Skip to main content

Advertisement

Log in

How Do I Treat Inflammatory Breast Cancer?

  • Breast Cancer (CI Falkson, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

Inflammatory breast cancer (IBC) is an uncommon and aggressive presentation of locally advanced breast cancer that is potentially curable when localized but may be associated with distant metastasis in up to one-third of patients at presentation. The diagnosis of IBC is made based on clinical features, including the presence of skin edema and erythema involving at least one-third of the breast, with or without a mass, and usually associated with dermal lymphatic invasion (DLI) on skin biopsy. Management requires combined modality therapy, including neoadjuvant chemotherapy with an anthracycline and taxane-based regimen, followed by surgery and radiotherapy, plus concurrent anti-HER2 therapy for HER2-positive disease, and endocrine therapy for at least 5 years after surgery for estrogen-receptor–positive disease (Fig. 1). There have been few large clinical trials focused on IBC; therefore, most data regarding treatment are derived from retrospective analyses, small studies, and extrapolation of results from trials of noninflammatory locally advanced breast cancer. Patients with IBC should be encouraged to enroll in clinical trials whenever possible. In addition, further research into the biology of IBC may help to elucidate the mechanisms underlying its aggressive clinical behavior and to assist in the development of therapies targeted for this specific population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Hance KW, Anderson WF, Devesa SS, et al. Trends in inflammatory breast carcinoma incidence and survival: the surveillance, epidemiology, and end results program at the National Cancer Institute. J Natl Cancer Inst. 2005;97(13):966–75.

    Article  PubMed  Google Scholar 

  2. Bonnier P, Charpin C, Lejeune C, et al. Inflammatory carcinomas of the breast: a clinical, pathological, or a clinical and pathological definition? Int J Cancer. 1995;62(4):382–5.

    Article  PubMed  CAS  Google Scholar 

  3. Zell JA, Tsang WY, Taylor TH, et al. Prognostic impact of human epidermal growth factor-like receptor 2 and hormone receptor status in inflammatory breast cancer (IBC): analysis of 2,014 IBC patient cases from the California Cancer Registry. Breast Cancer Res. 2009;11(1):R9.

    Article  PubMed  Google Scholar 

  4. Li J, Gonzalez-Angulo AM, Allen PK, et al. Triple-negative subtype predicts poor overall survival and high locoregional relapse in inflammatory breast cancer. Oncologist. 2011;16(12):1675–83.

    Article  PubMed  CAS  Google Scholar 

  5. Bertucci F, Finetti P, Birnbaum D, et al. Gene expression profiling of inflammatory breast cancer. Cancer. 2010;116(11 Suppl):2783–93.

    Article  PubMed  CAS  Google Scholar 

  6. Bertucci F, Finetti P, Rougemont J, et al. Gene expression profiling identifies molecular subtypes of inflammatory breast cancer. Cancer Res. 2005;65(6):2170–8.

    Article  PubMed  CAS  Google Scholar 

  7. Van Laere SJ, Van den Eynden GG, Van der Auwera I, et al. Identification of cell-of-origin breast tumor subtypes in inflammatory breast cancer by gene expression profiling. Breast Cancer Res Treat. 2006;95(3):243–55.

    Article  PubMed  CAS  Google Scholar 

  8. Edge SB, American Joint Committee on Cancer. AJCC cancer staging manual, vol. xiv. 7th ed. New York: Springer; 2010. p. 648.

    Google Scholar 

  9. Dawood S, Ueno NT, Valero V, et al. Differences in survival among women with stage III inflammatory and noninflammatory locally advanced breast cancer appear early: a large population-based study. Cancer. 2011;117(9):1819–26. This population-based study demonstrates that, despite advances in multimodality therapy, women with IBC still have significantly poorer survival than women with non-inflammatory LABC..

