Skip to main content

Advertisement

Log in

The Dementia of Cardiac Disease

  • Stroke (C Sila, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Cardiovascular disease and dementia are common in the elderly and are major causes of disability in the general population. The public health burden of dementia is projected to increase as life expectancy increases in the United States and elsewhere. Epidemiological studies suggest that these once believed unrelated conditions, heart disease and dementia, may be linked by shared common risks and pathogenic elements. These observations have sparked the notion that prevention or modification of certain vascular risk factors and proper management of cardiovascular disease may prevent the development or progression of dementia including Alzheimer’s disease. In this article, the authors discuss the association between cognitive impairment and atrial fibrillation, coronary artery disease, congestive heart failure, and cardiovascular procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Gorelick PB. Role of inflammation in cognitive impairment: results of observational epidemiological studies and clinical trials. Ann N Y Acad Sci. 2010;1207:155–62.

    Article  PubMed  Google Scholar 

  2. •• Gorelick PB, Scuteri A, Black SE, Decarli C, Greenberg SM, Iadecola C, et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2011;42:2672–713. This is an extensive overview on the vascular contributions to cognitive decline and serves as a guide for clinicians to understand the vascular cognitive impairment and dementia, its prevention and treatment.

    Article  PubMed  Google Scholar 

  3. Hachinski V, Donnan GA, Gorelick PB, Hacke W, Cramer SC, Kaste M, et al. Stroke: working toward a prioritized world agenda. Stroke. 2010;41:1084–99.

    Article  PubMed  Google Scholar 

  4. Haeusler KG, Laufs U, Endres M. Chronic heart failure and ischemic stroke. Stroke. 2011;42:2977–82.

    Article  PubMed  Google Scholar 

  5. Marshall RS, Lazar RM. Pumps, aqueducts, and drought management: vascular physiology in vascular cognitive impairment. Stroke. 2011;42:221–6.

    Article  PubMed  Google Scholar 

  6. Festa JR, Jia Z, Cheung K, Marchidann A, Schmidt M, Shapiro PA, et al. Association of low ejection fraction with impaired verbal memory in older patients with heart failure. Arch Neurol. 2011;68:1021–6.

    Article  PubMed  Google Scholar 

  7. English JD. Stroke as a complication of acute cardiac disease. Am Acad Neurol Continuum Lifelong Learn Neurol. 2011;17:1024–39.

    Google Scholar 

  8. •• Launer LJ, Masaki K, Petrovitch H, Foley D, Havlik RJ. The association between midlife blood pressure levels and late-life cognitive function: the Honolulu-Asia Aging Study. JAMA. 1995;274:1846–51. A landmark study reporting an association between midlife systolic blood pressure and late life cognitive function in Japanese-American men utilizing data from the Honolulu Heart Program (HHP) established in 1965 from examination of 8006 individuals from 1900–1991. The results showed that midlife systolic blood pressure is a significant predictor of reduced cognitive function in later life.

    Article  CAS  PubMed  Google Scholar 

  9. Alonso A, Mosley TH, Gottesman R, Catellier D, Sharett AR, Coresh J. Risk of dementia hospitalization associated with cardiovascular risk factors in midlife and older age: the Atherosclerosis Risk in Communities (ARIC) Study. J Neurol Neurosurg Psychiatry. 2009;80:1194–201.

    Article  CAS  PubMed  Google Scholar 

  10. Gorelick PB. Risk factors for vascular dementia and Alzheimer disease. Stroke. 2004;35:2620–2.

    Article  PubMed  Google Scholar 

  11. Shah NS, Vidal JS, Masaki K, Petrovitch H, Ross GW, Tilley C, et al. Midlife blood pressure, plasma β-amyloid, and the risk for Alzheimer disease: the Honolulu Asia Aging Study. Hypertension. 2012;59:780–6.

    Article  CAS  PubMed  Google Scholar 

  12. Jacobson AM, Musen G, Ryan CM, Silvers N, Cleary P, Waberski B, et al. Long-term effect of diabetes and its treatment on cognitive function. N Engl J Med. 2007;356:1842–52.

    Article  PubMed  Google Scholar 

  13. Cheng G, Huang C, Deng H, Wang H. Diabetes as a risk factor for dementia and mild cognitive impairment: a meta-analysis of longitudinal studies. Intern Med J. 2012;42:484–91.

