Skip to main content
Log in

Inhibition in dot comparison tasks

  • Original Article
  • Published:
ZDM Aims and scope Submit manuscript

Abstract

Dot comparison tasks are commonly used to index an individual’s Approximate Number System (ANS) acuity, but the cognitive processes involved in completing these tasks are poorly understood. Here, we investigated how factors including numerosity ratio, set size and visual cues influence task performance. Forty-four children aged 7–9 years completed a dot comparison task with a range of to-be-compared numerosities. We found that as the size of the numerosities increased, with ratios held constant, accuracy decreased due to the heightened salience of incongruent visual information. Furthermore, in trials with larger numerosities participants’ accuracies were influenced more by the convex hull of the array than the average dot size. The numerosity ratio between the arrays in each trial was an important predictor for all set sizes. We argue that these findings are consistent with a ‘competing processes’ inhibition-based account, where accuracy scores are influenced by individual differences in both ANS acuity and inhibitory control skills.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The same pattern of results were found when these participants were included. However, because we were not certain that these participants understood the task instructions we chose to exclude them.

References

  • Banks, J., & Oldfield, Z. (2007). Understanding pensions: Cognitive function, numerical ability and retirement saving. Fiscal Studies, 28(2), 143–170.

    Google Scholar 

  • Barbaresi, W. J., Katusic, S. K., Colligan, R. C., Weaver, A. L., & Jacobsen, S. J. (2005). Math learning disorder: Incidence in a population-based birth cohort, 1976–82, Rochester, Minn. Ambulatory Pediatrics, 5(5), 281–289.

    Google Scholar 

  • Baroody, A. J. (2003). The development of adaptive expertise and flexibility: The integration of conceptual and procedural knowledge. In A. J. Baroody & A. Dowker (Eds.), The development of arithmetic concepts and skills: Constructing adaptive expertise studies (pp. 1–33). Mahwah: Lawrence Erlbaum Associates Inc.

    Google Scholar 

  • Barth, H., Beckmann, L., & Spelke, E. S. (2008). Nonsymbolic, approximate arithmetic in children: Abstract addition prior to instruction. Developmental Psychology, 44(5), 1466–1477.

    Google Scholar 

  • Barth, H., Kanwisher, N., & Spelke, E. S. (2002). The construction of large number representations in adults. Cognition, 86, 201–221.

    Google Scholar 

  • Barth, H., La Mont, K., Lipton, J., Dehaene, S., Kanwisher, N., & Spelke, E. (2006). Nonsymbolic arithmetic in adults and young children. Cognition, 98, 199–222.

    Google Scholar 

  • Barth, H., La Mont, K., Lipton, J., & Spelke, E. S. (2005). Abstract number and arithmetic in preschool children. Proceedings of the National Academy of Sciences of the United States of America, 102, 14116–14121.

    Google Scholar 

  • Blair, C., & Razza, R. P. (2007). Relating effortful control, executive function, and false belief understanding to emerging math and literacy ability in kindergarten. Child Development, 78(2), 647–663.

    Google Scholar 

  • Bull, R., Espy, K. A., & Wiebe, S. A. (2008). Short-term memory, working memory, and executive functioning in preschoolers: Longitudinal predictors of mathematical achievement at age 7 years. Developmental Neuropsychology, 33(3), 205–228.

    Google Scholar 

  • Bull, R., & Scerif, G. (2001). Executive functioning as a predictor of children’s mathematics ability: Inhibition, switching and working memory. Developmental Neuropsychology, 19(3), 273–293.

    Google Scholar 

  • Cappelletti, M., Didino, D., Stoianov, I., & Zorzi, M. (2014). Number skills are maintained in healthy ageing. Cognitive Psychology, 69, 25–45.

    Google Scholar 

  • Chen, Q., & Li, J. (2014). Association between individual differences in non-symbolic number acuity and math performance: A meta-analysis. Acta Psychologica, 148, 163–172.

    Google Scholar 

  • De Smedt, B., Noël, M.-P., Gilmore, C., & Ansari, D. (2013). How do symbolic and non-symbolic numerical magnitude processing skills relate to individual differences in children’s mathematical skills? A review of evidence from brain and behavior. Trends in Neuroscience and Education, 2, 48–55.

    Google Scholar 

  • Dehaene, S. (1997). The number sense. Oxford: Oxford University Press.

    Google Scholar 

  • Dempster, F. N. (1992). The rise and fall of the inhibitory mechanism: Toward a unified theory of cognitive development and aging. Developmental Review, 12(1), 45–75.

    Google Scholar 

  • DeWind, N. K., & Brannon, E. M. (2012). Malleability of the approximate number system: Effects of feedback and training. Frontiers in Human Neuroscience, 6(68), 1–10.

    Google Scholar 

  • Emmerton, J. (1998). Numerosity differences and effects of stimulus density on pigeons’ discrimination performance. Animal Learning & Behavior, 26(3), 243–256.

