Skip to main content

Advertisement

Log in

Applications of three-dimensional printing technology in the cardiovascular field

  • IM - REVIEW
  • Published:
Internal and Emergency Medicine Aims and scope Submit manuscript

Abstract

Three-dimensional (3-D) printing technology has rapidly developed in the last few decades. Meanwhile, the application of this technology has reached beyond the engineering field and expanded to almost all disciplines, including medicine. There has been much research on the medical applications of 3-D printing in neurosurgery, orthopedics, maxillofacial surgery, plastic surgery, tissue engineering, as well as other fields. Because of the complexity of the cardiovascular system, the application of this technology is limited and difficult, as compared to other disciplines, and thus there is much room for future development. Many of the difficulties associated with this technology must be overcome. Nonetheless, there is no doubt that 3-D printing technology will benefit patients with cardiovascular diseases in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Markl M, Schumacher R, Küffer J, Bley TA, Hennig J (2005) Rapid vessel prototyping: vascular modeling using 3t magnetic resonance angiography and rapid prototyping technology. Magn Reson Mater Phys Biol Med 18:288–292

    Article  Google Scholar 

  2. Mueller, T (1995) Stereolithography-based prototyping: case histories of applications in product development. In: Northcon 95. IEEE Technical Applications Conference and Workshops Northcon 95:305–310

  3. Webb PA (2000) A review of rapid prototyping (RP) techniques in the medical and biomedical sector. J Med Eng Technol 24:149–153

    Article  CAS  PubMed  Google Scholar 

  4. Eufinger H, Wehmöller M (1998) Individual prefabricated titanium implants in reconstructive craniofacial surgery: clinical and technical aspects of the first 22 cases. Plast Reconstr Surg 102:300–308

    Article  CAS  PubMed  Google Scholar 

  5. Heissler E, Fischer FS, Boiouri S, Lehrnann T, Mathar W, Gebhardt A, Bler J (1998) Custom-made cast titanium implants produced with CAD/CAM for the reconstruction of cranium defects. Int J Oral Maxillofac Surg 27:334–338

    Article  CAS  PubMed  Google Scholar 

  6. Joffe M, Harris F, Kahugu S, Nicoll A, Linney R, Richards J (1999) A prospective study of computer-aided design and manufacture of titanium plate for cranioplasty and its clinical outcome. Br J Neurosurg 13:576–580

    Article  CAS  PubMed  Google Scholar 

  7. Winder J, Cooke RS, Gray J, Fannin T, Fegan T (1999) Medical rapid prototyping and 3D CT in the manufacture of custom made cranial titanium plates. J Med Eng Technol 23:26–28

    Article  CAS  PubMed  Google Scholar 

  8. D’Urso PS, Effeney DJ, Earwaker WJ, Barker TM, Redmond MJ, Thompson RG, Tomlinson FH (2000) Custom cranioplasty using stereolithography and acrylic. Br J Plast Surg 53:200–204

    Article  PubMed  Google Scholar 

  9. Bibb R, Bocca A, Evans P (2002) An appropriate approach to computer aided design and manufacture of cranioplasty plates. J Maxillofac Prosthet Technol 5:28–31

    Google Scholar 

  10. Hughes CW, Page K, Bibb R, Taylor J, Revington P (2003) The custom-made titanium orbital floor prosthesis in reconstruction for orbital floor fractures. Br J Oral Maxillofac Surg 41:50–53

    Article  CAS  PubMed  Google Scholar 

  11. Evans P, Eggbeer D, Bibb R (2004) Orbital prosthesis wax pattern production using computer aided design and rapid prototyping techniques. Maxillofacial Prosthetics Technol 7:11–15

    Google Scholar 

  12. Singare S, Dichen L, Bingheng L, Zhenyu G, Yaxiong L (2005) Customized design and manufacturing of chin implant based on rapid prototyping. Rapid Prototyp J 11:113–118

    Article  Google Scholar 

  13. Bibb R, Bocca A, Sugar A, Evans P (2003) Planning osseointegrated implant sites using computer aided design and rapid prototyping. J Maxillofac Prosthe Technol 6:1–4

    Google Scholar 

  14. Giacomo GAD, Cury PR, Araujo NSD, Sendyk WR, Sendyk CL (2005) Clinical application of stereolithographic surgical guides for implant placement: preliminary results. J Periodontol 76:503–507