    Article  CAS  PubMed  Google Scholar 

  14. Kivipelto M, Helkala EL, Laakso MP, Hanninen T, Hallikainen M, Alhainen K, et al. Apolipoprotein ε4 allele elevated midlife total cholesterol level, and high midlife systolic blood pressures are independent risk factors for late-life Alzheimer disease. Ann Intern Med. 2002;137:49.

    Google Scholar 

  15. • Reiss AB, Voloshyna I. Regulation of cerebral cholesterol metabolism in Alzheimer disease. J Investig Med. 2012;60:576–82. This article summarizes the current knowledge of the influence of cholesterol and lipid pathways in Alzheimer’s disease pathogenesis.

    CAS  PubMed  Google Scholar 

  16. Kuller LH, Lopezb OL, Newman A, Beauchamp NJ, Burke G, Dulberg C, et al. Risk factors for dementia in the cardiovascular health cognition study. Neuroepidemiology. 2003;22:13–22.

    Article  PubMed  Google Scholar 

  17. Kume K, Hanyu H, Sato T, Hirao K, Shimizu S, Kanetaka H, et al. Vascular risk factors are associated with faster decline of Alzheimer disease: a longitudinal SPECT study. J Neurol. 2011;258:1295–303.

    Article  PubMed  Google Scholar 

  18. McGuinness B, Todd S, Passmore P, Bullock R. Blood pressure lowering in patients without prior cerebrovascular disease for prevention of cognitive impairment and dementia. Cochrane Database Syst Rev. 2009;4:CD004034.

    PubMed  Google Scholar 

  19. Johnson ML, Parikh N, Kunik ME, Schulz PE, Patel JG, Chen H, et al. Antihypertensive drug use and the risk of dementia in patients with diabetes mellitus. Alzheimers Dement. doi:10.1016/j.jalz.2011.05.2414

  20. Ancelin ML, Carrière I, Barberger-Gateau P, Auriacombe S, Rouaud O, Fourlanos S, et al. Lipid lowering agents, cognitive decline, and dementia: The Three-City Study. J Alzheimers Dis. 2012;30:629–33.

    Google Scholar 

  21. Song Y, Stampfer MJ, Liu S. Meta-analysis: apolipoprotein E genotypes and risk for coronary heart disease. Ann Intern Med. 2004;141:137–47.

    PubMed  Google Scholar 

  22. Bennet AM, Di AE, Ye Z, Wensley F, Dahlin A, Ahlbam A, et al. Association of apolipoprotein E genotypes with lipid levels and coronary risk. JAMA. 2007;298:1300–11.

    Article  CAS  PubMed  Google Scholar 

  23. Elosua R, Ordovas JM, Cupples LA, Fox CS, Polak JF, Wolf PA, et al. Association of APOE genotype with carotid atherosclerosis in men and women: the Framingham Heart Study. J Lipid Res. 2004;45:1868–75.

    Article  CAS  PubMed  Google Scholar 

  24. Hofman A, Ott A, Breteler MM, Bots ML, Slooter AJ, van Harskamp, et al. Atherosclerosis, apolipoprotein E, and prevalence of dementia and Alzheimer’s disease in the Rotterdam Study. Lancet. 1997;349:151–4.

    Article  CAS  PubMed  Google Scholar 

  25. • Kwok CS, Loke YK, Hale R, Porter JF, Myint PK. Atrial fibrillation and incidence of dementia: a systematic review and meta-analysis. Neurology. 2011;76:914–22. A detailed review discussing the relationship and pathophysiology of atrial fibrillation and cognitive dysfunction.

    Article  CAS  PubMed  Google Scholar 

  26. Laurin D, Masaki KH, White LR, Launer LJ. Ankle-to-brachial index and dementia: the Honolulu-Asia Aging Study. Circulation. 2007;116:2269–74.

    Article  PubMed  Google Scholar 

  27. Newman AB, Fitzpatrick AL, Lopez O, Jackson S, Lyketsos C, Jagust W, et al. Dementia and Alzheimer's disease incidence in relationship to cardiovascular disease in the Cardiovascular Health Study cohort. J Am Geriatr Soc. 2005;53:1101–7.

