Skip to main content
Log in

Evaluation of resistance training to improve muscular strength and body composition in cancer patients undergoing neoadjuvant and adjuvant therapy: a meta-analysis

  • Review
  • Published:
Journal of Cancer Survivorship Aims and scope Submit manuscript

Abstract

Purpose

Muscle atrophy and strength decline are two of the most prominent characteristics in cancer patients undergoing cancer therapy, leading to decreased functional ability and reduced quality of life. Therefore, the aim is to systematically review research evidence of the effects of resistance exercise (RE) on lower-limb muscular strength, lean body mass (LBM), and body fat (BF) in cancer patients undertaking neoadjuvant or adjuvant therapy.

Methods

This research was conducted using the following online database: Clinical Trial Register, Cochrane Trial Register, PubMed, SPORT Discus, and SciELO, from September 2014 until May 2015. We used the following keywords in various combinations with a systematic search: “Cancer therapy,” “Wasting muscle,” “Muscle loss,” “Muscle function,” “Neoadjuvant therapy,” “Adjuvant thera-py,” “Resistance Training,” “Weight training,” and “Exercise.” After selection of 272 full-text articles, 14 publications were included in this meta-analysis.

Results

Resistance exercise (RE) during neoadjuvant or adjuvant therapy increased lower-limb muscular strength (mean: 26.22 kg, 95% CI [16.01, 36.43], heterogeneity: P = <0.01, I 2 = 76%, P = 0.00001) when compared to controls over time. Similarly, lean body mass (LBM) increased (mean 0.8 kg, 95% CI [0.7, 0.9], heterogeneity: P = 0.99, I 2 = 0%, P < 0.00001), and decreased body fat (BF) (mean: −1.3 kg, 95% CI [−1.5, 1.1], heterogeneity: P = 0.93, I2 = 0%, P < 0.00001) compared to controls over time.

Conclusion

RE is effective to increase lower-limb muscular strength, increase LBM, and decrease BF in cancer patients undergoing neoadjuvant and adjuvant therapy regardless of the kind of treatment.

Implications for cancer survivors

RE increases muscle strength, maintains LBM, and reduces BF in cancer patients undergoing adjuvant and neoadjuvant therapies. Cancer patients and survivors should consider undertaking RE as an effective countermeasure for treatment-related adverse effects to the musculoskeletal system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Society AC. Cancer Facts & Figures 2016. Atlanta: American Cancer Society; 2016.

    Google Scholar 

  2. Schmitz KH, Courneya KS, Matthews C, Demark-Wahnefried W, Galvão DA, Pinto BM, et al. American College of Sports Medicine roundtable on exercise guidelines for cancer survivors. Med Sci Sports Exerc. 2010;42(7):1409–26.

    Article  PubMed  Google Scholar 

  3. Glade MJ. Food, nutrition, and the prevention of cancer: a global perspective. American Institute for Cancer Research/World Cancer Research Fund, American Institute for Cancer Research, 1997. Nutrition. 1999;15(6):523–6.

    Article  CAS  PubMed  Google Scholar 

  4. Fearon K, Arends J, Baracos V. Understanding the mechanisms and treatment options in cancer cachexia. Nat Rev Clin Oncol. 2013;10(2):90–9.

    Article  CAS  PubMed  Google Scholar 

  5. Inui A. Cancer anorexia–cachexia syndrome: current issues in research and management. CA Cancer J Clin. 2002;52(2):72–91.

    Article  PubMed  Google Scholar 

  6. Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 2011;12(5):489–95.

    Article  PubMed  Google Scholar 

  7. Tisdale MJ. Mechanisms of cancer cachexia. Physiol Rev. 2009;89(2):381–410.

    Article  CAS  PubMed  Google Scholar 

  8. Mallick S, Benson R, Haresh KP, Rath GK. Neoadjuvant treatment intensification or adjuvant chemotherapy for locally advanced carcinoma rectum: The optimum treatment approach remains unresolved. J Egypt Natl Canc Inst. 2015.

  9. Sondak VK, McArthur GA. Adjuvant immunotherapy for cancer: the next step. Lancet Oncol. 2015;16(5):478–80.

    Article  PubMed  Google Scholar 

  10. Vo JL, Yang L, Kurtz SL, Smith SG, Koppolu BP, Ravindranathan S, et al. Neoadjuvant immunotherapy with chitosan and interleukin-12 to control breast cancer metastasis. Oncoimmunology. 2014;3(12):e968001.

