blacks; and present relevant baseline abnormalities including high blood pressure, low HDL, elevated triglycerides, and microalbuminuria.

    Article  PubMed  CAS  Google Scholar 

  6. Dabelea D, Bell RA, D'Agostino Jr RB, Imperatore G, Johansen JM, Linder B, et al. Incidence of diabetes in youth in the United States. JAMA. 2007;297:2716–24.

    Article  PubMed  Google Scholar 

  7. Type 2 diabetes in children and adolescents. American Diabetes Association. Diabetes Care. 2000;23:381–9.

    Google Scholar 

  8. Alberti G, Zimmet P, Shaw J, Bloomgarden Z, Kaufman F, Silink M. Type 2 diabetes in the young: the evolving epidemic: the international diabetes federation consensus workshop. Diabetes Care. 2004;27:1798–811.

    Article  PubMed  Google Scholar 

  9. Ogden CL, Carroll MD, Flegal KM. High body mass index for age among US children and adolescents, 2003–2006. JAMA. 2008;299:2401–5.

    Article  PubMed  CAS  Google Scholar 

  10. Goran MI, Ball GD, Cruz ML. Obesity and risk of type 2 diabetes and cardiovascular disease in children and adolescents. J Clin Endocrinol Metab. 2003;88:1417–27.

    Article  PubMed  CAS  Google Scholar 

  11. Elder DA, Herbers PM, Weis T, Standiford D, Woo JG, D’Alessio DA. beta-cell dysfunction in adolescents and adults with newly diagnosed type 2 diabetes mellitus. J Pediatr. 2012;160:904–10.

    Article  PubMed  Google Scholar 

  12. • Pinhas-Hamiel O, Zeitler P. Acute and chronic complications of type 2 diabetes mellitus in children and adolescents. Lancet. 2007;369:1823–31. In this review authors described the main complications associated with type 2 diabetes in youth.

    Article  PubMed  Google Scholar 

  13. •• Zeitler P, Hirst K, Pyle L, Linder B, Copeland K, Arslanian S, et al. A clinical trial to maintain glycemic control in youth with type 2 diabetes. N Engl J Med. 2012;366:2247–56. This paper is important because using a well characterized large population it clearly highlights the difficulty in treating this disease in the pediatric population.

    Article  PubMed  CAS  Google Scholar 

  14. Sinha R, Fisch G, Teague B, Tamborlane WV, Banyas B, Allen K, et al. Prevalence of impaired glucose tolerance among children and adolescents with marked obesity. N Engl J Med. 2002;346:802–10.

    Article  PubMed  CAS  Google Scholar 

  15. Baranowski T, Cooper DM, Harrell J, Hirst K, Kaufman FR, Goran M, et al. Presence of diabetes risk factors in a large U.S. eighth-grade cohort. Diabetes Care. 2006;29:212–7.

    Article  PubMed  CAS  Google Scholar 

  16. Goran MI, Bergman RN, Avila Q, Watkins M, Ball GD, Shaibi GQ, et al. Impaired glucose tolerance and reduced beta-cell function in overweight Latino children with a positive family history for type 2 diabetes. J Clin Endocrinol Metab. 2004;89:207–12.

    Article  PubMed  CAS  Google Scholar 

  17. Csabi G, Torok K, Jeges S, Molnar D. Presence of metabolic cardiovascular syndrome in obese children. Eur J Pediatr. 2000;159:91–4.

    Article  PubMed  CAS  Google Scholar 

  18. Ferrannini E. The stunned beta cell: a brief history. Cell Metab. 2010;11:349–52.

    Article  PubMed  CAS  Google Scholar 

  19. D'Adamo E, Caprio S. Type 2 diabetes in youth: epidemiology and pathophysiology. Diabetes Care. 2011;34 Suppl 2:S161–5.

    Article  PubMed  Google Scholar 

  20. Edelstein SL, Knowler WC, Bain RP, Andres R, Barrett-Connor EL, Dowse GK, et al. Predictors of progression from impaired glucose tolerance to NIDDM: an analysis of six prospective studies. Diabetes. 1997;46:701–10.

