Skip to main content

Advertisement

Log in

Current Perspectives on Systemic Hypertension in Heart Failure with Preserved Ejection Fraction

  • Hypertension (WB White, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Hypertension is a major contributor to the development of heart failure with preserved ejection fraction (HFpEF). Our understanding of the epidemiology and pathophysiology of HFpEF in relation to hypertension has increased considerably in recent years. We now know that the pathophysiologic relationship between hypertension and HFpEF is more complex than simply the development of left ventricular hypertrophy and diastolic dysfunction and that there are multiple ways in which hypertension interacts with other comorbidities, the vasculature, and the heart to predispose to HFpEF. Although the treatment of HFpEF has been challenging, there is widespread agreement that control of systemic blood pressure is important in the management of these patients. Here we review the relationship between hypertension and HFpEF, focusing on (1) epidemiology and (2) pathophysiology of HFpEF in relation to hypertension; (3) prevention of HFpEF by controlling hypertension; and (4) established and novel therapeutics for hypertension in the setting of HFpEF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Oktay AA, Rich JD, Shah SJ. The emerging epidemic of heart failure with preserved ejection fraction. Curr Heart Fail Rep. 2013;10(4):401–10.

    PubMed  Google Scholar 

  2. Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med. 2006;355(3):251–9.

    CAS  PubMed  Google Scholar 

  3. Hoekstra T, Lesman-Leegte I, van Veldhuisen DJ, Sanderman R, Jaarsma T. Quality of life is impaired similarly in heart failure patients with preserved and reduced ejection fraction. Eur J Heart Fail. 2011;13(9):1013–8.

    PubMed  Google Scholar 

  4. Shah SJ, Heitner JF, Sweitzer NK, Anand IS, Kim HY, Harty B, et al. Baseline characteristics of patients in the treatment of preserved cardiac function heart failure with an aldosterone antagonist trial. Circ Heart Fail. 2013;6(2):184–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Fonarow GC, Stough WG, Abraham WT, Albert NM, Gheorghiade M, Greenberg BH, et al. Characteristics, treatments, and outcomes of patients with preserved systolic function hospitalized for heart failure: a report from the OPTIMIZE-HF Registry. J Am Coll Cardiol. 2007;50(8):768–77.

    PubMed  Google Scholar 

  6. Steinberg BA, Zhao X, Heidenreich PA, Peterson ED, Bhatt DL, Cannon CP, et al. Trends in patients hospitalized with heart failure and preserved left ventricular ejection fraction: prevalence, therapies, and outcomes. Circulation. 2012;126(1):65–75.

    PubMed  Google Scholar 

  7. Bhatia RS, Tu JV, Lee DS, Austin PC, Fang J, Haouzi A, et al. Outcome of heart failure with preserved ejection fraction in a population-based study. N Engl J Med. 2006;355(3):260–9.

    CAS  PubMed  Google Scholar 

  8. Lam CS, Donal E, Kraigher-Krainer E, Vasan RS. Epidemiology and clinical course of heart failure with preserved ejection fraction. Eur J Heart Fail. 2011;13(1):18–28.

    PubMed Central  PubMed  Google Scholar 

  9. Verma A, Solomon SD. Diastolic dysfunction as a link between hypertension and heart failure. Med Clin North Am. 2009;93(3):647–64.

    CAS  PubMed  Google Scholar 

  10. Perera GA. Hypertensive vascular disease; description and natural history. J Chronic Dis. 1955;1(1):33–42.

    CAS  PubMed  Google Scholar 

  11. Kannel WB, Castelli WP, McNamara PM, McKee PA, Feinleib M. Role of blood pressure in the development of congestive heart failure. The Framingham study. N Engl J Med. 1972;287(16):781–7.

    CAS  PubMed  Google Scholar 

  12. Levy D, Larson MG, Vasan RS, Kannel WB, Ho KK. The progression from hypertension to congestive heart failure. JAMA. 1996;275(20):1557–62.

    CAS  PubMed  Google Scholar 

  13. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey Jr DE, Drazner MH, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;62(16):e147–239.

    PubMed  Google Scholar 

  14. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, et al. Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation. 2014;129(3):e28–e292.

    PubMed  Google Scholar 

  15. Yoon SS, Ostchega Y, Louis T. Recent trends in the prevalence of high blood pressure and its treatment and control, 1999–2008. NCHS Data Brief. 2010;(48):1–8

  16. Bursi F, Weston SA, Redfield MM, Jacobsen SJ, Pakhomov S, Nkomo VT, et al. Systolic and diastolic heart failure in the community. JAMA. 2006;296(18):2209–16.