    Article  PubMed  Google Scholar 

  10. Houchens NW, Merajver SD. Molecular determinants of the inflammatory breast cancer phenotype. Oncology (Williston Park). 2008;22(14):1556–61. discussion 61, 65–8, 76.

    Google Scholar 

  11. Dawood S. Biology and management of inflammatory breast cancer. Expert Rev Anticancer Ther. 2010;10(2):209–20.

    Article  PubMed  CAS  Google Scholar 

  12. Turpin E, Bieche I, Bertheau P, et al. Increased incidence of ERBB2 overexpression and TP53 mutation in inflammatory breast cancer. Oncogene. 2002;21(49):7593–7.

    Article  PubMed  CAS  Google Scholar 

  13. Gonzalez-Angulo AM, Sneige N, Buzdar AU, et al. p53 expression as a prognostic marker in inflammatory breast cancer. Clin Cancer Res. 2004;10(18 Pt 1):6215–21.

    Article  PubMed  CAS  Google Scholar 

  14. Sawaki M, Ito Y, Akiyama F, et al. High prevalence of HER-2/neu and p53 overexpression in inflammatory breast cancer. Breast Cancer. 2006;13(2):172–8.

    Article  PubMed  Google Scholar 

  15. Colpaert CG, Vermeulen PB, Benoy I, et al. Inflammatory breast cancer shows angiogenesis with high endothelial proliferation rate and strong E-cadherin expression. Br J Cancer. 2003;88(5):718–25.

    Article  PubMed  CAS  Google Scholar 

  16. Van der Auwera I, Van Laere SJ, Van den Eynden GG, et al. Increased angiogenesis and lymphangiogenesis in inflammatory versus noninflammatory breast cancer by real-time reverse transcriptase-PCR gene expression quantification. Clin Cancer Res. 2004;10(23):7965–71.

    Article  PubMed  Google Scholar 

  17. Vermeulen PB, van Golen KL, Dirix LY. Angiogenesis, lymphangiogenesis, growth pattern, and tumor emboli in inflammatory breast cancer: a review of the current knowledge. Cancer. 2010;116(11 Suppl):2748–54.

    Article  PubMed  CAS  Google Scholar 

  18. Levine PH, Portera CC, Hoffman HJ, et al. Evaluation of lymphangiogenic factors, vascular endothelial growth factor d and e-cadherin in distinguishing inflammatory from locally advanced breast cancer. Clin Breast Cancer. 2012;12(4):232–9.

    Article  PubMed  CAS  Google Scholar 

  19. Gupta A, Deshpande CG, Badve S. Role of E-cadherins in development of lymphatic tumor emboli. Cancer. 2003;97(9):2341–7.

    Article  PubMed  Google Scholar 

  20. van Golen KL, Davies S, Wu ZF, et al. A novel putative low-affinity insulin-like growth factor-binding protein, LIBC (lost in inflammatory breast cancer), and RhoC GTPase correlate with the inflammatory breast cancer phenotype. Clin Cancer Res. 1999;5(9):2511–9.

    PubMed  Google Scholar 

  21. van Golen KL, Wu ZF, Qiao XT, et al. RhoC GTPase, a novel transforming oncogene for human mammary epithelial cells that partially recapitulates the inflammatory breast cancer phenotype. Cancer Res. 2000;60(20):5832–8.

    PubMed  Google Scholar 

  22. Kleer CG, Zhang Y, Pan Q, et al. WISP3 is a novel tumor suppressor gene of inflammatory breast cancer. Oncogene. 2002;21(20):3172–80.

    Article  PubMed  CAS  Google Scholar 

  23. Kleer CG, Zhang Y, Pan Q, et al. WISP3 and RhoC guanosine triphosphatase cooperate in the development of inflammatory breast cancer. Breast Cancer Res. 2004;6(1):R110–5.

    Article  Google Scholar 

  24. Marrakchi R, Khadimallah I, Ouerhani S, et al. Expression of WISP3 and RhoC genes at mRNA and protein levels in inflammatory and noninflammatory breast cancer in Tunisian patients. Cancer Invest. 2010;28(4):399–407.

