Skip to main content

Advertisement

Log in

The role of non-LDL:non-HDL particles in atherosclerosis

  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Elevated concentrations of circulating apolipoprotein B (apoB)-containing lipoproteins, other than low-density lipoprotein (LDL), have been implicated as causative agents for the development of atherosclerosis. A form of dyslipidemia, the atherogenic lipoprotein profile, that consists of elevated intermediate-density lipoprotein (IDL), triglycerides (TGs), dense LDL and dense very low density lipoprotein (VLDL), and low high density lipoprotein-2, occurs in 40% to 50% of patients with coronary artery disease (CAD). The recently released Adult Treatment Panel III guidelines suggest that because elevated TGs are an independent CAD risk factor, some TG-rich lipoproteins, commonly called remnant lipoproteins, must be atherogenic.

Relevant to this series on diabetes, a number of studies have shown that in type 2 diabetes, the severity of CAD is positively related to the numbers of TG-rich particles in the plasma. Although less clear, other studies in type 2 diabetes suggest that elevated levels of lipoprotein (a) [Lp(a)] may also be independently associated with CAD. In this article, we summarize evidence for the role of apoB-containing lipoprotein particles other than LDL in the development of atherosclerosis and discuss methods of quantification and possible pharmacologic interventions for lowering their plasma concentrations. The particles reviewed include the TG-rich lipoproteins: VLDL and its remnants, chylomicron remnants and IDL, and the C-rich lipoprotein: Lp(a).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. LaRosa JC, He J, Vupputuri S: Effect of statins on risk of coronary disease: a meta-analysis of randomized controlled trials. JAMA 1999, 282:2340–2346.

    Article  PubMed  CAS  Google Scholar 

  2. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III) [no authors listed]. JAMA 2001, 285:2486–2497.The new ATP-III guidelines acknowledge that elevated TGs are an independent risk factor for CAD and, therefore, some TG-rich lipoproteins, commonly called remnant lipoproteins, must be atherogenic. Because VLDL-C is the most readily available measure of atherogenic remnant lipoproteins, VLDL-C has now been made a target of cholesterol-lowering therapy. The ATP-III guidelines further point out that one potential secondary target of therapy is the metabolic or insulin resistant syndrome.

  3. Ford ES, Giles WH, Dietz WH: Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA 2002, 287:356–359.

    Article  PubMed  Google Scholar 

  4. Siegel RD, Cupples A, Schaefer EJ, Wilson PW: Lipoproteins, apolipoproteins, and low-density lipoprotein size among diabetics in the Framingham offspring study. Metabolism 1996, 45:1267–1272.

    Article  PubMed  CAS  Google Scholar 

  5. Whiting MJ, Shephard MD, Tallis GA: Measurement of plasma LDL cholesterol in patients with diabetes. Diabetes Care 1997, 20:12–14.

    Article  PubMed  CAS  Google Scholar 

  6. Ginsberg HN: Hypertriglyceridemia: new insights and new approaches to pharmacologic therapy. Am J Cardiol 2001, 87:1174–1180; A4. Reviews evidence, including meta-analysis, suggesting that TGs are an independent risk factor for atherosclerosis.

    Article  PubMed  CAS  Google Scholar 

  7. Hodis HN: Triglyceride-rich lipoprotein remnant particles and risk of atherosclerosis. Circulation 1999, 99:2852–2854.

    PubMed  CAS  Google Scholar 

  8. Sacks FM, Alaupovic P, Moye LA, et al.: VLDL, apolipoproteins B, CIII, and E, and risk of recurrent coronary events in the Cholesterol and Recurrent Events (CARE) trial. Circulation 2000, 102:1886–1892. The plasma concentrations of VLDL particles and apoC-III in VLDL and LDL, markers for TG-rich lipoprotein remnants, appear to be more specific measures of CAD risk than plasma TGs.

    PubMed  CAS  Google Scholar 

  9. Masuoka H, Kamei S, Wagayama H, et al.: Association of remnant-like particle cholesterol with coronary artery disease in patients with normal total cholesterol levels. Am Heart J 2000, 139:305–310.

    Article  PubMed  CAS  Google Scholar 

  10. Chung BH, Tallis G, Yalamoori V, et al.: Liposome-like particles isolated from human atherosclerotic plaques are structurally and compositionally similar to surface remnants of triglyceride-rich lipoproteins. Arterioscler Thromb 1994, 14:622–635.