    CAS  PubMed  Google Scholar 

  17. Lee DS, Gona P, Vasan RS, Larson MG, Benjamin EJ, Wang TJ, et al. Relation of disease pathogenesis and risk factors to heart failure with preserved or reduced ejection fraction: insights from the Framingham Heart Study of the National Heart, Lung, and Blood Institute. Circulation. 2009;119(24):3070–7.

    PubMed Central  PubMed  Google Scholar 

  18. Cleland JG, Tendera M, Adamus J, Freemantle N, Polonski L, Taylor J, et al. The perindopril in elderly people with chronic heart failure (PEP-CHF) study. Eur Heart J. 2006;27(19):2338–45.

    CAS  PubMed  Google Scholar 

  19. Massie BM, Carson PE, McMurray JJ, Komajda M, McKelvie R, Zile MR, et al. Irbesartan in patients with heart failure and preserved ejection fraction. N Engl J Med. 2008;359(23):2456–67.

    CAS  PubMed  Google Scholar 

  20. Yancy CW, Lopatin M, Stevenson LW, De Marco T, Fonarow GC, ADHERE Scientific Advisory Committee and Investigators. Clinical presentation, management, and in-hospital outcomes of patients admitted with acute decompensated heart failure with preserved systolic function: a report from the Acute Decompensated Heart Failure National Registry (ADHERE) database. J Am Coll Cardiol. 2006;47(1):76–84.

    PubMed  Google Scholar 

  21. Ho JE, Lyass A, Lee DS, Vasan RS, Kannel WB, Larson MG, et al. Predictors of new-onset heart failure: differences in preserved versus reduced ejection fraction. Circ Heart Fail. 2013;6(2):279–86.

    PubMed Central  PubMed  Google Scholar 

  22. Topol EJ, Traill TA, Fortuin NJ. Hypertensive hypertrophic cardiomyopathy of the elderly. N Engl J Med. 1985;312(5):277–83.

    CAS  PubMed  Google Scholar 

  23. Wan SH, Vogel MW, Chen HH. Pre-clinical diastolic dysfunction. J Am Coll Cardiol. 2014;63(5):407–16.

    PubMed  Google Scholar 

  24. Redfield MM, Jacobsen SJ, Burnett Jr JC, Mahoney DW, Bailey KR, Rodeheffer RJ. Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic. JAMA. 2003;289(2):194–202.

    PubMed  Google Scholar 

  25. Abhayaratna WP, Marwick TH, Smith WT, Becker NG. Characteristics of left ventricular diastolic dysfunction in the community: an echocardiographic survey. Heart. 2006;92(9):1259–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. de Sa DD C, Hodge DO, Slusser JP, Redfield MM, Simari RD, Burnett JC, et al. Progression of preclinical diastolic dysfunction to the development of symptoms. Heart. 2010;96(7):528–32.

    Google Scholar 

  27. Zile MR, Baicu CF, Gaasch WH. Diastolic heart failure—abnormalities in active relaxation and passive stiffness of the left ventricle. N Engl J Med. 2004;350(19):1953–9.

    CAS  PubMed  Google Scholar 

  28. Kawaguchi M, Hay I, Fetics B, Kass DA. Combined ventricular systolic and arterial stiffening in patients with heart failure and preserved ejection fraction: implications for systolic and diastolic reserve limitations. Circulation. 2003;107(5):714–20.

    PubMed  Google Scholar 

  29. Liu YW, Tsai WC, Su CT, Lin CC, Chen JH. Evidence of left ventricular systolic dysfunction detected by automated function imaging in patients with heart failure and preserved left ventricular ejection fraction. J Card Fail. 2009;15(9):782–9.

    PubMed  Google Scholar 

  30. Thenappan T, Shah SJ, Gomberg-Maitland M, Collander B, Vallakati A, Shroff P, et al. Clinical characteristics of pulmonary hypertension in patients with heart failure and preserved ejection fraction. Circ Heart Fail. 2011;4(3):257–65.

    PubMed  Google Scholar 

  31. Borlaug BA, Melenovsky V, Russell SD, Kessler K, Pacak K, Becker LC, et al. Impaired chronotropic and vasodilator reserves limit exercise capacity in patients with heart failure and a preserved ejection fraction. Circulation. 2006;114(20):2138–47.

    PubMed  Google Scholar 

  32. Kusunose K, Motoki H, Popovic ZB, Thomas JD, Klein AL, Marwick TH. Independent association of left atrial function with exercise capacity in patients with preserved ejection fraction. Heart. 2012;98(17):1311–7.