    Article  PubMed  Google Scholar 

  15. Goffin J, Van Brussel K, Vander Sloten J, Van Audekercke R, Smet MH, Marchal G, Verstreken K (1999) 3D-CT based, personalized drill guide for posterior transarticular screw fixation at C1-C2: technical note. Neuro-orthopedics 25:47–56

    Google Scholar 

  16. Goffin J, Van Brussel K, Martens K, Vander Sloten J, Van Audekercke R, Smet MH (2001) Three-dimensional computed tomography-based, personalized drill guide for posterior cervical stabilization at C1–C2. Spine 26:1343–1347

    Article  CAS  PubMed  Google Scholar 

  17. Sarment DP, Sukovic P, Clinthorne N (2002) Accuracy of implant placement with a stereolithographic surgical guide. Int J Oral Maxillofac Implant 18:571–577

    Google Scholar 

  18. Sarment DP, Al-Shammari K, Kazor CE (2003) Stereolithographic surgical templates for placement of dental implants in complex cases. Int J Periodontics Restor Dent 23:287–295

    Google Scholar 

  19. Riesenkampff E, Rietdorf U, Wolf I, Schnackenburg B, Ewert P, Huebler M, Kuehne T (2009) The practical clinical value of three-dimensional models of complex congenitally malformed hearts. J Thorac Cardiovasc Surg 138:571–580

    Article  PubMed  Google Scholar 

  20. Shiraishi I, Yamagishi M, Hamaoka K, Fukuzawa M, Yagihara T (2010) Simulative operation on congenital heart disease using rubber-like urethane stereolithographic biomodels based on 3D datasets of multislice computed tomography. Eur J Cardiothorac Surg 37:302–306

    PubMed  Google Scholar 

  21. Rengier F, Mehndiratta A, von Tengg-Kobligk H, Zechmann CM, Unterhinninghofen R, Kauczor HU, Giesel FL (2010) 3D printing based on imaging data: review of medical applications. Int J Comput Assist Radiol Surg 5:335–341

    Article  CAS  PubMed  Google Scholar 

  22. Peltola SM, Melchels FP, Grijpma DW, Kellomäki M (2008) A review of rapid prototyping techniques for tissue engineering purposes. Ann Med 40:268–280

    Article  CAS  PubMed  Google Scholar 

  23. Eaton BD, Messent DO, Haywood IR (1990) Animal cadaveric models for advanced trauma life support training. Ann R Coll Surg Engl 72:135

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Reuthebuch O, Lang A, Groscurth P, Lachat M, Turina M, Zünd G (2002) Advanced training model for beating heart coronary artery surgery: the Zurich heart-trainer. Eur J Cardiothorac Surg 22:244–248

    Article  CAS  PubMed  Google Scholar 

  25. von Segesser LK, Westaby S, Pomar J, Loisance D, Groscurth P, Turina M (1999) Less invasive aortic valve surgery: rationale and technique. Eur J Cardiothorac Surg 15:781–785

    Article  Google Scholar 

  26. D’Urso PS, Barker TM, Earwaker WJ, Bruce LJ, Atkinson RL, Lanigan MW, Effeney DJ (1999) Stereolithographic biomodelling in cranio-maxillofacial surgery: a prospective trial. J Cranio-Maxillofac Surg 27:30–37

    Article  Google Scholar 

  27. Armillotta A, Bonhoeffer P, Dubini G, Ferragina S, Migliavacca F, Sala G, Schievano S (2007) Use of rapid prototyping models in the planning of percutaneous pulmonary valved stent implantation. Proc Inst Mech Eng [H] 221:407–416

    Article  CAS  Google Scholar 

  28. Jacobs S, Grunert R, Mohr FW, Falk V (2008) 3D-Imaging of cardiac structures using 3D heart models for planning in heart surgery: a preliminary study. Interact CardioVasc Thorac Surg 7:6–9

    Article  PubMed  Google Scholar 

  29. Sodian R, Weber S, Markert M, Loeff M, Lueth T, Weis FC, Reichart B (2008) Pediatric cardiac transplantation: three-dimensional printing of anatomic models for surgical planning of heart transplantation in patients with univentricular heart. J Thorac Cardiovasc Surg 136:1098–1099

    Article  PubMed  Google Scholar 

  30. Sodian R, Weber S, Markert M, Rassoulian D, Kaczmarek I, Lueth TC, Daebritz S (2007) Stereolithographic models for surgical planning in congenital heart surgery. Ann Thorac Surg 83:1854–1857