    Article  PubMed  Google Scholar 

  28. Hong SW, Shim JK, Choi YS, Kim DH, Chang BC, Kwak YC. Prediction of cognitive dysfunction and patients' outcome following valvular heart surgery and the role of cerebral oximetry. Eur J Cardiothorac Surg. 2008;33:560–5.

    Article  PubMed  Google Scholar 

  29. Bucerius J, Gummert JF, Borger MA, Walther T, Doll N, Onnasch JF, et al. Stroke after cardiac surgery: a risk factor analysis of 16,184 consecutive adult patients. Ann Thorac Surg. 2003;75:472–8.

    Article  PubMed  Google Scholar 

  30. Knipp SC, Matatko N, Schlamann M, Wilhem H, Thielmann M, Forsting M, et al. Small ischemic brain lesions after cardiac valve replacement detected by diffusion-weighted magnetic resonance imaging: relation to neurocognitive function. Eur J Cardiothorac Surg. 2005;28:88–96.

    Article  PubMed  Google Scholar 

  31. Braekken SK, Reinvang I, Russell D, Brucher R, Svennevig JL. Association between intraoperative cerebral microembolic signals and postoperative neuropsychological deficit: comparison between patients with cardiac valve replacement and patients with coronary artery bypass grafting. J Neurol Neurosurg Psychiatry. 1998;65:573–6.

    Article  CAS  PubMed  Google Scholar 

  32. Guerrieri Wolf L, Choudhary BP, Abu-Omar Y, Taggart DP. Solid and gaseous cerebral microembolization after biologic and mechanical aortic valve replacement: investigation with multirange and multifrequency transcranial Doppler ultrasound. J Thorac Cardiovasc Surg. 2008;135:512–20.

    Article  PubMed  Google Scholar 

  33. • Kim IC, Hur SH, Park NH, Jun DH, Cho YK, Nam CW, et al. Incidence and predictors of silent embolic cerebral infarction following diagnostic coronary angiography. Int J Cardiol. 2011;148:179–82. An interesting study evaluating the incidence and predictors of silent cerebral infarcts following diagnostic coronary angiography.

    Article  PubMed  Google Scholar 

  34. Büsing KA, Schulte-Sasse C, Flüchter S, Suselbeck T, Haase KK, Neff W, et al. Cerebral infarction: incidence and risk factors after diagnostic and interventional cardiac catheterization--prospective evaluation at diffusion-weighted MR imaging. Radiology. 2005;235:177–83.

    Article  PubMed  Google Scholar 

  35. Omran H, Schmidt H, Hackenbroch M, Illien S, Bernhardt P, von der Recke G, et al. Silent and apparent cerebral embolism after retrograde catheterisation of the aortic valve in valvular stenosis: a prospective, randomized study. Lancet. 2003;361:1241–6.

    Article  PubMed  Google Scholar 

  36. Kahlert P, Knipp SC, Schlamann M, Thielmann M, Al-Rashid F, Weber M, et al. Silent and apparent cerebral ischemia after percutaneous transfemoral aortic valve implantation: a diffusion-weighted magnetic resonance imaging study. Circulation. 2010;12:1870–8.

    Google Scholar 

  37. Ghanem A, Müller A, Nähle CP, Kocurek J, Werner N, Hammerstingl C, et al. Risk and fate of cerebral embolism after transfemoral aortic valve implantation: a prospective pilot study with diffusion-weighted magnetic resonance imaging. J Am Coll Cardiol. 2010;55:1427–32.

    Article  PubMed  Google Scholar 

  38. Astarci P, Glineur D, Kefer J, D'Hoore W, Renkin J, Vanoverschelde JL, et al. Magnetic resonance imaging evaluation of cerebral embolization during percutaneous aortic valve implantation: comparison of transfemoral and trans-apical approaches using Edwards Sapiens valve. Eur J Cardiothorac Surg. 2011;40:475–9.

    PubMed  Google Scholar 

  39. Hamon M, Burzotta F, Oppenheim C, Morello R, Viader F, Hamon M. Silent cerebral infarct after cardiac catheterization as detected by diffusion weighted Magnetic Resonance Imaging: a randomized comparison of radial and femoral arterial approaches. Trials. 2007;8:15.