    PubMed  Google Scholar 

  33. Kitzman DW, Nicklas B, Kraus WE, Lyles MF, Eggebeen J, Morgan TM, et al. Skeletal muscle abnormalities and exercise intolerance in older patients with heart failure and preserved ejection fraction. Am J Physiol Heart Circ Physiol. 2014;306(9):H1364–70.

    CAS  PubMed  Google Scholar 

  34. Bench T, Burkhoff D, O’Connell JB, Costanzo MR, Abraham WT, St John Sutton M, et al. Heart failure with normal ejection fraction: consideration of mechanisms other than diastolic dysfunction. Curr Heart Fail Rep. 2009;6(1):57–64.

    PubMed  Google Scholar 

  35. Izzo Jr JL, Gradman AH. Mechanisms and management of hypertensive heart disease: from left ventricular hypertrophy to heart failure. Med Clin North Am. 2004;88(5):1257–71.

    PubMed  Google Scholar 

  36. Drazner MH. The progression of hypertensive heart disease. Circulation. 2011;123(3):327–34.

    PubMed  Google Scholar 

  37. Krumholz HM, Larson M, Levy D. Sex differences in cardiac adaptation to isolated systolic hypertension. Am J Cardiol. 1993;72(3):310–3.

    CAS  PubMed  Google Scholar 

  38. Douglas PS, Katz SE, Weinberg EO, Chen MH, Bishop SP, Lorell BH. Hypertrophic remodeling: gender differences in the early response to left ventricular pressure overload. J Am Coll Cardiol. 1998;32(4):1118–25.

    CAS  PubMed  Google Scholar 

  39. Lam CS, Roger VL, Rodeheffer RJ, Bursi F, Borlaug BA, Ommen SR, et al. Cardiac structure and ventricular-vascular function in persons with heart failure and preserved ejection fraction from Olmsted County Minnesota. Circ. 2007;115(15):1982–90.

    Google Scholar 

  40. Kosmala W, Plaksej R, Strotmann JM, Weigel C, Herrmann S, Niemann M, et al. Progression of left ventricular functional abnormalities in hypertensive patients with heart failure: an ultrasonic two-dimensional speckle tracking study. J Am Soc Echocardiogr. 2008;21(12):1309–17.

    PubMed  Google Scholar 

  41. Leggio M, Sgorbini L, Pugliese M, Mazza A, Bendini MG, Fera MS, et al. Systo-diastolic ventricular function in patients with hypertension: an echocardiographic tissue Doppler imaging evaluation study. Int J Cardiovasc Imaging. 2007;23(2):177–84.

    PubMed  Google Scholar 

  42. Rosen BD, Edvardsen T, Lai S, Castillo E, Pan L, Jerosch-Herold M, et al. Left ventricular concentric remodeling is associated with decreased global and regional systolic function: the multi-ethnic study of atherosclerosis. Circulation. 2005;112(7):984–91.

    PubMed  Google Scholar 

  43. Edvardsen T, Rosen BD, Pan L, Jerosch-Herold M, Lai S, Hundley WG, et al. Regional diastolic dysfunction in individuals with left ventricular hypertrophy measured by tagged magnetic resonance imaging—the Multi-Ethnic Study of Atherosclerosis (MESA). Am Heart J. 2006;151(1):109–14.

    PubMed  Google Scholar 

  44. Kraigher-Krainer E, Shah AM, Gupta DK, Santos A, Claggett B, Pieske B, et al. Impaired systolic function by strain imaging in heart failure with preserved ejection fraction. J Am Coll Cardiol. 2014;63(5):447–56. In this study, HFpEF patients from the PARAMOUNT trial were compared to patients with hypertensive heart disease and healthy controls free of cardiovascular disease. The authors demonstrated convincingly that global longitudinal strain and global circumferential strain were decreased in HFpEF compared to both hypertensive heart disease and healthy controls.

    PubMed  Google Scholar 

  45. Shah SJ, Aistrup GL, Gupta DK, O’Toole MJ, Nahhas AF, Schuster D, et al. Ultrastructural and cellular basis for the development of abnormal myocardial mechanics during the transition from hypertension to heart failure. Am J Physiol Heart Circ Physiol. 2014;306(1):H88–H100. In this study, Shah and colleagues demonstrate that in a well-validated model of systemic hypertension, the spontaneously hypertensive rat, abnormalities in cardiac mechanics occur early in response to hypertension, prior to the development of over diastolic dysfunction, systolic dysfunction, cardiac fibrosis, and symptomatic heart failure. The abnormalities in cardiac mechanics correlated closely with abnormalities in calcium cycling due to T-tubule disruption.

    CAS  PubMed  Google Scholar 

  46. Shah SJ, Wasserstrom JA. Increased arterial wave reflection magnitude: a novel form of stage B heart failure? J Am Coll Cardiol. 2012;60(21):2178–81.