    Article  PubMed  Google Scholar 

  31. Sodian R, Schmauss D, Markert M, Weber S, Nikolaou K, Haeberle S, Schmitz C (2008) Three-dimensional printing creates models for surgical planning of aortic valve replacement after previous coronary bypass grafting. Ann Thorac Surg 85:2105–2108

    Article  PubMed  Google Scholar 

  32. Abdel-Sayed P, Kalejs M, von Segesser LK (2009) A new training set-up for trans-apical aortic valve replacement. Interact Cardiovasc Thorac Surg 8:599–601

    Article  PubMed  Google Scholar 

  33. Greil GF, Wolf I, Kuettner A, Fenchel M, Miller S, Martirosian P, Sieverding L (2007) Stereolithographic reproduction of complex cardiac morphology based on high spatial resolution imaging. Clin Res Cardiol 96:176–185

    Article  CAS  PubMed  Google Scholar 

  34. Noecker AM, Chen JF, Zhou Q, White RD, Kopcak MW, Arruda MJ, Duncan BW (2006) Development of patient-specific three-dimensional pediatric cardiac models. ASAIO J 52:349–353

    Article  PubMed  Google Scholar 

  35. Vranicar M, Gregory W, Douglas WI, Di Sessa P, Di Sessa TG (2007) The use of stereolithographic hand held models for evaluation of congenital anomalies of the great arteries. Stud Health Technol Inform 132:538–543

    Google Scholar 

  36. Mottl-Link S, Hübler M, Kühne T, Rietdorf U, Krueger JJ, Schnackenburg B, Wolf I (2008) Physical models aiding in complex congenital heart surgery. Ann Thoracic Surg 86:273–277

    Article  Google Scholar 

  37. Ngan EM, Rebeyka IM, Ross DB, Hirji M, Wolfaardt JF, Seelaus R, Noga ML (2006) The rapid prototyping of anatomic models in pulmonary atresia. J Thorac Cardiovasc Surg 132:264–269

    Article  PubMed  Google Scholar 

  38. Schmauss D, Gerber N, Sodian R (2013) Three-dimensional printing of models for surgical planning in patients with primary cardiac tumors. J Thorac Cardiovasc Surg 5:1407–1408

    Article  Google Scholar 

  39. Binder TM, Moertl D, Mundigler G, Rehak G, Franke M, Delle-Karth G, Maurer G (2000) Stereolithographic biomodeling to create tangible hard copies of cardiac structures from echocardiographic data: in vitro and in vivo validation. J Am Coll Cardiol 35:230–237

    Article  CAS  PubMed  Google Scholar 

  40. Miller SF, Sanz-Guerrero J, Dodde RE, Johnson DD, Bhawuk A, Gurm HS, Shih AJ (2013) A pulsatile blood vessel system for a femoral arterial access clinical simulation model. Med Eng Phys 35:1518–1524

    Article  PubMed  Google Scholar 

  41. Sodian R, Schmauss D, Schmitz C, Bigdeli A, Haeberle S, Schmoeckel M, Kozlik-Feldmann R (2009) 3-dimensional printing of models to create custom-made devices for coil embolization of an anastomotic leak after aortic arch replacement. Ann Thorac Surg 88:974–978

    Article  PubMed  Google Scholar 

  42. Kim MS, Hansgen AR, Carroll JD (2008) Use of rapid prototyping in the care of patients with structural heart disease. Trends Cardiovasc Med 18:210–216

    Article  PubMed  Google Scholar 

  43. Schievano S, Migliavacca F, Coats L, Khambadkone S, Carminati M, Wilson N, Taylor AM (2007) Percutaneous pulmonary valve implantation based on rapid prototyping of right ventricular outflow tract and pulmonary trunk from MR data 1. Radiology 242:490–497

    Article  PubMed  Google Scholar 

  44. Schmauss D, Schmitz C, Bigdeli AK, Weber S, Gerber N, Beiras-Fernandez A, Sodian R (2012) Three-dimensional printing of models for preoperative planning and simulation of transcatheter valve replacement. Ann Thorac Surg 93:e31–e33

    Article  PubMed  Google Scholar 

  45. Hong MK, Mintz GS, Lee CW, Park DW, Choi BR, Park KH, Park SJ (2006) Intravascular ultrasound predictors of angiographic restenosis after sirolimus-eluting stent implantation. Eur Heart J 27:1305–1310

    Article  PubMed  Google Scholar 

  46. Lantada AD, Del Valle-Fernández R, Morgado PL, Muñoz-García J, Sanz JLM, Munoz-Guijosa JM, Otero JE (2010) Development of personalized annuloplasty rings: combination of CT images and CAD-CAM tools. Ann Biomed Eng 38:280–290