    Google Scholar 

  • Espy, K. A., McDiarmid, M. M., Cwik, M. F., Stalets, M. M., Hamby, A., & Senn, T. E. (2004). The contribution of executive functions to emergent mathematic skills in preschool children. Developmental Neuropsychology, 26(1), 465–486.

    Google Scholar 

  • Feigenson, L., Libertus, M. E., & Halberda, J. (2013). Links Between the Intuitive Sense of Number and Formal Mathematics Ability. Child Development Perspectives, 7(2), 74–79.

    Google Scholar 

  • Friso-van den Bos, I., van der Ven, S. H. G., Kroesbergen, E. H., & van Luit, J. E. H. (2013). Working memory and mathematics in primary school children: A meta-analysis. Educational Research Review, 10, 29–44.

    Google Scholar 

  • Fuhs, M. W., & McNeil, N. M. (2013). ANS acuity and mathematics ability in preschoolers from low-income homes: contributions of inhibitory control. Developmental Science, 16, 136–148.

    Google Scholar 

  • Gebuis, T., & Gevers, W. (2011). Numerosities and space; indeed a cognitive illusion! A reply to de Hevia and Spelke (2009). Cognition, 121(2), 248–252.

    Google Scholar 

  • Gebuis, T., Kadosh, R. C., de Haan, E., & Henik, A. (2009). Automatic quantity processing in 5-year olds and adults. Cognitive Processing, 10(2), 133–142.

    Google Scholar 

  • Gebuis, T., & Reynvoet, B. (2011). Generating nonsymbolic number stimuli. Behavior Research Methods, 43, 981–986.

    Google Scholar 

  • Gebuis, T., & Reynvoet, B. (2012a). The interplay between nonsymbolic number and its continuous visual properties. Journal of Experimental Psychology: General, 141(4), 642–648.

    Google Scholar 

  • Gebuis, T., & Reynvoet, B. (2012b). The role of visual information in numerosity estimation. PLoS ONE, 7(5), e37426.

    Google Scholar 

  • Gebuis, T., & van der Smagt, M. J. (2011). False approximations of the approximate number system. PLoS ONE, 6(10), e25405.

    Google Scholar 

  • Gerardi, K., Goette, L., & Meier, S. (2013). Numerical ability predicts mortgage default. Proceedings of the National Academy of Sciences, 110(28), 11267–11271.

    Google Scholar 

  • Gifford, S., & Rockliffe, F. (2012). Mathematics difficulties: Does one approach fit all? Research in Mathematics Education, 14(1), 1–15.

    Google Scholar 

  • Gilmore, C., Attridge, N., Clayton, S., Cragg, L., Johnson, S., Marlow, N., & Inglis, M. (2013). Individual differences in inhibitory control, not non-verbal number acuity, correlate with mathematics achievement. PLoS ONE, 8(6), e67374.

    Google Scholar 

  • Halberda, J., Ly, R., Wilmer, J. B., Naiman, D. Q., & Germine, L. (2012). Number sense across the lifespan as revealed by a massive Internet-based sample. Proceedings of the National Academy of Sciences, 109(28), 11116–11120.

    Google Scholar 

  • Halberda, J., Mazzocco, M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455(7213), 665–668.

    Google Scholar 

  • Hauser, M. D., Tsao, F., Garcia, P., & Spelke, E. S. (2003). Evolutionary foundations of number: Spontaneous representation of numerical magnitudes by cotton—top tamarins. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1523), 1441–1446.

    Google Scholar 

  • Holloway, I. D., & Ansari, D. (2009). Mapping numerical magnitudes onto symbols: The numerical distance effect and individual differences in children’s mathematics achievement. Journal of Experimental Child Psychology, 103(1), 17–29.

    Google Scholar 

  • Hurewitz, F., Gelman, R., & Schnitzer, B. (2006). Sometimes area counts more than number. Proceedings of the National Academy of Sciences, 103(51), 19599–19604.

    Google Scholar 

  • Hyde, D. C., Khanum, S., & Spelke, E. S. (2014). Brief non-symbolic, approximate number practice enhances subsequent exact symbolic arithmetic in children. Cognition, 131(1), 92–107.

    Google Scholar 

  • Inglis, M., Attridge, N., Batchelor, S., & Gilmore, C. (2011). Non-verbal number acuity correlates with symbolic mathematics achievement: But only in children. Psychonomic Bulletin & Review, 18(6), 1222–1229.

    Google Scholar 

  • Inglis, M., & Gilmore, C. (2013). Sampling from the mental number line: How are Approximate Number System representations formed? Cognition, 129, 63–69.

    Google Scholar 

  • Inglis, M., & Gilmore, C. (2014). Indexing the Approximate Number System. Acta Psychologica, 145, 147–155.