    PubMed  Google Scholar 

  47. Chirinos JA, Segers P, Gupta AK, Swillens A, Rietzschel ER, De Buyzere ML, et al. Time-varying myocardial stress and systolic pressure-stress relationship: role in myocardial-arterial coupling in hypertension. Circulation. 2009;119(21):2798–807.

    PubMed  Google Scholar 

  48. Chirinos JA, Kips JG, Jacobs Jr DR, Brumback L, Duprez DA, Kronmal R, et al. Arterial wave reflections and incident cardiovascular events and heart failure: MESA (Multiethnic Study of Atherosclerosis). J Am Coll Cardiol. 2012;60(21):2170–7. Chirinos et al. showed that increased magnitude of arterial wave reflections was independently associated with incident heart failure, demonstrating the importance of arterial stiffness and the reflected aortic pulse wave in the pathogenesis of HF.

    PubMed Central  PubMed  Google Scholar 

  49. Lam CS, Brutsaert DL. Endothelial dysfunction: a pathophysiologic factor in heart failure with preserved ejection fraction. J Am Coll Cardiol. 2012;60(18):1787–9.

    PubMed  Google Scholar 

  50. Borlaug BA, Olson TP, Lam CS, Flood KS, Lerman A, Johnson BD, et al. Global cardiovascular reserve dysfunction in heart failure with preserved ejection fraction. J Am Coll Cardiol. 2010;56(11):845–54.

    PubMed Central  PubMed  Google Scholar 

  51. Paulus WJ, Tschope C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 2013;62(4):263–71. This important editorial outlines very nicely the relationship between comorbidities such as hypertension, inflammation, endothelial dysfunction, and abnormal myocardial function in the pathogenesis of HFpEF.

    PubMed  Google Scholar 

  52. Wachtell K, Olsen MH, Dahlof B, Devereux RB, Kjeldsen SE, Nieminen MS, et al. Microalbuminuria in hypertensive patients with electrocardiographic left ventricular hypertrophy: the LIFE study. J Hypertens. 2002;20(3):405–12.

    CAS  PubMed  Google Scholar 

  53. Brouwers FP, de Boer RA, van der Harst P, Voors AA, Gansevoort RT, Bakker SJ, et al. Incidence and epidemiology of new onset heart failure with preserved vs. reduced ejection fraction in a community-based cohort: 11-year follow-up of PREVEND. Eur Heart J. 2013;34(19):1424–31.

    CAS  PubMed  Google Scholar 

  54. Gerstein HC, Mann JF, Yi Q, Zinman B, Dinneen SF, Hoogwerf B, et al. Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and nondiabetic individuals. JAMA. 2001;286(4):421–6.

    CAS  PubMed  Google Scholar 

  55. Katz DH, Selvaraj S, Aguilar FG, Martinez EE, Beussink L, Kim KY, et al. Association of low-grade albuminuria with adverse cardiac mechanics: findings from the Hypertension Genetic Epidemiology Network (HyperGEN) study. Circulation. 2014;129(1):42–50. In one of the largest speckle-tracking echocardiography studies to date, Katz and colleagues demonstrated that in hypertensive individuals, even low levels of microalbuminuria (<30 mg/g, a sign of generalized endothelial dysfunction) is independently associated with abnormalities in cardiac mechanics.

    CAS  PubMed  Google Scholar 

  56. Tagawa H, Wang N, Narishige T, Ingber DE, Zile MR, Cooper GT. Cytoskeletal mechanics in pressure-overload cardiac hypertrophy. Circ Res. 1997;80(2):281–9.

    CAS  PubMed  Google Scholar 

  57. Wei S, Guo A, Chen B, Kutschke W, Xie YP, Zimmerman K, et al. T-tubule remodeling during transition from hypertrophy to heart failure. Circ Res. 2010;107(4):520–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Essick EE, Sam F. Cardiac hypertrophy and fibrosis in the metabolic syndrome: a role for aldosterone and the mineralocorticoid receptor. Int J Hypertens. 2011;2011:346985.

    PubMed Central  PubMed  Google Scholar 

  59. Habibi J, DeMarco VG, Ma L, Pulakat L, Rainey WE, Whaley-Connell AT, et al. Mineralocorticoid receptor blockade improves diastolic function independent of blood pressure reduction in a transgenic model of RAAS overexpression. Am J Physiol Heart Circ Physiol. 2011;300(4):H1484–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Ohtani T, Ohta M, Yamamoto K, Mano T, Sakata Y, Nishio M, et al. Elevated cardiac tissue level of aldosterone and mineralocorticoid receptor in diastolic heart failure: beneficial effects of mineralocorticoid receptor blocker. Am J Physiol Regul Integr Comp Physiol. 2007;292(2):R946–54.