    PubMed  CAS  Google Scholar 

  25. Yamauchi H, Woodward WA, Valero V, et al. Inflammatory breast cancer: what we know and what we need to learn. Oncologist. 2012;17(7):891–9.

    Article  PubMed  Google Scholar 

  26. Perez CA, Fields JN, Fracasso PM, et al. Management of locally advanced carcinoma of the breast. II. Inflammatory carcinoma. Cancer. 1994;74(1 Suppl):466–76.

    Article  PubMed  CAS  Google Scholar 

  27. Ueno NT, Buzdar AU, Singletary SE, et al. Combined-modality treatment of inflammatory breast carcinoma: twenty years of experience at M. D. Anderson Cancer Center. Cancer Chemother Pharmacol. 1997;40(4):321–9.

    Article  PubMed  CAS  Google Scholar 

  28. Carlson RW, Allred DC, Anderson BO, et al. Invasive breast cancer. J Natl Compr Cancer Netw. 2011;9(2):136–222.

    CAS  Google Scholar 

  29. Cristofanilli M, Gonzalez-Angulo AM, Buzdar AU, et al. Paclitaxel improves the prognosis in estrogen receptor negative inflammatory breast cancer: the M. D. Anderson Cancer Center experience. Clin Breast Cancer. 2004;4(6):415–9.

    Article  PubMed  CAS  Google Scholar 

  30. Hennessy BT, Gonzalez-Angulo AM, Hortobagyi GN, et al. Disease-free and overall survival after pathologic complete disease remission of cytologically proven inflammatory breast carcinoma axillary lymph node metastases after primary systemic chemotherapy. Cancer. 2006;106(5):1000–6.

    Article  PubMed  Google Scholar 

  31. Sutherland S, Ashley S, Walsh G, et al. Inflammatory breast cancer–The Royal Marsden Hospital experience: a review of 155 patients treated from 1990 to 2007. Cancer. 2010;116(11 Suppl):2815–20.

    Article  PubMed  Google Scholar 

  32. Alvarez R, Bianchini G, Hsu L, et al. Abstract P5-10-02: Clinical Outcome of Two Sequences of Administering Paclitaxel (P) and Anthracyclines (A) as Primary Systemic Therapy (PST) and Adjuvant Chemotherapy (ACT) in Breast Cancer (BC) Patients: A Retrospective Analysis from the M. D. Anderson Cancer Center (MDACC). Cancer Res. 2011;70(24 Supplement):P5-10-02.

    Article  Google Scholar 

  33. Grant DS, Williams TL, Zahaczewsky M, et al. Comparison of antiangiogenic activities using paclitaxel (taxol) and docetaxel (taxotere). Int J Cancer. 2003;104(1):121–9.

    Article  PubMed  CAS  Google Scholar 

  34. Taghian AG, Abi-Raad R, Assaad SI, et al. Paclitaxel decreases the interstitial fluid pressure and improves oxygenation in breast cancers in patients treated with neoadjuvant chemotherapy: clinical implications. J Clin Oncol. 2005;23(9):1951–61.

    Article  PubMed  CAS  Google Scholar 

  35. Woodward WA, Debeb BG, Xu W, et al. Overcoming radiation resistance in inflammatory breast cancer. Cancer. 2010;116(11 Suppl):2840–5.

    Article  PubMed  Google Scholar 

  36. Hurley J, Doliny P, Reis I, et al. Docetaxel, cisplatin, and trastuzumab as primary systemic therapy for human epidermal growth factor receptor 2-positive locally advanced breast cancer. J Clin Oncol. 2006;24(12):1831–8.

    Article  PubMed  CAS  Google Scholar 

  37. Van Pelt AE, Mohsin S, Elledge RM, et al. Neoadjuvant trastuzumab and docetaxel in breast cancer: preliminary results. Clin Breast Cancer. 2003;4(5):348–53.

