Skip to main content

Advertisement

Log in

Genetics of Sudden Cardiac Death

  • Invasive Electrophysiology and Pacing (EK Heist, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Sudden cardiac death (SCD) is defined by the World Health Organization (WHO) as death within 1 h of symptom onset (witnessed) or within 24 h of being observed alive and symptom free (unwitnessed). It affects more than 3 million people annually worldwide and affects approximately 1/1000 people each year in the USA. Familial studies of syndromes with Mendelian inheritance, candidate genes analyses, and genome-wide association studies (GWAS) have helped our understanding of the genetics of SCD. We will review the genetics of arrhythmogenic hereditary syndromes with Mendelian inheritance from familial studies with structural heart disease (hypertrophic cardiomyopathy, dilated cardiomyopathy, and arrhythmogenic cardiomyopathy) as well as primary electrical causes (long QT syndrome, Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia, and short QT syndrome). In addition, we will review the genetics of intermediate phenotypes for SCD such as coronary artery disease and electrocardiographic variables (QT interval, QRS duration, and RR interval). Finally, we will review rare and common variants that are associated with SCD in the general population and were identified from candidate gene analyses and GWAS. Our understanding of the genetics of SCD will improve by the use of next-generation sequencing/whole-exome sequencing as well as whole-genome sequencing which have the potential to discover unsuspected common and rare genetic variants that might be associated with SCD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Deo R, Albert CM. Epidemiology and genetics of sudden cardiac death. Circulation. 2012;125(4):620–37.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Adabag AS, Luepker RV, Roger VL, et al. Sudden cardiac death: epidemiology and risk factors. Nat Rev Cardiol. 2010;7(4):216–25.

    Article  PubMed  Google Scholar 

  3. Turakhia M, Tseng ZH. Sudden cardiac death: epidemiology, mechanisms, and therapy. Curr Probl Cardiol. 2007;32(9):501–46.

    Article  PubMed  Google Scholar 

  4. Steinhaus DA, Vittinghoff E, Moffatt E, et al. Characteristics of sudden arrhythmic death in a diverse, urban community. Am Heart J. 2012;163(1):125–31.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Chugh SS, Reinier K, Teodorescu C, et al. Epidemiology of sudden cardiac death: clinical and research implications. Prog Cardiovasc Dis. 2008;51(3):213–28.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Rodriguez-Calvo MS, Brion M, Allegue C, et al. Molecular genetics of sudden cardiac death. Forensic Sci Int. 2008;182(1-3):1–12.

    Article  CAS  PubMed  Google Scholar 

  7. Noseworthy PA, Newton-Cheh C. Genetic determinants of sudden cardiac death. Circulation. 2008;118(18):1854–63.

    Article  PubMed  Google Scholar 

  8. Ho CY. Genetics and clinical destiny: improving care in hypertrophic cardiomyopathy. Circulation. 2010;122(23):2430–40.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Refaat M. Prognosis of apical hypertrophic cardiomyopathy. JAMA. 2007;298(17):2006.

    Article  CAS  PubMed  Google Scholar 

  10. Kelly M, Semsarian C. Multiple mutations in genetic cardiovascular disease a marker of disease severity? Circ Cardiovasc Genet. 2009;2:182–90.

    Article  CAS  PubMed  Google Scholar 

  11. Sanbe A. Dilated cardiomyopathy: a disease of the myocardium. Biol Pharm Bull. 2013;36(1):18–22.

    Article  CAS  PubMed  Google Scholar 

  12. McNally EM, Golbus JR, Puckelwartz MJ. Genetic mutations and mechanisms in dilated cardiomyopathy. J Clin Invest. 2013;123(1):19–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Perrin MJ, Gollob MH. The genetics of cardiac disease associated with sudden cardiac death: a paper from the 2011 William Beaumont Hospital Symposium on molecular pathology. J Mol Diagn. 2012;14(5):424–36.

    Article  CAS  PubMed  Google Scholar 

  14. Refaat MM, Lubitz SA, Makino S, et al. Genetic variation in the alternative splicing regulator, RBM20, is associated with dilated cardiomyopathy. Heart Rhythm. 2012;9(3):390–6.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Chopra N, Knollmann BC. Genetics of sudden cardiac death syndromes. Curr Opin Cardiol. 2011;26(3):196–203.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Modi S, Krahn AD. Sudden cardiac arrest without overt heart disease. Circulation. 2011;123(25):2994–3008.

    Article  PubMed  Google Scholar 

  17. Napolitano C, Bloise R, Monteforte N, et al. Sudden cardiac death and genetic ion channelopathies: long QT, Brugada, short QT, catecholaminergic polymorphic ventricular tachycardia, and idiopathic ventricular fibrillation. Circulation. 2012;125(16):2027–34.

    Article  PubMed  Google Scholar 

  18. Refaat MM, Buur Steffensen A, David JP, et al. High incidence of functional ion channel abnormalities in a consecutive long QT syndrome cohort with genetic variants of unknown significance. J Am Coll Cardiol. 2014;63(12):A110–1.

    Article  Google Scholar 

  19. Refaat MM, Hotait M, Tseng ZH. Utility of the exercise electrocardiogram testing in sudden cardiac death risk stratification. Ann Noninvasive Electrocardiol. 2014;19(4):311–8. This study provides a thorough description of the utility of the exercise electrocardiogram testing in sudden cardiac death risk stratification.