    CAS  PubMed  Google Scholar 

  61. Moser M, Hebert PR. Prevention of disease progression, left ventricular hypertrophy and congestive heart failure in hypertension treatment trials. J Am Coll Cardiol. 1996;27(5):1214–8.

    CAS  PubMed  Google Scholar 

  62. Moser M, Setaro JF. Antihypertensive drug therapy and regression of left ventricular hypertrophy: a review with a focus on diuretics. Eur Heart J. 1991;12(9):1034–9.

    CAS  PubMed  Google Scholar 

  63. Pitt B, Reichek N, Willenbrock R, Zannad F, Phillips RA, Roniker B, et al. Effects of eplerenone, enalapril, and eplerenone/enalapril in patients with essential hypertension and left ventricular hypertrophy: the 4E-left ventricular hypertrophy study. Circulation. 2003;108(15):1831–8.

    CAS  PubMed  Google Scholar 

  64. Solomon SD, Janardhanan R, Verma A, Bourgoun M, Daley WL, Purkayastha D, et al. Effect of angiotensin receptor blockade and antihypertensive drugs on diastolic function in patients with hypertension and diastolic dysfunction: a randomised trial. Lancet. 2007;369(9579):2079–87.

    CAS  PubMed  Google Scholar 

  65. Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. The SOLVD Investigators. N Engl J Med. 1992;327(10):685–91

  66. Yusuf S, Sleight P, Pogue J, Bosch J, Davies R, Dagenais G. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med. 2000;342(3):145–53.

    CAS  PubMed  Google Scholar 

  67. Kostis JB, Davis BR, Cutler J, Grimm Jr RH, Berge KG, Cohen JD, et al. Prevention of heart failure by antihypertensive drug treatment in older persons with isolated systolic hypertension. SHEP Cooperative Research Group. JAMA. 1997;278(3):212–6.

    CAS  PubMed  Google Scholar 

  68. Davis BR, Piller LB, Cutler JA, Furberg C, Dunn K, Franklin S, et al. Role of diuretics in the prevention of heart failure: the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial. Circulation. 2006;113(18):2201–10.

    CAS  PubMed  Google Scholar 

  69. Davis BR, Kostis JB, Simpson LM, Black HR, Cushman WC, Einhorn PT, et al. Heart failure with preserved and reduced left ventricular ejection fraction in the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial. Circulation. 2008;118(22):2259–67.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Beckett NS, Peters R, Fletcher AE, Staessen JA, Liu L, Dumitrascu D, et al. Treatment of hypertension in patients 80 years of age or older. N Engl J Med. 2008;358(18):1887–98.

    CAS  PubMed  Google Scholar 

  71. Oktay AA, Shah SJ. Diagnosis and management of heart failure with preserved ejection fraction: 10 key lessons. Cardiol Rev: Curr; 2013.

    Google Scholar 

  72. James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA. 2014;311(5):507–20.

    CAS  PubMed  Google Scholar 

  73. Hogg K, McMurray J. Neurohumoral pathways in heart failure with preserved systolic function. Prog Cardiovasc Dis. 2005;47(6):357–66.

    CAS  PubMed  Google Scholar 

  74. Yusuf S, Pfeffer MA, Swedberg K, Granger CB, Held P, McMurray JJ, et al. Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-Preserved Trial. Lancet. 2003;362(9386):777–81.

    CAS  PubMed  Google Scholar 

  75. Gavras I, Gavras H. ‘Volume-expanded’ hypertension: the effect of fluid overload and the role of the sympathetic nervous system in salt-dependent hypertension. J Hypertens. 2012;30(4):655–9.

    CAS  PubMed  Google Scholar 

  76. Edelmann F, Tomaschitz A, Wachter R, Gelbrich G, Knoke M, Dungen HD, et al. Serum aldosterone and its relationship to left ventricular structure and geometry in patients with preserved left ventricular ejection fraction. Eur Heart J. 2012;33(2):203–12.

    CAS  PubMed  Google Scholar 

  77. Borlaug BA, Paulus WJ. Heart failure with preserved ejection fraction: pathophysiology, diagnosis, and treatment. Eur Heart J. 2011;32(6):670–9.

    PubMed Central  PubMed  Google Scholar 

  78. Edelmann F, Wachter R, Schmidt AG, Kraigher-Krainer E, Colantonio C, Kamke W, et al. Effect of spironolactone on diastolic function and exercise capacity in patients with heart failure with preserved ejection fraction: the Aldo-DHF randomized controlled trial. JAMA. 2013;309(8):781–91.