    Article  PubMed  Google Scholar 

  40. Caplan LR. Translating what is known about neurological complications of coronary artery bypass graft surgery into action. Arch Neurol. 2009;66:1062–4.

    Article  PubMed  Google Scholar 

  41. Likosky DS, Marrin CAS, Caplan LR, Baribeau YR, Morton JR, Weintraub RM, et al. Determination of etiologic mechanisms of strokes secondary to coronary artery bypass graft surgery. Stroke. 2003;34:2830–4.

    Article  PubMed  Google Scholar 

  42. Wityk RJ, Restrepo L. Cardiac surgery and magnetic resonance imaging of the brain. Arch Neurol. 2002;59:1074–6.

    Article  PubMed  Google Scholar 

  43. Moody DM, Bell MA, Challa VR, Johnston WE, Prough DS. Brain microemboli during cardiac surgery or aortography. Ann Neurol. 1990;28:477–86.

    Article  CAS  PubMed  Google Scholar 

  44. Brown WR, Moody DM, Challa VR, Stump DA, Hammon JW. Longer duration of cardiopulmonary bypass is associated with greater numbers of cerebral microemboli. Stroke. 2000;31:707–13.

    Article  CAS  PubMed  Google Scholar 

  45. Deklunder G, Roussel M, Lecroart J-L, Prat A, Gautier C. Microemboli in cerebral circulation and alteration of cognitive abilities in patients with mechanical prosthetic heart valves. Stroke. 1998;29:1821–6.

    Article  CAS  PubMed  Google Scholar 

  46. Bendszuz M, Reents W, Franke D, Mullges W, Babin-Ebell J, Koltzenburg M, et al. Brain damage after coronary artery bypass grafting. Arch Neurol. 2002;59:1090–5.

    Article  Google Scholar 

  47. McKhann GM, Grega MA, Borowicz LM, Baumgartner WA, Selnes OA. Stroke and encephalopathy after cardiac surgery: an update. Stroke. 2006;37:562–71.

    Article  PubMed  Google Scholar 

  48. Gottesman RF, Grega MA, Bailey MM, Pham LD, Zeger SL, Baumgartner WA, et al. Delirium after coronary artery bypass graft surgery and late mortality. Ann Neurol. 2010;67:338–44.

    CAS  PubMed  Google Scholar 

  49. Nathoe HM, van Dijk D, Jansen EW, Suyker WJ, Diephius JC, van Boven WJ, et al. A comparison of on-pump and off-pump coronary bypass surgery in low-risk patients. N Engl J Med. 2003;348:394–402.

    Article  PubMed  Google Scholar 

  50. Restrepo L, Wityk RJ, Grega MA, Borowicz L Jr, Barker PB, Jacobs MA, et al. Diffusion- and perfusion-weighted magnetic resonance imaging of the brain before and after coronary artery bypass grafting surgery. Stroke. 2002;33:2909–15.

    Article  PubMed  Google Scholar 

  51. Barber PA, Hach S, Tippett LJ, Ross L, Merry AF, Milsom P. Cerebral ischemic lesions on diffusion-weighted imaging are associated with neurocognitive decline after cardiac surgery. Stroke. 2008;39:1427–33.

    Article  CAS  PubMed  Google Scholar 

  52. Gottesman RF, Hillis AE, Grega M, Borowicz LM Jr, Selnes OA, Baumgartner WA, et al. Early postoperative cognitive dysfunction and blood pressure during coronary artery bypass graft operation. Arch Neurol. 2007;64:1111–4.

    Article  PubMed  Google Scholar 

  53. Koenig MA, Grega MA, Bailey MM, Pham LD, Zeger SL, Baumgartner WA, et al. Statin use and neurological morbidity after coronary artery bypass grafting. Neurology. 2009;73:2099–106.

    Article  CAS  PubMed  Google Scholar 

  54. Li Y, Walicki D, Mathiesen C, Jenny D, Li Q, Isayev Y, et al. Strokes after cardiac surgery and relationship to carotid stenosis. Arch Neurol. 2009;66:1091–6.

    Article  PubMed  Google Scholar 

  55. Cebelli M, Fidalgo AR, Terrando N, Ma D, Monaco C, Feldmann M, et al. Role of interleukin-1B in postoperative cognitive dysfunction. Ann Neurol. 2010;68:360–8.