    Article  PubMed  Google Scholar 

  11. Kent EC, Hussain MH. Neoadjuvant therapy for prostate cancer: an Oncologist’s perspective. Rev Urol. 2003;5(Suppl 3):S28–37.

    PubMed  PubMed Central  Google Scholar 

  12. de Geus SW, Evans DB, Bliss LA, Eskander MF, Smith JK, Wolff RA, et al. Neoadjuvant therapy versus upfront surgical strategies in resectable pancreatic cancer: A Markov decision analysis. Eur J Surg Oncol. 2016.

  13. Swellengrebel HA, Marijnen CA, Verwaal VJ, Vincent A, Heuff G, Gerhards MF, et al. Toxicity and complications of preoperative chemoradiotherapy for locally advanced rectal cancer. Br J Surg. 2011;98(3):418–26.

    Article  CAS  PubMed  Google Scholar 

  14. Medicine ACoS. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2009;41(3):687–708.

    Article  Google Scholar 

  15. Kraemer WJ, Ratamess NA. Fundamentals of resistance training: progression and exercise prescription. Med Sci Sports Exerc. 2004;36(4):674–88.

    Article  PubMed  Google Scholar 

  16. Selvanayagam VS, Riek S, Carroll TJ. Early neural responses to strength training. J Appl Physiol (1985). 2011;111(2):367–75.

    Article  Google Scholar 

  17. Rock CL, Doyle C, Demark-Wahnefried W, Meyerhardt J, Courneya KS, Schwartz AL, et al. Nutrition and physical activity guidelines for cancer survivors. CA Cancer J Clin. 2012;62(4):243–74.

    Article  PubMed  Google Scholar 

  18. Ruiz JR, Sui X, Lobelo F, Morrow JR, Jackson AW, Sjöström M, et al. Association between muscular strength and mortality in men: prospective cohort study. BMJ. 2008;337:a439.

    Article  PubMed  Google Scholar 

  19. Strasser B, Steindorf K, Wiskemann J, Ulrich CM. Impact of resistance training in cancer survivors: a meta-analysis. Med Sci Sports Exerc. 2013;45(11):2080–90.

    Article  PubMed  Google Scholar 

  20. Morielli AR, Usmani N, Boulé NG, Severin D, Tankel K, Nijjar T, et al. Exercise motivation in rectal cancer patients during and after neoadjuvant chemoradiotherapy. Support Care Cancer. 2016.

  21. Segal RJ, Reid RD, Courneya KS, Sigal RJ, Kenny GP, Prud’Homme DG, et al. Randomized controlled trial of resistance or aerobic exercise in men receiving radiation therapy for prostate cancer. J Clin Oncol. 2009;27(3):344–51.

    Article  PubMed  Google Scholar 

  22. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009 Jul;6(7):e1000097.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis of observational studies in epidemiology (MOOSE) group. JAMA. 2000;283(15):2008–12.

    Article  CAS  PubMed  Google Scholar 

  24. Follmann D, Elliott P, Suh I, Cutler J. Variance imputation for overviews of clinical trials with continuous response. J Clin Epidemiol. 1992;45(7):769–73.

    Article  CAS  PubMed  Google Scholar 

  25. Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol. 2005;5:13.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Higgins JP, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ahmed RL, Thomas W, Yee D, Schmitz KH. Randomized controlled trial of weight training and lymphedema in breast cancer survivors. J Clin Oncol. 2006;24(18):2765–72.

    Article  PubMed  Google Scholar 

  29. Battaglini C, Bottaro M, Dennehy C, Rae L, Shields E, Kirk D, et al. The effects of an individualized exercise intervention on body composition in breast cancer patients undergoing treatment. Sao Paulo Med J. 2007;125(1):22–8.

    Article  PubMed  Google Scholar 

  30. Schmitz KH, Ahmed RL, Hannan PJ, Yee D. Safety and efficacy of weight training in recent breast cancer survivors to alter body composition, insulin, and insulin-like growth factor axis proteins. Cancer Epidemiol Biomark Prev. 2005;14(7):1672–80.