    CAS  PubMed  Google Scholar 

  79. Deswal A, Richardson P, Bozkurt B, Mann DL. Results of the Randomized Aldosterone Antagonism in Heart Failure with Preserved Ejection Fraction trial (RAAM-PEF). J Card Fail. 2011;17(8):634–42.

    PubMed  Google Scholar 

  80. Pitt B, Pfeffer MA, Assmann SF, Boineau R, Anand IS, Claggett B, et al. Spironolactone for heart failure with preserved ejection fraction. N Engl J Med. 2014;370(15):1383–92. In the TOPCAT trial of spironolactone for HFpEF (n = 3,445), 91% of the study participants had a history of hypertension. TOPCAT demonstrated the benefit of spironolactone in reducing hospitalization for heart failure in HFpEF, and improving cardiovascular outcomes in higher-risk HFpEF patients (i.e., those with elevated B-type natriuretic peptide or enrolled in the Americas).

    CAS  PubMed  Google Scholar 

  81. Bergstrom A, Andersson B, Edner M, Nylander E, Persson H, Dahlstrom U. Effect of carvedilol on diastolic function in patients with diastolic heart failure and preserved systolic function. Results of the Swedish Doppler-echocardiographic study (SWEDIC). Eur J Heart Fail. 2004;6(4):453–61.

    CAS  PubMed  Google Scholar 

  82. Takeda Y, Fukutomi T, Suzuki S, Yamamoto K, Ogata M, Kondo H, et al. Effects of carvedilol on plasma B-type natriuretic peptide concentration and symptoms in patients with heart failure and preserved ejection fraction. Am J Cardiol. 2004;94(4):448–53.

    CAS  PubMed  Google Scholar 

  83. Massie BM, Nelson JJ, Lukas MA, Greenberg B, Fowler MB, Gilbert EM, et al. Comparison of outcomes and usefulness of carvedilol across a spectrum of left ventricular ejection fractions in patients with heart failure in clinical practice. Am J Cardiol. 2007;99(9):1263–8.

    CAS  PubMed  Google Scholar 

  84. Oghlakian GO, Sipahi I, Fang JC. Treatment of heart failure with preserved ejection fraction: have we been pursuing the wrong paradigm? Mayo Clin Proc. 2011;86(6):531–9.

    PubMed Central  PubMed  Google Scholar 

  85. Yamamoto K, Origasa H, Hori M, Investigators JD. Effects of carvedilol on heart failure with preserved ejection fraction: the Japanese Diastolic Heart Failure Study (J-DHF). Eur J Heart Fail. 2013;15(1):110–8.

    CAS  PubMed  Google Scholar 

  86. Shah SJ. Evolving approaches to the management of heart failure with preserved ejection fraction in patients with coronary artery disease. Curr Treat Options Cardiovasc Med. 2010;12(1):58–75.

    PubMed  Google Scholar 

  87. Bakris GL, Fonseca V, Katholi RE, McGill JB, Messerli FH, Phillips RA, et al. Metabolic effects of carvedilol vs metoprolol in patients with type 2 diabetes mellitus and hypertension: a randomized controlled trial. JAMA. 2004;292(18):2227–36.

    CAS  PubMed  Google Scholar 

  88. Devereux RB, Dahlof B, Gerdts E, Boman K, Nieminen MS, Papademetriou V, et al. Regression of hypertensive left ventricular hypertrophy by losartan compared with atenolol: the Losartan Intervention for Endpoint Reduction in Hypertension (LIFE) trial. Circulation. 2004;110(11):1456–62.

    CAS  PubMed  Google Scholar 

  89. Nodari S, Metra M, Dei Cas L. Beta-blocker treatment of patients with diastolic heart failure and arterial hypertension. A prospective, randomized, comparison of the long-term effects of atenolol vs. nebivolol. Eur J Heart Fail. 2003;5(5):621–7.

    CAS  PubMed  Google Scholar 

  90. Carlberg B, Samuelsson O, Lindholm LH. Atenolol in hypertension: is it a wise choice? Lancet. 2004;364(9446):1684–9.

    CAS  PubMed  Google Scholar 

  91. Williams B, Lacy PS, Thom SM, Cruickshank K, Stanton A, Collier D, et al. Differential impact of blood pressure-lowering drugs on central aortic pressure and clinical outcomes: principal results of the Conduit Artery Function Evaluation (CAFE) study. Circulation. 2006;113(9):1213–25.