    PubMed  CAS  Google Scholar 

  11. Jiang XC, Paultre F, Pearson TA, et al.: Plasma sphingomyelin level as a risk factor for coronary artery disease. Arterioscler Thromb Vasc Biol 2000, 20:2614–2618.

    PubMed  CAS  Google Scholar 

  12. Roche HM, Gibney MJ: The impact of postprandial lipemia in accelerating atherothrombosis. J Cardiovasc Risk 2000, 7:317–324.

    PubMed  CAS  Google Scholar 

  13. Juo SH, Beaty TH, Kwiterovich PO Jr: Etiologic heterogeneity of hyperapobetalipoproteinemia (hyperapoB). Results from segregation analysis in families with premature coronary artery disease. Arterioscler Thromb Vasc Biol 1997, 17:2729–2736.

    PubMed  CAS  Google Scholar 

  14. Gardner CD, Fortmann SP, Krauss R: Association of small lowdensity lipoprotein particles with the incidence of coronary artery disease in men and women. JAMA 1996, 276:875–881.

    Article  PubMed  CAS  Google Scholar 

  15. Hodis HN, Mack WJ, Dunn M, et al.: Intermediate-density lipoproteins and progression of carotid arterial wall intimamedia thickness. Circulation 1997, 95:2022–2026.

    PubMed  CAS  Google Scholar 

  16. Steiner G: Intermediate-density lipoproteins, diabetes and coronary artery disease. Diabetes Res Clin Pract 1998, 40:S29-S33.

    Article  PubMed  CAS  Google Scholar 

  17. Bavenholm P, Karpe F, Proudler A, et al.: Association of insulin and insulin propeptides with an atherogenic lipoprotein phenotype. Metabolism 1995, 44:1481–1488.

    Article  PubMed  CAS  Google Scholar 

  18. Erkelens DW: Diabetic dyslipidaemia. Eur Heart J 1998, 19:H27-H40.

    PubMed  Google Scholar 

  19. Ai M, Tanaka A, Ogita K, et al.: Relationship between hyperinsulinemia and remnant lipoprotein concentrations in patients with impaired glucose tolerance. J Clin Endocrinol Metab 2000, 85:3557–3560.

    Article  PubMed  CAS  Google Scholar 

  20. Tkac I, Kimball BP, Lewis G, et al.: The severity of coronary atherosclerosis in type 2 diabetes mellitus is related to the number of circulating triglyceride-rich lipoprotein particles. Arterioscler Thromb Vasc Biol 1997, 17:3633–3638.

    PubMed  CAS  Google Scholar 

  21. Mero N, Malmstrom R, Steiner G, et al.: Postprandial metabolism of apolipoprotein B-48- and B-100-containing particles in type 2 diabetes mellitus: relations to angiographically verified severity of coronary artery disease. Atherosclerosis 2000, 150:167–177. Suggests that postprandial change in small remnant particle numbers may contribute to the severity of CAD in type 2 diabetes.

    Article  PubMed  CAS  Google Scholar 

  22. Gervaise N, Garrigue MA, Lasfargues G, Lecomte P: Triglycerides, apo C3 and Lp B:C3 and cardiovascular risk in type 2 diabetes. Diabetologia 2000, 43:703–708. Suggests that apoC-III and lipoproteins containing apoB and apoC3, markers for remnant particles, are independent cardiovascular risk factors in type 2 diabetic patients.

    Article  PubMed  CAS  Google Scholar 

  23. Campos H, Perlov D, Khoo C, Sacks FM: Distinct patterns of lipoproteins with apoB defined by presence of apoE or apoCIII in hypercholesterolemia and hypertriglyceridemia. J Lipid Res 2001, 42:1239–1249. Because of the heterogeneity of TG-rich lipoproteins, in order for physicians to evaluate whether TG reduction will reduce coronary risk, particularly in type 2 diabetes, they should measure specific particle types that are potentially atherogenic in order to obtain optimal markers of disease.

    PubMed  CAS  Google Scholar 

  24. Sprecher DL: Raising high-density lipoprotein cholesterol with niacin and fibrates: a comparative review. Am J Cardiol 2000, 86:46L-50L.