    Article  PubMed  Google Scholar 

  20. George Jr AL. Common genetic variants in sudden cardiac death. Heart Rhythm. 2009;6(11 Suppl):S3–9.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Splawski I, Timothy KW, Tateyama M, et al. Variant of SCN5A sodium channel implicated in risk of cardiac arrhythmia. Science. 2002;297(5585):1333–6.

    Article  CAS  PubMed  Google Scholar 

  22. Nielsen MW, Holst AG, Olesen SP, et al. The genetic component of Brugada syndrome. Front Physiol. 2013;4:179.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Jellins J, Milanovic M, Taitz DJ, et al. Brugada syndrome. Hong Kong Med J. 2013;19(2):159–67.

    PubMed  Google Scholar 

  24. Sinner MF, Pfeufer A, Perz S, et al. Spontaneous Brugada electrocardiogram patterns are rare in the German general population: results from the KORA study. Europace. 2009;11(10):1338–44.

    Article  PubMed  Google Scholar 

  25. Letsas KP, Gavrielatos G, Efremidis M, et al. Prevalence of Brugada sign in a Greek tertiary hospital population. Europace. 2007;9(11):1077–80.

    Article  PubMed  Google Scholar 

  26. Holst AG, Jensen HK, Eschen O, et al. Low disease prevalence and inappropriate implantable cardioverter defibrillator shock rate in Brugada syndrome: a nationwide study. Europace. 2012;14(7):1025–9.

    Article  PubMed  Google Scholar 

  27. Calloe K, Refaat M, Grubb S, et al. Characterization and mechanisms of action of novel Nav1.5 channel mutations associated with Brugada syndrome. Circ Arrhythm Electrophysiol. 2013;6(1):177–84.

    Article  CAS  PubMed  Google Scholar 

  28. Calloe K, Refaat MM, Grubb S, et al. Characterization of 3 novel NaV1.5 channel mutations associated with the Brugada syndrome. Biophys J. 2012;102(3):540a–1.

    Article  Google Scholar 

  29. London B, Michalec M, Mehdi H, et al. Mutation in glycerol-3-phosphate dehydrogenase 1 like gene (GPD1-L) decreases cardiac Na+ current and causes inherited arrhythmias. Circulation. 2007;116(20):2260–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Ferrero-Miliani L, Holst AG, Pehrson S, et al. Strategy for clinical evaluation and screening of sudden cardiac death relatives. Fundam Clin Pharmacol. 2010;24(5):619–35.

    Article  CAS  PubMed  Google Scholar 

  31. Meli AC, Refaat MM, Dura M, et al. A novel ryanodine receptor mutation linked to sudden death increases sensitivity to cytosolic calcium. Circ Res. 2011;109(3):281–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Gaita F, Giustetto C, Bianchi F, et al. Short QT syndrome: a familial cause of sudden death. Circulation. 2003;108(8):965–70.

    Article  PubMed  Google Scholar 

  33. Priori SG, Wilde AA, Horie M, et al. Executive summary: HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes. Europace. 2013;15(10):1389–406.

    Article  PubMed  Google Scholar 

  34. Sotoodehnia N, Isaacs A, de Bakker PI, et al. Common variants in 22 loci are associated with QRS duration and cardiac ventricular conduction. Nat Genet. 2010;42(12):1068–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Bezzina CR, Pazoki R, Bardai A, et al. Genome-wide association study identifies a susceptibility locus at 21q21 for ventricular fibrillation in acute myocardial infarction. Nat Genet. 2010;42(8):688–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Lim BK, Xiong D, Dorner A, et al. Coxsackievirus and adenovirus receptor (CAR) mediates atrioventricular-node function and connexin 45 localization in the murine heart. J Clin Invest. 2008;118(8):2758–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Arking DE, Junttila MJ, Goyette P, et al. Identification of a sudden cardiac death susceptibility locus at 2q24.2 through genome-wide association in European ancestry individuals. PLoS Genet. 2011;7(6):e1002158.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Roberts R. A genetic basis for coronary artery disease. Trends Cardiovasc Med. 2014; Epub ahead of print.

  39. Dandona S, Roberts R. The role of genetic risk factors in coronary artery disease. Curr Cardiol Rep. 2014;16(5):479.

    Article  PubMed  Google Scholar 

  40. Frangiskakis JM, London B. Targeting device therapy: genomics of sudden death. Heart Fail Clin. 2010;6(1):93–100.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Refaat M, Frangiskakis JM, Grimley S, et al. The β2-adrenergic receptor Gln27 polymorphism is associated with increased ventricular arrhythmias in patients with severe heart failure. Heart Rhythm. 2009;6(5S):S456.

    Google Scholar 

  42. Refaat M, Mehdi H, Halder I, et al. Variations in cardiac calcium-handling genes are associated with ventricular arrhythmias in patients with severe cardiomyopathy. Heart Rhythm. 2011;8(5S):S40–1.

    Google Scholar 

  43. Refaat M, Aouizerat BE, Pullinger CR, et al. Association of CASQ2 polymorphisms with sudden cardiac arrest and heart failure in patients with coronary artery disease. Heart Rhythm. 2014;11(4):646–52. This study shows that variants in calcium handling genes might lower the threshold for arrhythmias in patients with structural heart disease.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Marwan M. Refaat, Mostafa Hotait, and Barry London declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marwan M. Refaat.

Additional information

This article is part of the Topical Collection on Invasive Electrophysiology and Pacing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Refaat, M.M., Hotait, M. & London, B. Genetics of Sudden Cardiac Death. Curr Cardiol Rep 17, 53 (2015). https://doi.org/10.1007/s11886-015-0606-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-015-0606-8

Keywords

Navigation