    Article  PubMed  CAS  Google Scholar 

  21. Weiss R, Taksali SE, Tamborlane WV, Burgert TS, Savoye M, Caprio S. Predictors of changes in glucose tolerance status in obese youth. Diabetes Care. 2005;28:902–9.

    Article  PubMed  Google Scholar 

  22. Libman IM, Pietropaolo M, Arslanian SA, LaPorte RE, Becker DJ. Changing prevalence of overweight children and adolescents at onset of insulin-treated diabetes. Diabetes Care. 2003;26:2871–5.

    Article  PubMed  Google Scholar 

  23. Defronzo RA. Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes. 2009;58:773–95.

    Article  PubMed  CAS  Google Scholar 

  24. Sakuraba H, Mizukami H, Yagihashi N, Wada R, Hanyu C, Yagihashi S. Reduced beta-cell mass and expression of oxidative stress-related DNA damage in the islet of Japanese type II diabetic patients. Diabetologia. 2002;45:85–96.

    Article  PubMed  CAS  Google Scholar 

  25. Yoon KH, Ko SH, Cho JH, Lee JM, Ahn YB, Song KH, et al. Selective beta-cell loss and alpha-cell expansion in patients with type 2 diabetes mellitus in Korea. J Clin Endocrinol Metab. 2003;88:2300–8.

    Article  PubMed  CAS  Google Scholar 

  26. Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes. 2003;52:102–10.

    Article  PubMed  CAS  Google Scholar 

  27. Meier JJ, Butler AE, Saisho Y, Monchamp T, Galasso R, Bhushan A, et al. Beta-cell replication is the primary mechanism subserving the postnatal expansion of beta-cell mass in humans. Diabetes. 2008;57:1584–94.

    Article  PubMed  CAS  Google Scholar 

  28. Weiss R, Caprio S, Trombetta M, Taksali SE, Tamborlane WV, Bonadonna R. Beta-cell function across the spectrum of glucose tolerance in obese youth. Diabetes. 2005;54:1735–43.

    Article  PubMed  CAS  Google Scholar 

  29. Cali AM, Man CD, Cobelli C, Dziura J, Seyal A, Shaw M, et al. Primary defects in beta-cell function further exacerbated by worsening of insulin resistance mark the development of impaired glucose tolerance in obese adolescents. Diabetes Care. 2009;32:456–61.

    Article  PubMed  Google Scholar 

  30. Cali AM, Bonadonna RC, Trombetta M, Weiss R, Caprio S. Metabolic abnormalities underlying the different prediabetic phenotypes in obese adolescents. J Clin Endocrinol Metab. 2008;93:1767–73.

    Article  PubMed  CAS  Google Scholar 

  31. •• Giannini C, Weiss R, Cali A, Bonadonna R, Santoro N, Pierpont B, et al. Evidence for early defects in insulin sensitivity and secretion before the Onset of glucose dysregulation in obese youths: a longitudinal study. Diabetes. 2012;61:606–14. In this prospective longitudinal cohort study, authors evaluated insulin secretion by applying mathematical modeling during the hyperglycemic clamp and insulin sensitivity by hyperinsulinemic-euglycemic clamp in a group of obese NGT and IGT adolescents. In addition, glucose tolerance was reevaluated after 2 years. Data at baseline indicates that even within NGT individuals, oDI worsens as 2 h glucose tolerance test values increase. Longitudinal data shows progressors from NGT gained weight and had beta-cell defects predicting the risk of developing glucose alteration at follow up.

    Article  PubMed  CAS  Google Scholar 

  32. •• Goran MI, Lane C, Toledo-Corral C, Weigensberg MJ. Persistence of pre-diabetes in overweight and obese Hispanic children: association with progressive insulin resistance, poor beta-cell function, and increasing visceral fat. Diabetes. 2008;57:3007–12. In this longitudinal study, Hispanic adolescents were longitudinally evaluated in order to characterize the risk of developing type 2 Diabetes. Results showed that the persistence of impaired glucose tolerance over time represents a relevant risk factor in predicting the risk of progression.