    CAS  PubMed  Google Scholar 

  92. Parker ED, Margolis KL, Trower NK, Magid DJ, Tavel HM, Shetterly SM, et al. Comparative effectiveness of 2 beta-blockers in hypertensive patients. Arch Intern Med. 2012;172(18):1406–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Setaro JF, Zaret BL, Schulman DS, Black HR, Soufer R. Usefulness of verapamil for congestive heart failure associated with abnormal left ventricular diastolic filling and normal left ventricular systolic performance. Am J Cardiol. 1990;66(12):981–6.

    CAS  PubMed  Google Scholar 

  94. Hung MJ, Cherng WJ, Kuo LT, Wang CH. Effect of verapamil in elderly patients with left ventricular diastolic dysfunction as a cause of congestive heart failure. Int J Clin Pract. 2002;56(1):57–62.

    CAS  PubMed  Google Scholar 

  95. Sica DA. Centrally acting antihypertensive agents: an update. J Clin Hypertens (Greenwich). 2007;9(5):399–405.

    CAS  Google Scholar 

  96. Azevedo ER, Newton GE, Parker JD. Cardiac and systemic sympathetic activity in response to clonidine in human heart failure. J Am Coll Cardiol. 1999;33(1):186–91.

    CAS  PubMed  Google Scholar 

  97. Aggarwal A, Esler MD, Morris MJ, Lambert G, Kaye DM. Regional sympathetic effects of low-dose clonidine in heart failure. Hypertension. 2003;41(3):553–7.

    CAS  PubMed  Google Scholar 

  98. Barzilay JI, Davis BR, Bettencourt J, Margolis KL, Goff Jr DC, Black H, et al. Cardiovascular outcomes using doxazosin vs. chlorthalidone for the treatment of hypertension in older adults with and without glucose disorders: a report from the ALLHAT study. J Clin Hypertens (Greenwich). 2004;6(3):116–25.

    CAS  Google Scholar 

  99. Patrono C, Baigent C. Nonsteroidal anti-inflammatory drugs and the heart. Circulation. 2014;129(8):907–16.

    PubMed  Google Scholar 

  100. Garcia Rodriguez LA, Hernandez-Diaz S. Nonsteroidal antiinflammatory drugs as a trigger of clinical heart failure. Epidemiology. 2003;14(2):240–6.

    PubMed  Google Scholar 

  101. Kohli P, Steg PG, Cannon CP, Smith Jr SC, Eagle KA, Ohman EM, et al. NSAID use and association with cardiovascular outcomes in outpatients with stable atherothrombotic disease. Am J Med. 2014;127(1):53–60. e51.

    CAS  PubMed  Google Scholar 

  102. Di Lorenzo G, Autorino R, Bruni G, Carteni G, Ricevuto E, Tudini M, et al. Cardiovascular toxicity following sunitinib therapy in metastatic renal cell carcinoma: a multicenter analysis. Ann Oncol. 2009;20(9):1535–42.

    PubMed  Google Scholar 

  103. Bonderman D, Pretsch I, Steringer-Mascherbauer R, Jansa P, Rosenkranz S, Tufaro C, Bojic A, Lam CS, Frey R, Ochan Kilama M et al.: Acute hemodynamic effects of riociguat in patients with pulmonary hypertension associated with diastolic heart failure (DILATE-1): a randomized, double-blind, placebo-controlled, single-dose study. Chest 2014.

  104. Solomon SD, Zile M, Pieske B, Voors A, Shah A, Kraigher-Krainer E, et al. The angiotensin receptor neprilysin inhibitor LCZ696 in heart failure with preserved ejection fraction: a phase 2 double-blind randomised controlled trial. Lancet. 2012;380(9851):1387–95. Neprilysin inhibition, which results in increased levels of natriuretic peptides, is an exciting novel class of drugs for the treatment of hypertension and HFpEF. In a large phase 2 randomized controlled trial (PARAMOUNT), Solomon and colleagues showed that LCZ696, a combined angiotensin receptor blocker / neprilysin inhibitor decreased wall stress (as indicated by circulating levels of NT-proBNP, which are unaffected by LCZ696), and decreased left atrial size.

    CAS  PubMed  Google Scholar 

  105. Hummel SL, Seymour EM, Brook RD, Kolias TJ, Sheth SS, Rosenblum HR, et al. Low-sodium dietary approaches to stop hypertension diet reduces blood pressure, arterial stiffness, and oxidative stress in hypertensive heart failure with preserved ejection fraction. Hypertension. 2012;60(5):1200–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Hummel SL, Seymour EM, Brook RD, Sheth SS, Ghosh E, Zhu S, et al. Low-sodium DASH diet improves diastolic function and ventricular-arterial coupling in hypertensive heart failure with preserved ejection fraction. Circ Heart Fail. 2013;6(6):1165–71. Although a relatively small study, Hummel and colleagues nicely showed the power of dietary control of sodium in the management of hypertension and HFpEF.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Brandt MC, Reda S, Mahfoud F, Lenski M, Bohm M, Hoppe UC. Effects of renal sympathetic denervation on arterial stiffness and central hemodynamics in patients with resistant hypertension. J Am Coll Cardiol. 2012;60(19):1956–65.