    Article  PubMed  CAS  Google Scholar 

  25. Ballantyne CM: Treating mixed dyslipidemias: why and how. Clin Cardiol 2001, 24:II6–9.

    Article  Google Scholar 

  26. Marcovina SM, Albers JJ, Scanu AM, et al.: Use of a reference material proposed by the International Federation of Clinical Chemistry and Laboratory Medicine to evaluate analytical methods for the determination of plasma lipoprotein(a). Clin Chem 2000, 46:1956–1967. Linear regression analyses shows that apo(a) size heterogeneity affects the outcome of the immunochemical methods used to measure Lp(a); thus, the inaccuracy of Lp(a) values determined by methods sensitive to apo(a) size significantly affects the assessment of individual risk status for CAD.

    PubMed  CAS  Google Scholar 

  27. Sandholzer C, Saha N, Kark JD, et al.: Apo(a) isoforms predict risk for coronary heart disease. A study in six populations. Arterioscler Thromb 1992, 12:1214–1226.

    PubMed  CAS  Google Scholar 

  28. Danesh J, Collins R, Peto R: Lipoprotein(a) and coronary heart disease. Meta-analysis of prospective studies. Circulation 2000, 102:1082–1085. A meta-analysis of prospective studies with at least 1 year of followup. In the 27 eligible studies, comparison of the top third of baseline plasma Lp(a) measurements with those in the bottom third in each study yielded a combined risk ratio of 1.6, with similar findings when the analyses were restricted to the 18 studies of general populations.

    PubMed  CAS  Google Scholar 

  29. Simo JM, Joven J, Vilella E, et al.: Impact of apolipoprotein(a) isoform size heterogeneity on the lysine binding function of lipoprotein(a) in early onset coronary artery disease. Thromb Haemost 2001, 85:412–417.

    PubMed  CAS  Google Scholar 

  30. Bostom AG, Cupples LA, Jenner JL, et al.: Elevated plasma lipoprotein(a) and coronary heart disease in men aged 55 years and younger. A prospective study. JAMA 1996, 276:544–548.

    Article  PubMed  CAS  Google Scholar 

  31. Evans RW, Shpilberg O, Shaten BJ, et al.: Prospective association of lipoprotein(a) concentrations and apo(a) size with coronary heart disease among men in the Multiple Risk Factor Intervention Trial. J Clin Epidemiol 2001, 54:51–57.

    Article  PubMed  CAS  Google Scholar 

  32. Simo JM, Camps J, Vilella E, et al.: Instability of lipoprotein(a) in plasma stored at -70 degrees C: effects of concentration, apolipoprotein(a) genotype, and donor cardiovascular disease. Clin Chem 2001, 47:1673–1678.

    PubMed  CAS  Google Scholar 

  33. Zampoulakis JD, Kyriakousi AA, Poralis KA, et al.: Lipoprotein(a) is related to the extent of lesions in the coronary vasculature and to unstable coronary syndromes. Clin Cardiol 2000, 23:895–900.

    Article  PubMed  CAS  Google Scholar 

  34. Orth-Gomer K, Mittleman MA, Schenck-Gustafsson K, et al.: Lipoprotein(a) as a determinant of coronary heart disease in young women. Circulation 1997, 95:329–334.

    PubMed  CAS  Google Scholar 

  35. Maher VM, Brown BG, Marcovina SM, et al.: Effects of lowering elevated LDL cholesterol on the cardiovascular risk of lipoprotein(a). JAMA 1995, 274:1771–1774.

    Article  PubMed  CAS  Google Scholar 

  36. Cantin B, Gagnon F, Moorjani S, et al.: Is lipoprotein(a) an independent risk factor for ischemic heart disease in men? The Quebec Cardiovascular Study. J Am Coll Cardiol 1998, 31:519–525.

    Article  PubMed  CAS  Google Scholar 

  37. von Eckardstein A, Schulte H, Cullen P, Assmann G: Lipoprotein(a) further increases the risk of coronary events in men with high global cardiovascular risk. J Am Coll Cardiol 2001, 37:434–439. The combination of elevated Lp(a) and low HDLC were found to carry a risk ratio of 8.3.

    Article  Google Scholar 

  38. Foody JM, Milberg JA, Robinson K, et al.: Homocysteine and lipoprotein(a) interact to increase CAD risk in young men and women. Arterioscler Thromb Vasc Biol 2000, 20:493–499.

    PubMed  CAS  Google Scholar 

  39. Hopkins PN, Wu LL, Hunt SC, et al.: Lipoprotein(a) interactions with lipid and nonlipid risk factors in early familial coronary artery disease. Arterioscler Thromb Vasc Biol 1997, 17:2783–2792.