    Article  Google Scholar 

  56. Rodriguez RA, Rubens FD, Wozny D, Nathan HJ. Cerebral embolic detected by transcranial Doppler during cardiopulmonary bypass are not correlated with postoperative cognitive deficits. Stroke. 2010;41:2229–35.

    Article  PubMed  Google Scholar 

  57. Selnes OA, Royall RM, Grega MA, Borowicz LM Jr, Quaskey S, Mc Khann GM. Cognitive changes 5 years after coronary artery bypass grafting. Is there evidence of late decline? Arch Neurol. 2001;58:598–604.

    Article  CAS  PubMed  Google Scholar 

  58. Newman MF, Grocott HP, Mathew JP, White WD, Landolfo K, Reves JG, et al. Report of the substudy assessing the impact of neurocognitive function on quality of life 5 years after cardiac surgery. Stroke. 2001;32:2874–81.

    Article  CAS  PubMed  Google Scholar 

  59. Newman MF, Kirchner JL, Phillips-Bute B, Gaver V, Grocott H, Jones RH, et al. Longitudinal assessment of neurocognitive function after coronary-artery bypass surgery. N Engl J Med. 2001;344:395–402.

    Article  CAS  PubMed  Google Scholar 

  60. Selnes OA, McKhann G. Late cognitive decline after CABG. Inevitable or preventable? Neurology. 2002;59:660–1.

    Article  PubMed  Google Scholar 

  61. Gorelick PB, Bowler JV. Advances in vascular cognitive impairment. Stroke. 2010;41:93–8.

    Article  Google Scholar 

  62. Selnes OA, Grega MA, Bailey MM, Pham LD, Zeger SL, Baumgartner WA, et al. Cognition 6 years after surgical or medical therapy for coronary artery disease. Ann Neurol. 2008;63:581–90.

    Article  PubMed  Google Scholar 

  63. Selnes OA, Grega MA, Bailey MM, Pham LD, Zeger SL, Baumgartner WA, et al. Do management strategies for coronary artery disease influence 6-year cognitive outcomes? Ann Thorac Surg. 2009;344:395–402.

    Google Scholar 

  64. Shroyer AL, Grover FL, Hattler B, Collins JF, McDonald GO, Kozora E, et al. On-pump vs off-pump coronary-artery bypass surgery. N Engl J Med. 2009;361:1827–37.

    Article  CAS  PubMed  Google Scholar 

  65. Van Dijk D, Spoor M, Hijman R, Nathoe HM, Borst C, Jansen EW, et al. Cognitive and cardiac outcomes 5 years after off-pump vs on-pump coronary artery bypass graft surgery. JAMA. 2007;297:701–8.

    Article  PubMed  Google Scholar 

  66. Sedrakyan A, Wu AW, Parashar A, Bass EB, Treasure T. Off-pump surgery is associated with reduced occurrence of stroke and other morbidity compared with traditional coronary artery bypass grafting. A meta-analysis of systemically reviewed trials. Stroke. 2006;37:2759–69.

    Article  PubMed  Google Scholar 

  67. Mathew JP, Grocott HP, Phillips-Bute B, Stafford-Smith M, Laskowitz DT, Rossignol D, et al. Lower endotoxin immunity predicts increased cognitive dysfunction in elderly patients after cardiac surgery. Stroke. 2003;34:508–13.

    Article  CAS  PubMed  Google Scholar 

  68. Mathew JP, Rinder HM, Smith BR, Newman MF, Rinder CS. Transcranial platelet activation after aortic cross-clamp release is linked to neurocognitive decline. Ann Thorac Surg. 2006;81:1644–9.

    Article  PubMed  Google Scholar 

  69. Grocott HP, White WD, Morris RW, Podgoreanu MV, Mathew JP, Nielsen DM, et al. Genetic polymorphisms and the risk of stroke after cardiac surgery. Stroke. 2005;36:1854–8.

    Article  CAS  PubMed  Google Scholar 

  70. Mathew JP, Mackensen GB, Phillips-Bute B, Grocott HP, Glower DD, Laskowitz DT, et al. Randomized, double-blinded, placebo controlled study of neuroprotection with lidocaine in cardiac surgery. Stroke. 2009;40:880–7.