    Article  PubMed  CAS  Google Scholar 

  33. Tfayli H, Lee S, Arslanian S. Declining beta-cell function relative to insulin sensitivity with increasing fasting glucose levels in the nondiabetic range in children. Diabetes Care. 2010;33:2024–30.

    Google Scholar 

  34. Shulman GI. Cellular mechanisms of insulin resistance. J Clin Invest. 2000;106:171–6.

    Article  PubMed  CAS  Google Scholar 

  35. Cossrow N, Falkner B. Race/ethnic issues in obesity and obesity-related comorbidities. J Clin Endocrinol Metab. 2004;89:2590–4.

    Article  PubMed  CAS  Google Scholar 

  36. Arslanian S, Suprasongsin C. Insulin sensitivity, lipids, and body composition in childhood: is “syndrome X” present? J Clin Endocrinol Metab. 1996;81:1058–62.

    Article  PubMed  CAS  Google Scholar 

  37. Lee JM, Okumura MJ, Davis MM, Herman WH, Gurney JG. Prevalence and determinants of insulin resistance among U.S. adolescents: a population-based study. Diabetes Care. 2006;29:2427–32.

    Article  PubMed  Google Scholar 

  38. Weiss R, Dufour S, Taksali SE, Tamborlane WV, Petersen KF, Bonadonna RC, et al. Prediabetes in obese youth: a syndrome of impaired glucose tolerance, severe insulin resistance, and altered myocellular and abdominal fat partitioning. Lancet. 2003;362:951–7.

    Article  PubMed  CAS  Google Scholar 

  39. Cali AM, De Oliveira AM, Kim H, Chen S, Reyes-Mugica M, Escalera S, et al. Glucose dysregulation and hepatic steatosis in obese adolescents: is there a link? Hepatology. 2009;49:1896–903.

    Article  PubMed  CAS  Google Scholar 

  40. Fabbrini E, Sullivan S, Klein S. Obesity and nonalcoholic fatty liver disease: biochemical, metabolic, and clinical implications. Hepatology. 2010;51:679–89.

    Article  PubMed  CAS  Google Scholar 

  41. Burgert TS, Taksali SE, Dziura J, Goodman TR, Yeckel CW, Papademetris X, et al. Alanine aminotransferase levels and fatty liver in childhood obesity: associations with insulin resistance, adiponectin, and visceral fat. J Clin Endocrinol Metab. 2006;91:4287–94.

    Article  PubMed  CAS  Google Scholar 

  42. Nadeau KJ, Klingensmith G, Zeitler P. Type 2 diabetes in children is frequently associated with elevated alanine aminotransferase. J Pediatr Gastroenterol Nutr. 2005;41:94–8.

    Article  PubMed  CAS  Google Scholar 

  43. • D’Adamo E, Cali AM, Weiss R, Santoro N, Pierpont B, Northrup V, et al. Central role of fatty liver in the pathogenesis of insulin resistance in obese adolescents. Diabetes Care. 2010;33(8):1817–22. In this study authors well describe the role of hepatic fat accumulation in the pathogenesis of insulin resistance in obese youth.

  44. Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006;444:840–6.

    Article  PubMed  CAS  Google Scholar 

  45. Taksali SE, Caprio S, Dziura J, Dufour S, Cali AM, Goodman TR, et al. High visceral and low abdominal subcutaneous fat stores in the obese adolescent: a determinant of an adverse metabolic phenotype. Diabetes. 2008;57:367–71.

    Article  PubMed  CAS  Google Scholar 

  46. Tirosh A, Shai I, Afek A, Dubnov-Raz G, Ayalon N, Gordon B, et al. Adolescent BMI trajectory and risk of diabetes vs coronary disease. N Engl J Med. 2011;364:1315–25.