    Article  CAS  Google Scholar 

  31. Schmitz KH, Ahmed RL, Troxel A, Cheville A, Smith R, Lewis-Grant L, et al. Weight lifting in women with breast-cancer-related lymphedema. N Engl J Med. 2009;361(7):664–73.

    Article  CAS  PubMed  Google Scholar 

  32. Schmitz KH, Ahmed RL, Troxel AB, Cheville A, Lewis-Grant L, Smith R, et al. Weight lifting for women at risk for breast cancer-related lymphedema: a randomized trial. JAMA. 2010;304(24):2699–705.

    Article  CAS  PubMed  Google Scholar 

  33. Winters-Stone KM, Dobek J, Bennett JA, Nail LM, Leo MC, Schwartz A. The effect of resistance training on muscle strength and physical function in older, postmenopausal breast cancer survivors: a randomized controlled trial. J Cancer Surviv. 2012;6(2):189–99.

    Article  PubMed  Google Scholar 

  34. Courneya KS, Segal RJ, Mackey JR, Gelmon K, Reid RD, Friedenreich CM, et al. Effects of aerobic and resistance exercise in breast cancer patients receiving adjuvant chemotherapy: a multicenter randomized controlled trial. J Clin Oncol. 2007;25(28):4396–404.

    Article  PubMed  Google Scholar 

  35. Alberga AS, Segal RJ, Reid RD, Scott CG, Sigal RJ, Khandwala F, et al. Age and androgen-deprivation therapy on exercise outcomes in men with prostate cancer. Support Care Cancer. 2012;20(5):971–81.

    Article  PubMed  Google Scholar 

  36. Cormie P, Newton RU, Spry N, Joseph D, Taaffe DR, Galvão DA. Safety and efficacy of resistance exercise in prostate cancer patients with bone metastases. Prostate Cancer Prostatic Dis. 2013;16(4):328–35.

    Article  CAS  PubMed  Google Scholar 

  37. Cormie P, Galvão DA, Spry N, Joseph D, Chee R, Taaffe DR, et al. Can supervised exercise prevent treatment toxicity in patients with prostate cancer initiating androgen-deprivation therapy: a randomised controlled trial. BJU Int. 2015;115(2):256–66.

    Article  PubMed  Google Scholar 

  38. Galvão DA, Taaffe DR, Spry N, Joseph D, Newton RU. Combined resistance and aerobic exercise program reverses muscle loss in men undergoing androgen suppression therapy for prostate cancer without bone metastases: a randomized controlled trial. J Clin Oncol. 2010;28(2):340–7.

    Article  PubMed  Google Scholar 

  39. Nilsen TS, Thorsen L, Fosså SD, Wiig M, Kirkegaard C, Skovlund E, et al. Effects of strength training on muscle cellular outcomes in prostate cancer patients on androgen deprivation therapy. Scand J Med Sci Sports. 2015.

  40. Winters-Stone KM, Dobek JC, Bennett JA, Dieckmann NF, Maddalozzo GF, Ryan CW, et al. Resistance training reduces disability in prostate cancer survivors on androgen deprivation therapy: evidence from a randomized controlled trial. Arch Phys Med Rehabil. 2015;96(1):7–14.

    Article  PubMed  Google Scholar 

  41. Courneya KS. Exercise in cancer survivors: an overview of research. Med Sci Sports Exerc. 2003;35(11):1846–52.

    Article  PubMed  Google Scholar 

  42. Singh F, Newton RU, Baker MK, Spry NA, Taaffe DR, Thavaseelan J, et al. Feasibility of Presurgical Exercise in Men With Prostate Cancer Undergoing Prostatectomy. Integr Cancer Ther. 2016.

  43. Singh F, Newton RU, Galvão DA, Spry N, Baker MK. A systematic review of pre-surgical exercise intervention studies with cancer patients. Surg Oncol. 2013;22(2):92–104.

    Article  PubMed  Google Scholar 

  44. Moonesinghe SR, Harris S, Mythen MG, Rowan KM, Haddad FS, Emberton M, et al. Survival after postoperative morbidity: a longitudinal observational cohort study. Br J Anaesth. 2014;113(6):977–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Loughney L, West MA, Kemp GJ, Grocott MP, Jack S. Exercise intervention in people with cancer undergoing adjuvant cancer treatment following surgery: a systematic review. Eur J Surg Oncol. 2015;41(12):1590–602.