    Article  Google Scholar 

  47. Hernández JM et al (2005) Manual de Cardiología Intervencionista. Sociedad Española de Cardiología, Sección de Hemodinámica y Cardiología Intervencionista

    Google Scholar 

  48. Porth, C (2007) Fisiopatología. Salud Enfermedad: Un Enfoque Conceptual. Trastornos de la función cardiaca (7th edn). Madrid: Editorial Médica Panamericana pp 535–579

  49. Taylor PM, Sachlos E, Dreger SA, Chester AH, Czernuszka JT, Yacoub MH (2006) Interaction of human valve interstitial cells with collagen matrices manufactured using rapid prototyping. Biomaterials 27:2733–2737

    Article  CAS  PubMed  Google Scholar 

  50. Mol A, Smits AI, Bouten CV, Baaijens FP (2009) Tissue engineering of heart valves: advances and current challenges. Expert Rev Med Devices 6:259–275

    Article  CAS  PubMed  Google Scholar 

  51. Hockaday LA, Kang KH, Colangelo NW, Cheung PYC, Duan B, Malone E, Butcher JT (2012) Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication 4:035005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB (2006) Tissue-engineered autologous bladders for patients needing cystoplasty. The lancet 367:1241–1246

    Article  Google Scholar 

  53. Jain RK, Au P, Tam J, Duda DG, Fukumura D (2005) Engineering vascularized tissue. Nat Biotechnol 23:821–823

    Article  CAS  PubMed  Google Scholar 

  54. Levenberg S, Rouwkema J, Macdonald M, Garfein ES, Kohane DS, Darland DC, Langer R (2005) Engineering vascularized skeletal muscle tissue. Nat Biotechnol 23:879–884

    Article  CAS  PubMed  Google Scholar 

  55. Cui X, Boland T (2009) Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 30:6221–6227

    Article  CAS  PubMed  Google Scholar 

  56. Rosamond W et al (2007) Heart disease and stroke statistics—2007 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 115:e69–e171

    Article  PubMed  Google Scholar 

  57. Boland T, Xu T, Damon B, Cui X (2006) Application of inkjet printing to tissue engineering. Biotechnol J 1:910–917

    Article  CAS  PubMed  Google Scholar 

  58. Barnatt C (2011) Organ printing concept. Bioprinter_Holdout (Ed) (Online). http://www.ExplainingTheFuture.com

  59. Mironov V, Kasyanov V, Markwald RR (2011) Organ printing: from bioprinter to organ biofabrication line. Curr Opin Biotechnol 22:667–673

    Article  CAS  PubMed  Google Scholar 

  60. Xu C, Chai W, Huang Y, Markwald RR (2012) Scaffold-free inkjet printing of three-dimensional zigzag cellular tubes. Biotechnol Bioeng 109:3152–3160

    Article  CAS  PubMed  Google Scholar 

  61. Thein-Han WW, Kitiyanant Y (2007) Chitosan scaffolds for in vitro buffalo embryonic stem-like cell culture: An approach to tissue engineering. J Biomed Mater Res B Appl Biomater 80:92–101

    Article  PubMed  Google Scholar 

  62. Tuan RS, Boland G, Tuli R (2003) Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res Ther 5:32–45

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Lam MT, Longaker MT (2012) Comparison of several attachment methods for human iPS, embryonic and adipose-derived stem cells for tissue engineering. J Tissue Eng Regen Med 6:s80–s86

    Article  PubMed Central  PubMed  Google Scholar 

  64. Seol D, McCabe DJ, Choe H, Zheng H, Yu Y, Jang K, Martin JA (2012) Chondrogenic progenitor cells respond to cartilage injury. Arthritis Rheum 64:3626–3637

    Article  CAS  PubMed  Google Scholar 

  65. Yu Y (2012) Identification and characterization of cartilage progenitor cells by single cell sorting and cloning. University of Iowa, Iowa City

    Google Scholar 

  66. Ozbolat IT, Yu Y (2013) Bioprinting toward organ fabrication: challenges and future trends. IEEE Transactions on Biomedical Engineering 60: 691–699

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Statement of human and animal rights

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with human and animals performed by any of the authors.

Informed consent

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, D., Liu, K., Zhang, X. et al. Applications of three-dimensional printing technology in the cardiovascular field. Intern Emerg Med 10, 769–780 (2015). https://doi.org/10.1007/s11739-015-1282-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11739-015-1282-9

Keywords

Navigation