    Article  PubMed  CAS  Google Scholar 

  47. • Morrison JA, Glueck CJ, Horn PS, Wang P. Childhood predictors of adult type 2 diabetes at 9- and 26-year follow-ups. Arch Pediatr Adolesc Med. 2010;164:53–60. In this prospective longitudinal study authors attempted to determine whether pediatric office measures (waist circumference, body mass index [BMI], systolic [SBP], and diastolic [DBP] blood pressure, and parental diabetes) and laboratory measures (glucose, triglyceride, high-density lipoprotein cholesterol, and insulin) predict risk of type 2 diabetes mellitus (T2D) at ages 19 and 39 years. By using data from 9- and 26-year prospective follow-ups of schoolchildren, authors showed that office-based childhood measures predict the presence and absence of future T2D 9 and 26 years after baseline. In addition, they showed that childhood insulin measurement improves prediction, facilitating approaches to primary prevention of T2D.

    Article  PubMed  Google Scholar 

  48. Boney CM, Verma A, Tucker R, Vohr BR. Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics. 2005;115:e290–6.

    Article  PubMed  Google Scholar 

  49. Fernandez-Twinn DS, Ozanne SE. Mechanisms by which poor early growth programs type-2 diabetes, obesity and the metabolic syndrome. Physiol Behav. 2006;88:234–43.

    Article  PubMed  CAS  Google Scholar 

  50. Mayer-Davis EJ. Type 2 diabetes in youth: epidemiology and current research toward prevention and treatment. J Am Diet Assoc. 2008;108(4 Suppl 1):S45–51.

    Article  PubMed  Google Scholar 

  51. Kempf K, Rathmann W, Herder C. Impaired glucose regulation and type 2 diabetes in children and adolescents. Diabetes Metab Res Rev. 2008;24:427–37.

    Article  PubMed  CAS  Google Scholar 

  52. Laitinen J, Pietilainen K, Wadsworth M, Sovio U, Jarvelin MR. Predictors of abdominal obesity among 31-y-old men and women born in Northern Finland in 1966. Eur J Clin Nutr. 2004;58:180–90.

    Article  PubMed  CAS  Google Scholar 

  53. Barker DJ, Osmond C, Golding J, Kuh D, Wadsworth ME. Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. BMJ. 1989;298:564–7.

    Article  PubMed  CAS  Google Scholar 

  54. Barker DJ, Hales CN, Fall CH, Osmond C, Phipps K, Clark PM. Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia. 1993;36:62–7.

    Article  PubMed  CAS  Google Scholar 

  55. Hales CN, Barker DJ, Clark PM, Cox LJ, Fall C, Osmond C, et al. Fetal and infant growth and impaired glucose tolerance at age 64. BMJ. 1991;303:1019–22.

    Article  PubMed  CAS  Google Scholar 

  56. Barker DJ, Bull AR, Osmond C, Simmonds SJ. Fetal and placental size and risk of hypertension in adult life. BMJ. 1990;301:259–62.

    Article  PubMed  CAS  Google Scholar 

  57. Ravelli GP, Stein ZA, Susser MW. Obesity in young men after famine exposure in utero and early infancy. N Engl J Med. 1976;295:349–53.

    Article  PubMed  CAS  Google Scholar 

  58. Hales CN, Barker DJ. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia. 1992;35:595–601.

    Article  PubMed  CAS  Google Scholar 

  59. Forsen T, Eriksson J, Tuomilehto J, Reunanen A, Osmond C, Barker D. The fetal and childhood growth of persons who develop type 2 diabetes. Ann Intern Med. 2000;133:176–82.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (NIH) (grants R01-HD-40787, R01-HD- 28016, and K24-HD-01464 to S.C.) and by the National Center for Research Resources, NIH (CTSA grant UL1-RR-0249139).

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Caprio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giannini, C., Caprio, S. Progression of β-Cell Dysfunction in Obese Youth. Curr Diab Rep 13, 89–95 (2013). https://doi.org/10.1007/s11892-012-0347-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-012-0347-7

Keywords

Navigation