    Article  PubMed  Google Scholar 

  38. Limentani SA, Brufsky AM, Erban JK, et al. Phase II study of neoadjuvant docetaxel, vinorelbine, and trastuzumab followed by surgery and adjuvant doxorubicin plus cyclophosphamide in women with human epidermal growth factor receptor 2-overexpressing locally advanced breast cancer. J Clin Oncol. 2007;25(10):1232–8.

    Article  PubMed  CAS  Google Scholar 

  39. Burstein HJ, Harris LN, Gelman R, et al. Preoperative therapy with trastuzumab and paclitaxel followed by sequential adjuvant doxorubicin/cyclophosphamide for HER2 overexpressing stage II or III breast cancer: a pilot study. J Clin Oncol. 2003;21(1):46–53.

    Article  PubMed  CAS  Google Scholar 

  40. Gianni L, Eiermann W, Semiglazov V, et al. Neoadjuvant chemotherapy with trastuzumab followed by adjuvant trastuzumab versus neoadjuvant chemotherapy alone, in patients with HER2-positive locally advanced breast cancer (the NOAH trial): a randomised controlled superiority trial with a parallel HER2-negative cohort. Lancet. 2010;375(9712):377–84. This international randomized trial, which included women with both IBC and non-inflammatory LABC, demonstrates the benefit of addition of neoadjuvant and adjuvant trastuzumab in improving pathologic complete response rate and event free survival in women with HER2/neu-positive disease..

    Article  PubMed  CAS  Google Scholar 

  41. Cristofanilli M. Novel targeted therapies in inflammatory breast cancer. Cancer. 2010;116(11 Suppl):2837–9.

    Article  PubMed  CAS  Google Scholar 

  42. Cristofanilli M, Boussen H, Baselga J, et al. A phase II combination study of lapatinib and paclitaxel as a neoadjuvant therapy in patients with newly diagnosed inflammatory breast cancer (IBC). Breast Cancer Res Treat. 2006;100(Supplement 1):S5.

    Google Scholar 

  43. Dawood S, Merajver SD, Viens P, et al. International expert panel on inflammatory breast cancer: consensus statement for standardized diagnosis and treatment. Ann Oncol. 2011;22(3):515–23. This paper summarizes guidelines established by an international panel of experts regarding diagnosis and management of IBC..

    Article  PubMed  CAS  Google Scholar 

  44. Johnston S, Trudeau M, Kaufman B, et al. Phase II study of predictive biomarker profiles for response targeting human epidermal growth factor receptor 2 (HER-2) in advanced inflammatory breast cancer with lapatinib monotherapy. J Clin Oncol. 2008;26(7):1066–72.

    Article  PubMed  CAS  Google Scholar 

  45. Fleming RY, Asmar L, Buzdar AU, et al. Effectiveness of mastectomy by response to induction chemotherapy for control in inflammatory breast carcinoma. Ann Surg Oncol. 1997;4(6):452–61.

    Article  PubMed  CAS  Google Scholar 

  46. Panades M, Olivotto IA, Speers CH, et al. Evolving treatment strategies for inflammatory breast cancer: a population-based survival analysis. J Clin Oncol. 2005;23(9):1941–50.

    Article  PubMed  Google Scholar 

  47. Yang R, Cheung MC, Hurley J, et al. A comprehensive evaluation of outcomes for inflammatory breast cancer. Breast Cancer Res Treat. 2009;117(3):631–41.

    Article  PubMed  Google Scholar 

  48. Singletary SE. Surgical management of inflammatory breast cancer. Semin Oncol. 2008;35(1):72–7.

    Article  PubMed  Google Scholar 

  49. Bristol IJ, Woodward WA, Strom EA, et al. Locoregional treatment outcomes after multimodality management of inflammatory breast cancer. Int J Radiat Oncol Biol Phys. 2008;72(2):474–84.