    PubMed  CAS  Google Scholar 

  40. Paultre F, Pearson TA, Weil HF, et al.: High levels of Lp(a) with a small apo(a) isoform are associated with coronary artery disease in African American and white men. Arterioscler Thromb Vasc Biol 2000, 20:2619–2624. Provides a plausible explanation for the conundrum of why Lp(a) is not a consistent CAD risk in black persons. It is suggested that Lp(a) is a CAD risk in black persons only if both an elevated Lp(a) concentration and a small apo(a) isoform are present.

    PubMed  CAS  Google Scholar 

  41. Scholz M, Kraft HG, Lingenhel A, et al.: Genetic control of lipoprotein(a) concentrations is different in Africans and Caucasians. Eur J Hum Genet 1999, 7:169–178.

    Article  PubMed  CAS  Google Scholar 

  42. Seed M, Ayres KL, Humphries SE, Miller GJ: Lipoprotein (a) as a predictor of myocardial infarction in middle-aged men. Am J Med 2001, 110:22–27.

    Article  PubMed  CAS  Google Scholar 

  43. Foody JM, Milberg JA, Pearce GL, Sprecher DL: Lipoprotein(a) associated with coronary artery disease in older women: age and gender analysis. Atherosclerosis 2000, 153:445–451.

    Article  PubMed  CAS  Google Scholar 

  44. Ruiz J, Thillet J, Huby T, et al.: Association of elevated lipoprotein(a) levels and coronary heart disease in NIDDM patients. Relationship with apolipoprotein(a) phenotypes. Diabetologia 1994, 37:585–591.

    PubMed  CAS  Google Scholar 

  45. Wollesen F, Dahlen G, Berglund L, Berne C: Peripheral atherosclerosis and serum lipoprotein(a) in diabetes. Diabetes Care 1999, 22:93–98.

    Article  PubMed  CAS  Google Scholar 

  46. Clodi M, Oberbauer R, Bodlaj G, et al.: Urinary excretion of apolipoprotein(a) fragments in type 1 diabetes mellitus patients. Metabolism 1999, 48:369–372.

    Article  PubMed  CAS  Google Scholar 

  47. Hegele RA: Is it time to measure Lp(a) as part of coronary heart disease risk assessment? Clin Biochem 1997, 30:443–445.

    Article  PubMed  CAS  Google Scholar 

  48. Craig WY, Neveux LM, Palomaki GE, et al.: Lipoprotein(a) as a risk factor for ischemic heart disease: meta-analysis of prospective studies. Clin Chem 1998, 44:2301–2306.

    PubMed  CAS  Google Scholar 

  49. Routi T, Ronnemaa T, Jokinen E, et al.: Correlation of toddlers' serum lipoprotein(a) concentration with parental values and grandparents' coronary heart disease: the STRIP baby study. Acta Paediatr 1996, 85:407–412.

    PubMed  CAS  Google Scholar 

  50. Mackinnon LT, Hubinger L, Lepre F: Effects of physical activity and diet on lipoprotein(a). Med Sci Sports Exerc 1997, 29:1429–1436.

    PubMed  CAS  Google Scholar 

  51. Knopp RH, Alagona P, Davidson M, et al.: Equivalent efficacy of a time-release form of niacin (Niaspan) given once-a-night versus plain niacin in the management of hyperlipidemia. Metabolism 1998, 47:1097–1104.

    Article  PubMed  CAS  Google Scholar 

  52. Marcovina SM, Kennedy H, Bittolo Bon G, et al.: Fish intake, independent of apo(a) size, accounts for lower plasma lipoprotein(a) levels in Bantu fishermen of Tanzania: the Lugalawa Study. Arterioscler Thromb Vasc Biol 1999, 19:1250–1256.

    PubMed  CAS  Google Scholar 

  53. Fontana P, Mooser V, Bovet P, et al.: Dose-dependent inverse relationship between alcohol consumption and serum Lp(a) levels in black African males. Arterioscler Thromb Vasc Biol 1999, 19:1075–1082.

    PubMed  CAS  Google Scholar 

  54. Falco C, Tormo G, Estelles A, et al.: Fibrinolysis and lipoprotein(a) in women with coronary artery disease. Influence of hormone replacement therapy. Haematologica 2001, 86:92–98.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Segrest, J.P. The role of non-LDL:non-HDL particles in atherosclerosis. Curr Diab Rep 2, 282–288 (2002). https://doi.org/10.1007/s11892-002-0096-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-002-0096-0

Keywords

Navigation