    Article  CAS  PubMed  Google Scholar 

  71. Ti LK, Mathew JP, Mackensen GB, Grocott HP, White WD, Reves JG. Effect of apolipoprotein E genotype on cerebral autoregulation during cardiopulmonary bypass. Stroke. 2001;32:1514–9.

    Article  CAS  PubMed  Google Scholar 

  72. Knopman DS, Petersen RC, Cha RH, Edland SD, Rocca WA. Coronary artery bypass grafting is not a risk factor for dementia or Alzheimer disease. Neurology. 2005;65:986–90.

    Article  CAS  PubMed  Google Scholar 

  73. Potter GG, Plassman BL, Helms MJ, Steffens DC, Welsh-Bohmer KA. Age effects of coronary artery bypass graft on cognitive status change among elderly male twins. Neurology. 2004;63:2245–9.

    Article  CAS  PubMed  Google Scholar 

  74. •• Newman MF, Mathew JP, Grocott HP, Mackensen GB, Monk T, Welsh-Bohmer KA, et al. Central nervous system injury associated with cardiac surgery. Lancet. 2006;368:694–703. A literature review on the neurological complications following cardiac surgery including the incidence and causes of neurocognitive dysfunction.

    Article  PubMed  Google Scholar 

  75. Selnes OA, McKhann GM. Neurocognitive complications after coronary artery bypass surgery. Ann Neurol. 2005;57:615–21.

    Article  PubMed  Google Scholar 

  76. Jefferson AL, Himali JJ, Beiser AS, Au R, Massaro JM, Seshadri S, et al. Cardiac index is associated with brain aging: the Framingham Heart Study. Circulation. 2010;122:690–7.

    Article  PubMed  Google Scholar 

  77. Cacciatore F, Abete P, Ferrara N, Calabrese C, Napoli C, Maggi S, et al. Congestive heart failure and cognitive impairment in an older population. J Am Geriatr Soc. 1998;46:1343–8.

    CAS  PubMed  Google Scholar 

  78. Sauvé MJ, Lewis WR, Blankenbiller M, Rickabaugh B, Pressler SJ. Cognitive impairments in chronic heart failure: a case controlled study. J Card Fail. 2009;15:1–10.

    Article  PubMed  Google Scholar 

  79. Vogels RL, Scheltens P, Schroeder-Tank JM, Weinstein HC. Cognitive impairment in heart failure: a systematic review of the literature. Eur J Heart Fail. 2007;9:440–9.

    Article  PubMed  Google Scholar 

  80. Jefferson AL, Poppas A, Paul RH, Cohen RA. Systemic hypoperfusion is associated with executive dysfunction in geriatric cardiac patients. Neurobiol Aging. 2007;28:477–83.

    Article  PubMed  Google Scholar 

  81. Trojano L, Antonelli Incalzi R, Acanfora D, Picone C, Mecocci P, Rengo F. Cognitive impairment: a key feature of congestive heart failure in the elderly. J Neurol. 2003;250:1456–63.

    Article  PubMed  Google Scholar 

  82. Georgiadis E, Sievert M, Cencetti S, Uhlmann F, Krivokuca M, Zierz S, et al. Cerebrovascular reactivity is impaired in patients with cardiac failure. Eur Heart J. 2000;21:407–13.

    Article  CAS  PubMed  Google Scholar 

  83. Pullicino P, Mifsud V, Wong E, Graham S, Ali I, Smajlovic D. Hypoperfusion-related cerebral ischemia and cardiac left ventricular systolic dysfunction. J Stroke Cerebrovasc Dis. 2001;10:178–82.

    Article  CAS  PubMed  Google Scholar 

  84. Jefferson AL. Cardiac output as a potential risk factor for abnormal brain aging. Alzheimers Dis. 2010;20:813–21.

    Google Scholar 

  85. de la Torre JC. Pathophysiology of neuronal energy crisis in Alzheimer's disease. Neurodegener Dis. 2008;5:126–32.

    Article  PubMed  Google Scholar 

  86. Gruhn N, Larsen FS, Boesgaard S, Knudsen GM, Mortensen SA, Thomsen G, et al. Cerebral blood flow in patients with chronic heart failure before and after heart transplantation. Stroke. 2001;32:2530–3.