    Article  PubMed  Google Scholar 

  50. Stearns V, Ewing CA, Slack R, et al. Sentinel lymphadenectomy after neoadjuvant chemotherapy for breast cancer may reliably represent the axilla except for inflammatory breast cancer. Ann Surg Oncol. 2002;9(3):235–42.

    Article  PubMed  Google Scholar 

  51. Chin PL, Andersen JS, Somlo G, et al. Esthetic reconstruction after mastectomy for inflammatory breast cancer: is it worthwhile? J Am Coll Surg. 2000;190(3):304–9.

    Article  PubMed  CAS  Google Scholar 

  52. Rehman S, Reddy CA, Tendulkar RD. Modern Outcomes of Inflammatory Breast Cancer. Int J Radiat Oncol Biol Phys. 2012.

  53. Gianni L, Pienkowski T, Im YH, et al. Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (NeoSphere): a randomised multicentre, open-label, phase 2 trial. Lancet Oncol. 2012;13(1):25–32. This multicenter open label Phase II study demonstrates that double HER-2 blockade with pertuzumab plus trastuzumab improves pathologic complete response rate compared to trastuzumab alone in women with HER2-positive operable, locally advanced and inflammatory breast cancer..

    Article  PubMed  CAS  Google Scholar 

  54. Overmoyer B, Fu P, Hoppel C, et al. Inflammatory breast cancer as a model disease to study tumor angiogenesis: results of a phase IB trial of combination SU5416 and doxorubicin. Clin Cancer Res. 2007;13(19):5862–8.

    Article  PubMed  CAS  Google Scholar 

  55. Wedam SB, Low JA, Yang SX, et al. Antiangiogenic and antitumor effects of bevacizumab in patients with inflammatory and locally advanced breast cancer. J Clin Oncol. 2006;24(5):769–77.

    Article  PubMed  CAS  Google Scholar 

  56. Baar J, Silverman P, Lyons J, et al. A vasculature-targeting regimen of preoperative docetaxel with or without bevacizumab for locally advanced breast cancer: impact on angiogenic biomarkers. Clin Cancer Res. 2009;15(10):3583–90.

    Article  PubMed  CAS  Google Scholar 

  57. Yamauchi H, Ueno NT. Targeted therapy in inflammatory breast cancer. Cancer. 2010;116(11 Suppl):2758–9.

    Article  PubMed  Google Scholar 

  58. Zhang D, LaFortune TA, Krishnamurthy S, et al. Epidermal growth factor receptor tyrosine kinase inhibitor reverses mesenchymal to epithelial phenotype and inhibits metastasis in inflammatory breast cancer. Clin Cancer Res. 2009;15(21):6639–48.

    Article  PubMed  CAS  Google Scholar 

  59. van Golen KL, Bao L, DiVito MM, et al. Reversion of RhoC GTPase-induced inflammatory breast cancer phenotype by treatment with a farnesyl transferase inhibitor. Mol Cancer Ther. 2002;1(8):575–83.

    PubMed  Google Scholar 

  60. Chatterjee M, van Golen KL. Farnesyl transferase inhibitor treatment of breast cancer cells leads to altered RhoA and RhoC GTPase activity and induces a dormant phenotype. Int J Cancer. 2011;129(1):61–9.

    Article  PubMed  CAS  Google Scholar 

  61. Robertson FM, Woodward WA, Pickei R, et al. Suberoylanilide hydroxamic acid blocks self-renewal and homotypic aggregation of inflammatory breast cancer spheroids. Cancer. 2010;116(11 Suppl):2760–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosures

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph A. Sparano MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makower, D., Sparano, J.A. How Do I Treat Inflammatory Breast Cancer?. Curr. Treat. Options in Oncol. 14, 66–74 (2013). https://doi.org/10.1007/s11864-012-0214-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11864-012-0214-4

Keywords

Navigation