    Google Scholar 

  • Jordan, N. C., Hanich, L. B., & Kaplan, D. (2003). A longitudinal study of mathematical competencies in children with specific mathematics difficulties versus children with comorbid mathematics and reading difficulties. Child Development, 74(3), 834–850.

    Google Scholar 

  • LeFevre, J. A., Fast, L., Skwarchuk, S. L., Smith Chant, B. L., Bisanz, J., Kamawar, D., & Penner Wilger, M. (2010). Pathways to mathematics: Longitudinal predictors of performance. Child Development, 81(6), 1753–1767.

    Google Scholar 

  • Libertus, M. E., Feigenson, L., & Halberda, J. (2011). Preschool acuity of the approximate number system correlates with school math ability. Developmental Science, 14, 1292–1300.

    Google Scholar 

  • Libertus, M. E., Odic, D., & Halberda, J. (2012). Intuitive sense of number correlates with math scores on college-entrance examination. Acta Psychologica, 141(3), 373–379.

    Google Scholar 

  • MacLeod, C. M. (1991). Half a century of research on the Stroop effect: An integrative review. Psychological Bulletin, 109(2), 163–203.

    Google Scholar 

  • Mazzocco, M. M. M., Feigenson, L., & Halberda, J. (2011). Preschoolers’ precision of the approximate number system predicts later school mathematics performance. PLoS ONE, 6(9), e23749.

    Google Scholar 

  • Nigg, J. T. (2000). On inhibition/disinhibition in developmental psychopathology: Views from cognitive and personality psychology and a working inhibition taxonomy. Psychological Bulletin, 126(2), 220.

    Google Scholar 

  • Nys, J., & Content, A. (2012). Judgement of discrete and continuous quantity in adults: Number counts! The Quarterly Journal of Experimental Psychology, 65(4), 675–690.

    Google Scholar 

  • Odic, D., Hock, H., & Halberda, J. (2013a). Hysteresis affects number discrimination in young children. Journal of Experimental Psychology: General, 143(1), 255–265.

    Google Scholar 

  • Odic, D., Libertus, M., Feigenson, L., & Halberda, J. (2013b). Developmental change in the acuity of approximating area and approximating number. Developmental Psychology, 49, 1103–1112.

    Google Scholar 

  • Park, J., & Brannon, E. M. (2013). The approximate number system improves math proficiency. Psychological Science, 24(10), 2013–2019.

    Google Scholar 

  • Piazza, M., Facoetti, A., Trussardi, A. N., Berteletti, I., Conte, S., Lucangeli, D., & Zorzi, M. (2010). Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition, 116, 33–41.

    Google Scholar 

  • Piazza, M., Pica, P., Izard, V., Spelke, E. S., & Dehaene, S. (2013). Education enhances the acuity of the nonverbal Approximate Number System. Psychological Science, 24, 1037–1043.

    Google Scholar 

  • Pica, P., Lemer, C., Izard, V., & Dehaene, S. (2004). Exact and approximate arithmetic in an Amazonian indigene group. Science, 306(5695), 499–503.

    Google Scholar 

  • Price, G. R., Palmer, D., Battista, C., & Ansari, D. (2012). Nonsymbolic numerical magnitude comparison: Reliability and validity of different task variants and outcome measures, and their relationship to arithmetic achievement in adults. Acta Psychologica, 140(1), 50–57.

    Google Scholar 

  • Revkin, S. K., Piazza, M., Izard, V., Cohen, L., & Dehaene, S. (2008). Does subitizing reflect numerical estimation? Psychological Science, 19(6), 607–614.

    Google Scholar 

  • St Clair-Thomson, H. L., & Gathercole, S. E. (2006). Executive functions and achievement in school: Shifting, updating, inhibition, and working memory. The Quarterly Journal of Experimental Psychology, 59(4), 745–759.

    Google Scholar 

  • Stavy, R., & Babai, R. (2010). Overcoming intuitive interference in mathematics: Insights from behavioral, brain imaging and intervention studies. ZDM, 42(6), 621–633.

    Google Scholar 

  • Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology: General, 18(6), 643–662.

    Google Scholar 

  • Szűcs, D., Nobes, A., Devine, A., Gabriel, F., Gebuis, T. (2013). Visual stimulus parameters seriously compromise the measurement of Approximate Number System acuity and comparative effects between adults and children. Frontiers in Psychology, 4, 444. doi:10.3389/fpsyg.2013.00444

    Google Scholar 

  • Xu, F., & Spelke, E. S. (2000). Large number discrimination in 6-month-old infants. Cognition, 74(1), B1–B11.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Clayton.

Additional information

This research was supported by a Royal Society Dorothy Hodgkin Fellowship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clayton, S., Gilmore, C. Inhibition in dot comparison tasks. ZDM Mathematics Education 47, 759–770 (2015). https://doi.org/10.1007/s11858-014-0655-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11858-014-0655-2

Keywords

Navigation