    Article  CAS  PubMed  Google Scholar 

  87. Koide H, Kobayashi S, Kitani M, Tsunematsu T, Nakazawa Y. Improvement of cerebral blood flow and cognitive function following pacemaker implantation in patients with bradycardia. Gerontology. 1994;40:279–85.

    Article  CAS  PubMed  Google Scholar 

  88. Conti JB, Sears SF. Cardiac resynchronization therapy: can we make our heart failure patients smarter? Trans Am Clin Climatol Assoc. 2007;118:153–64.

    PubMed  Google Scholar 

  89. Pullicino PM, Wadley VG, McClure LA, Safford MM, Lazar RM, Klapholz M, et al. Factors contributing to global cognitive impairment in heart failure: results from a population based cohort. J Card Fail. 2008;14:290–5.

    Article  PubMed  Google Scholar 

  90. Zuccala G, Onder G, Marzetti E, Monaco MR, Cesari M, Cocchi A, et al. Use of angiotensin-converting enzyme inhibitors and variations in cognitive performance among patients with heart failure. Eur Heart J. 2005;26:226–33.

    Article  CAS  PubMed  Google Scholar 

  91. Ott A, Breteler MM, de Bruyne MC, van Harskamp F, Grobbee DE, Hofman A. Atrial fibrillation and dementia in a population-based study. The Rotterdam Study. Stroke. 1997;28:316–21.

    Article  CAS  PubMed  Google Scholar 

  92. Dublin S, Anderson ML, Haneuse SJ, Heckbert SR, Crane PK, Breitner JC, et al. Atrial fibrillation and risk of dementia: a prospective cohort study. J Am Geriatr Soc. 2011;59:1369–75.

    Article  PubMed  Google Scholar 

  93. Marzona I, O'Donnell M, Teo K, Gao P, Anderson C, Bosch J, et al. Increased risk of cognitive and functional decline in patients with atrial fibrillation: results of the ONTARGET and TRANSCEND studies. CMAJ. 2012;184:329–36.

    Article  Google Scholar 

  94. Bunch TJ, Weiss JP, Crandall BG, May HT, Bair TL, Osborn JS, et al. Atrial fibrillation is independently associated with senile, vascular, and Alzheimer's dementia. Hear Rhythm. 2010;7:433–7.

    Article  Google Scholar 

  95. Knecht S, Oelschläger C, Duning T, Lohmann H, Albers J, Stehling C, et al. Atrial fibrillation in stroke-free patients is associated with memory impairment and hippocampal atrophy. Eur Heart J. 2008;29:2125–32.

    Article  PubMed  Google Scholar 

  96. Kilander, Andren B, Nyman H, Lind L, Boberg M, Lithell H. Atrial fibrillation is an independent determinant of low cognitive function: a cross-sectional study in elderly men. Stroke. 1998;29:1816–20.

    Article  CAS  PubMed  Google Scholar 

  97. Efimova I, Efimova N, Chernov V, Popov S, Lishmanov Y. Ablation and pacing: improving brain perfusion and cognitive function in patients with atrial fibrillation and uncontrolled ventricular rates. Pacing Clin Electrophysiol. 2012;35:320–6.

    Article  PubMed  Google Scholar 

  98. Bunch TJ, Crandall BG, Weiss JP, May HT, Bair TL, Osborn JS, et al. Patients treated with catheter ablation for atrial fibrillation have long-term rates of death, stroke, and dementia similar to patients without atrial fibrillation. J Cardiovasc Electrophysiol. 2011;22:839–45.

    Article  PubMed  Google Scholar 

  99. Flaker GC, Pogue J, Yusuf S, Pfeffer MA, Goldhaber SZ, Granger CB, et al. Atrial Fibrillation Clopidogrel Trial with Irbesartan for Prevention of Vascular Events (ACTIVE) Investigators. Cognitive function and anticoagulation control in patients with atrial fibrillation. Circ Cardiovasc Qual Outcomes. 2010;3:277–83.

    Article  PubMed  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hurmina Muqtadar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muqtadar, H., Testai, F.D. & Gorelick, P.B. The Dementia of Cardiac Disease. Curr Cardiol Rep 14, 732–740 (2012). https://doi.org/10.1007/s11886-012-0304-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-012-0304-8

Keywords

Navigation