Skip to main content
Log in

Hemispheric Asymmetries in Tracking Occluded Moving Targets with the Mind’s Eye: Simultaneous Event-Related fMRI and Eye-Movement Recording

  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

The ability of the eyes and brain to predict and track visible and occluded moving targets is essential to goal-directed action. Event-related functional MRI and eye-movements were simultaneously measured during a smooth pursuit task with different levels of visual cuing. Subjects tracked a white dot moving from left to right following a sinusoidal pattern, during which it could be seen over half the screen (visible condition) before disappearing behind the occlusion bar (occluded condition). When tracking occluded, moving targets, we observed a hemisphere asymmetry at the early visual cortex, but not in motion-processing area MT/V5. During eye-tracking, the left early visual cortex responded stronger than the right to visible targets, but the right responded stronger to occluded targets. In contrast, motion-processing area MT/V5 in both hemispheres favored visible over occluded targets. These results suggest the right early visual cortex is the mind’s eye, receiving input from higher level memory regions to produce simulated vision during occlusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersson, F., Etard, O., Denise, P., & Petit, L. (2004). Early visual evoked potentials are modulated by eye position in humans induced by whole body rotations. BMC Neuroscience, 19, 5–35.

    Google Scholar 

  • Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3, 215–229. doi:10.1038/nrn755.

    Article  Google Scholar 

  • Cox, R. W. (1996). AFNI—software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29, 162–173. doi:10.1006/cbmr.1996.0014.

    Article  PubMed  CAS  Google Scholar 

  • Ding, J. H., Powell, D., & Jiang, Y. (2007). Tracking visible and occluded moving target: simultaneous eye-movement and fMRI. NeuroImage, 36(S1), 48. doi:10.1016/j.neuroimage.2007.02.034.

    Google Scholar 

  • Ehrlichman, H., & Barrett, J. (1983). Right hemisphere specialization for mental imagery: a review of the evidence. Brain and Cognition, 2, 55–76. doi:10.1016/0278-2626(83)90029-5.

    Article  PubMed  CAS  Google Scholar 

  • Ekstrom, L. B., Roelfsema, P. R., Arsenault, J. T., Bonmassar, G., & Vanduffel, W. (2008). Bottom-up dependent gating of frontal signals in early visual cortex. Science, 18, 414–417. doi:10.1126/science.1153276.

    Article  Google Scholar 

  • Goebel, R., Khorram-Sefat, D., Muckli, L., Hacker, H., & Singer, W. (1998). The constructive nature of vision: direct evidence from fMRI studies of apparent motion and motion imagery. The European Journal of Neuroscience, 10, 1563–1573. doi:10.1046/j.1460-9568.1998.00181.x.

    Article  PubMed  CAS  Google Scholar 

  • Gold, B. T., Powell, D. K., Liang, X., Jiang, Y., & Hardy, P. A. (2007). Speed of lexical decision correlates with diffusion anisotropy in left parietal and frontal white matter: evidence from diffusion tensor imaging. Neuropsychologia, 45, 2439–2446. doi:10.1016/j.neuropsychologia.2007.04.011.

    Article  PubMed  Google Scholar 

  • He, S. (2007). Holes, objects, and the left hemisphere. Proceedings of the National Academy of Sciences of the United States of America, 105(4), 1103–1104. doi:10.1073/pnas.0710631105, Jan.

    Article  Google Scholar 

  • Jiang, Y., Boehler, C. N., Nönnig, N., Hopf, J. M., Düzel, E., Heinze, H. J., et al. (2008). Spatial–temporal analysis of binding 3D shape perception. Journal of Cognitive Neuroscience, 20(4), 553–562. doi:10.1162/jocn.2008.20050.

    Article  PubMed  Google Scholar 

  • Kimmig, H., Greenlee, M. W., Hueth, F., & Mergner, T. (1999). MR-Eyetracker: a new method for eyemovement revording in functional magnetic resonance imaging. Experimental Brain Research, 126, 443–449. doi:10.1007/s002210050751.

    Article  CAS  Google Scholar 

  • Kimmig, H., Ohlendorf, S., Speck, O., Sprenger, A., Rutschmann, R. M., Haller, S., et al. (2008). fMRI evidence for sensorimotor transformations in human cortex during smooth pursuit eye movements. Neuropsychologia, 46, 2203–2213. doi:10.1016/j.neuropsychologia.2008.02.021.

    Article  PubMed  CAS  Google Scholar 

  • Kosslyn, S. M., Ganis, G., & Thompson, W. L. (2001). Neural foundations of imagery. Nature Reviews. Neuroscience, 2, 635–642. doi:10.1038/35090055.

    Article  PubMed  CAS  Google Scholar 

  • Kosslyn, S. M., Maljkovic, V., Hamilton, S. E., Horwitz, G., & Thompson, W. L. (1995). Two types of image generation: evidence for left and right hemisphere processes. Neuropsychologia, 33, 1485–1510. doi:10.1016/0028-3932(95)00077-G.

    Article  PubMed  CAS  Google Scholar 

  • Lencer, R., Nagel, M., Sprenger, A., Sprenger, A., Zapt, S., Erdmann, C., et al. (2004). Cortical mechanisms of pursuit eye movements with target blanking: an fMRI study. The European Journal of Neuroscience, 19, 1430–1436. doi:10.1111/j.1460-9568.2004.03229.x.

    Article  PubMed  Google Scholar 

  • Leopold, D. A., & Logothetis, N. K. (1998). Microsaccades differentially modulate neural activity in the striate and extrastriate visual cortex. Experimental Brain Research, 123, 341–345. doi:10.1007/s002210050577.

    Article  CAS  Google Scholar 

  • Martinez, A., Anllo-Vento, L., Sereno, M. I., Frank, L. R., Buxton, R. B., Dubowitz, D. J., et al. (1999). Involvement of striate and extrastriate visual cortical areas in spatial attention. Nature Neuroscience, 2, 364–369. doi:10.1038/7274.

    Article  PubMed  CAS  Google Scholar 

  • Moutoussis, K., & Zeki, S. (2006). Seeing invisible motion: a human fMRI study. Current Biology, 16, 574–579. doi:10.1016/j.cub.2006.01.062.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, S. E. (1999). Vision science: Photons to phenomenology. Cambridge, MA: The MIT.

    Google Scholar 

  • Sack, A., Kohler, T., Bestmann, S., Linden, D. E. J., Dechent, P., Goebel, R., et al. (2007). Imaging the brain activity changes underlying impaired visuospatial judgments: simultaneous fMRI, TMS, and behavioral studies. Cerebral Cortex (New York, N.Y.), 17, 2841–2852. doi:10.1093/cercor/bhm013.

    Article  Google Scholar 

  • Weissman, D. H., & Woldorff, M. G. (2005). Hemispheric asymmetries for different components of global/local attention occur in distinct temporo-parietal Loci. Cerebral Cortex (New York, N.Y.), 15(6), 870–876. doi:10.1093/cercor/bhh187.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, Y., Ding, J., Gold, B.T. et al. Hemispheric Asymmetries in Tracking Occluded Moving Targets with the Mind’s Eye: Simultaneous Event-Related fMRI and Eye-Movement Recording. Brain Imaging and Behavior 2, 300–308 (2008). https://doi.org/10.1007/s11682-008-9040-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-008-9040-5

Keywords

Navigation