    PubMed  Google Scholar 

  108. Esler MD, Krum H, Sobotka PA, Schlaich MP, Schmieder RE, Bohm M. Renal sympathetic denervation in patients with treatment-resistant hypertension (the SYMPLICITY HTN-2 trial): a randomised controlled trial. Lancet. 2010;376(9756):1903–9.

    PubMed  Google Scholar 

  109. Daugherty SL, Powers JD, Magid DJ, Tavel HM, Masoudi FA, Margolis KL, et al. Incidence and prognosis of resistant hypertension in hypertensive patients. Circulation. 2012;125(13):1635–42.

    PubMed Central  PubMed  Google Scholar 

  110. Piccirillo G, Germano G, Vitarelli A, Ragazzo M, di Carlo S, De Laurentis T, et al. Autonomic cardiovascular control and diastolic dysfunction in hypertensive subjects. Int J Cardiol. 2006;110(2):160–6.

    PubMed  Google Scholar 

  111. Grassi G, Seravalle G, Quarti-Trevano F, Dell’Oro R, Arenare F, Spaziani D, et al. Sympathetic and baroreflex cardiovascular control in hypertension-related left ventricular dysfunction. Hypertension. 2009;53(2):205–9.

    CAS  PubMed  Google Scholar 

  112. Verloop WL, Beeftink MM, Nap A, Bots ML, Velthuis BK, Appelman YE, et al. Renal denervation in heart failure with normal left ventricular ejection fraction. Rationale and design of the DIASTOLE (DenervatIon of the renAl Sympathetic nerves in hearT failure with nOrmal Lv Ejection fraction) trial. Eur J Heart Fail. 2013;15(12):1429–37.

    CAS  PubMed  Google Scholar 

  113. Bhatt DL, Kandzari DE, O’Neill WW, D’Agostino R, Flack JM, Katzen BT, et al. A controlled trial of renal denervation for resistant hypertension. N Engl J Med. 2014;370(15):1393–401.

    CAS  PubMed  Google Scholar 

  114. Alnima T, de Leeuw PW, Kroon AA. Baroreflex activation therapy for the treatment of drug-resistant hypertension: new developments. Cardiol Res Pract. 2012;2012:587194.

    PubMed Central  PubMed  Google Scholar 

  115. Bisognano JD, Kaufman CL, Bach DS, Lovett EG, de Leeuw P. Improved cardiac structure and function with chronic treatment using an implantable device in resistant hypertension: results from European and United States trials of the Rheos system. J Am Coll Cardiol. 2011;57(17):1787–8.

    PubMed  Google Scholar 

  116. Scheffers IJ, Kroon AA, Schmidli J, Jordan J, Tordoir JJ, Mohaupt MG, et al. Novel baroreflex activation therapy in resistant hypertension: results of a European multi-center feasibility study. J Am Coll Cardiol. 2010;56(15):1254–8.

    PubMed  Google Scholar 

  117. Bisognano JD, Bakris G, Nadim MK, Sanchez L, Kroon AA, Schafer J, et al. Baroreflex activation therapy lowers blood pressure in patients with resistant hypertension: results from the double-blind, randomized, placebo-controlled Rheos pivotal trial. J Am Coll Cardiol. 2011;58(7):765–73.

    PubMed  Google Scholar 

  118. Georgakopoulos D, Little WC, Abraham WT, Weaver FA, Zile MR. Chronic baroreflex activation: a potential therapeutic approach to heart failure with preserved ejection fraction. J Card Fail. 2011;17(2):167–78.

    PubMed  Google Scholar 

Download references

Acknowledgments

This sudy was funded by the American Heart Association (#0835488N) and the National Institutes of Health (R01 HL107557).

Compliance with Ethics Guidelines

Conflict of Interest

Sanjiv Shah received honoraria from the American Board of Internal Medicine, Pulmonary Hypertension Association, Novartis, Bayer, and DC Devices. Ahmet Oktay has no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjiv J. Shah.

Additional information

This article is part of the Topical Collection on Hypertension

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oktay, A.A., Shah, S.J. Current Perspectives on Systemic Hypertension in Heart Failure with Preserved Ejection Fraction. Curr Cardiol Rep 16, 545 (2014). https://doi.org/10.1007/s11886-014-0545-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-014-0545-9

Keywords

Navigation