    Article  CAS  PubMed  Google Scholar 

  46. Sale DG. Influence of exercise and training on motor unit activation. Exerc Sport Sci Rev. 1987;15:95–151.

    Article  CAS  PubMed  Google Scholar 

  47. Sale DG. Neural adaptation to resistance training. Med Sci Sports Exerc. 1988;20(5 Suppl):S135–45.

    Article  CAS  PubMed  Google Scholar 

  48. Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P. Neural adaptation to resistance training: changes in evoked V-wave and H-reflex responses. J Appl Physiol (1985). 2002;92(6):2309–18.

    Article  Google Scholar 

  49. Hasenoehrl T, Keilani M, Sedghi Komanadj T, Mickel M, Margreiter M, Marhold M, et al. The effects of resistance exercise on physical performance and health-related quality of life in prostate cancer patients: a systematic review. Support Care Cancer. 2015;23(8):2479–97.

    Article  CAS  PubMed  Google Scholar 

  50. Galvão DA, Newton RU. Review of exercise intervention studies in cancer patients. J Clin Oncol. 2005;23(4):899–909.

    Article  PubMed  Google Scholar 

  51. Galvão DA, Spry NA, Taaffe DR, Newton RU, Stanley J, Shannon T, et al. Changes in muscle, fat and bone mass after 36 weeks of maximal androgen blockade for prostate cancer. BJU Int. 2008;102(1):44–7.

    Article  PubMed  Google Scholar 

  52. von Haehling S, Morley JE, Anker SD. An overview of sarcopenia: facts and numbers on prevalence and clinical impact. J Cachexia Sarcopenia Muscle. 2010;1(2):129–33.

    Article  Google Scholar 

  53. Rutten IJ, van Dijk DP, Kruitwagen RF, Beets-Tan RG, Olde Damink SW, van Gorp T. Loss of skeletal muscle during neoadjuvant chemotherapy is related to decreased survival in ovarian cancer patients. J Cachexia Sarcopenia Muscle. 2016.

  54. Damas F, Phillips S, Vechin FC, Ugrinowitsch C. A review of resistance training-induced changes in skeletal muscle protein synthesis and their contribution to hypertrophy. Sports Med. 2015;45(6):801–7.

    Article  PubMed  Google Scholar 

  55. Toigo M, Boutellier U. New fundamental resistance exercise determinants of molecular and cellular muscle adaptations. Eur J Appl Physiol. 2006;97(6):643–63.

    Article  PubMed  Google Scholar 

  56. Prado CM, Baracos VE, McCargar LJ, Reiman T, Mourtzakis M, Tonkin K, et al. Sarcopenia as a determinant of chemotherapy toxicity and time to tumor progression in metastatic breast cancer patients receiving capecitabine treatment. Clin Cancer Res. 2009;15(8):2920–6.

    Article  CAS  PubMed  Google Scholar 

  57. Demark-Wahnefried W, Rimer BK, Winer EP. Weight gain in women diagnosed with breast cancer. J Am Diet Assoc. 1997;97(5):519–26. 29; quiz 27-8

    Article  CAS  PubMed  Google Scholar 

  58. Prado CM, Sawyer MB, Ghosh S, Lieffers JR, Esfandiari N, Antoun S, et al. Central tenet of cancer cachexia therapy: do patients with advanced cancer have exploitable anabolic potential? Am J Clin Nutr. 2013;98(4):1012–9.

    Article  CAS  PubMed  Google Scholar 

  59. Zhang C, Rexrode KM, van Dam RM, Li TY, Hu FB. Abdominal obesity and the risk of all-cause, cardiovascular, and cancer mortality: sixteen years of follow-up in US women. Circulation. 2008;117(13):1658–67.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to express thanks to all the colleagues engaged in this systematic review and meta-analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camila S. Padilha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padilha, C.S., Marinello, P.C., Galvão, D.A. et al. Evaluation of resistance training to improve muscular strength and body composition in cancer patients undergoing neoadjuvant and adjuvant therapy: a meta-analysis. J Cancer Surviv 11, 339–349 (2017). https://doi.org/10.1007/s11764-016-0592-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11764-016-0592-x

Keywords

Navigation