Skip to main content
Log in

Frequency shift in topography of spontaneous brain rhythms from childhood to adulthood

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

It has been described that the frequency ranges at which theta, mu and alpha rhythms oscillate is increasing with age. The present report, by analyzing the spontaneous EEG, tries to demonstrate whether there is an increase with age in the frequency at which the cortical structures oscillate. A topographical approach was followed. The spontaneous EEG of one hundredand seventy subjects was recorded. The spectral power (from 0.5 to 45.5 Hz) was obtained by means of the Fast Fourier Transform. Correlations of spatial topographies among the different age groups showed that older groups presented the same topographical maps as younger groups, but oscillating at higher frequencies. The results suggest that the same brain areas oscillate at lower frequencies in children than in older groups, for a broad frequency range. This shift to a higher frequency with age would be a trend in spontaneous brain rhythm development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barriga-Paulino CI, Flores AB, Gómez CM (2011) Developmental changes in the EEG rhythms of children and young adults: analyzed by means of correlational, brain topography and principal components analysis. J Psychophysiol 25(3):143–158

    Article  Google Scholar 

  • Berchicci M, Zhang T, Romero L, Peters A, Annett R, Teuscher U et al (2011) Development of mu rhythm in infants and preschool children. Dev Neurosci 33:130–143. doi:10.1159/000329095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bickford RG (1973) Clinical Electroencephalography. Medcom, New York

    Google Scholar 

  • Boreom L, Kwang SP, Do-Hyung K, Kyung WK, Young YK, Jun SK (2007) Generators of the gamma-band activities in response to rare and novel stimuli during the auditory oddball paradigm. Neurosci Lett 413:210–215

    Article  Google Scholar 

  • Chu CJ, Leahy J, Pathmanathan J, Kramer MA, Cash SS (2014) The maturation of cortical sleep rhythms and networks over early development. Clin Neurophysiol 125:1360–1370

    Article  CAS  PubMed  Google Scholar 

  • Cragg L, Kovacevic N, McIntosh AR, Poulsen C, Martinu K, Leonard G, Paus T (2011) Maturation of EEG power spectra in early adolescence: a longitudinal study. Dev Sci 14(5):935–943

    Article  PubMed  Google Scholar 

  • Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134(1):9–21

    Article  PubMed  Google Scholar 

  • Edwards E, Soltani M, Deouell LY, Berger MS, Knight RT (2005) High gamma activity in response to deviant auditory stimuli recorded directly from human cortex. J Neurophysiol 94(6):4269–4280

    Article  PubMed  Google Scholar 

  • Feinberg I, Campbell IG (2010) Sleep EEG during adolescence: an index of fundamental brain reorganization. Brain Cogn 72:56–65

    Article  PubMed  Google Scholar 

  • Gasser T, Verleger R, Bächer P, Sroka L (1988) Development of the EEG of school-age children and adolescents. I. Analysis of band power. Electroencephalogr Clin Neurophysiol 69(2):91–99

    Article  CAS  PubMed  Google Scholar 

  • Giedd JN (2004) Structural magnetic resonance imaging of the adolescent brain. Ann N Y Acad Sci 1021:77–85

    Article  PubMed  Google Scholar 

  • Gómez CM, Marco-Pallarés J, Grau C (2006) Location of brain rhythms and their modulation by preparatory attention estimated by current density. Brain Res 1107(1):151–160

    Article  PubMed  Google Scholar 

  • John ER (1977) Neurometrics functional neuroscience. Lawrence Erlbaum Associates, Hillsdale

    Google Scholar 

  • Keshavan MS, Diwadkar VA, DeBellis M, Dick E, Kotwal R, Rosenberg DR, Pettegrew JW (2002) Development of the corpus callosum in childhood, adolescence and early adulthood. Life Sci 70:1909–1922

    Article  CAS  PubMed  Google Scholar 

  • Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Rev 29:169–195

    Article  CAS  PubMed  Google Scholar 

  • Lachaux JP, George N, Tallon-Baudry C, Martinerie J, Hugueville L, Minotti L (2005) The many faces of the gamma band response to complex visual stimuli. Neuroimage 25(2):491–501

    Article  PubMed  Google Scholar 

  • Lea-Carnall CA, Montemurro MA, Trujillo-Barreto NJ, Parkes LM, El-Deredy W (2016) Cortical resonance frequencies emerge from network size and connectivity. PLoS Comput Biol 12(2):e1004740. doi:10.1371/journal.pcbi.1004740

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindsley DB (1939) A longitudinal study of the occipital alpha rhythm in normal children: frequency and amplitude standards. J Genet Psychol 55:197–213

    Google Scholar 

  • Lüchinger R, Michels L, Martin E, Brandeis D (2011) EEG–BOLD correlations during post-adolescent brain maturation. Neuroimage 56:1493–1505

    Article  PubMed  Google Scholar 

  • Marcuse LV, Schneider M, Mortati KA, Donnelly KM, Arnedo V, Grant AC (2008) Quantitative analysis of the EEG posterior-dominant rhythm in healthy adolescents. Clin Neurophysiol 119:1778–1781

    Article  CAS  PubMed  Google Scholar 

  • Marshall PJ, Bar-Haim Y, Fox NA (2002) Development of the EEG from 5 months to 4 years of age. Clin Neurophysiol 113:1199–1208. doi:10.1016/S1388-2457(02)00163-3

    Article  PubMed  Google Scholar 

  • Matousek M, Petersén I (1973) Frequency analysis of the EEG in normal children and adolescents. In: Kellaway P, Petersén I (eds) Automation of clinical electroencephalography. Rave, New York, pp 75–102

  • Mierau A, Felsch M, Hülsdünker T, Mierau J, Bullermann P, Weiß B, Strüder K (2016) The interrelation between sensorimotor abilities, cognitive performance and individual EEG alpha peak frequency in young children. Clin Neurophysiol 127:270–276

    Article  PubMed  Google Scholar 

  • Miskovic V, Ma X, Chou CA, Fan M, Owens M, Sayama H, Gibb B (2015) Developmental changes in spontaneous electrocortical activity and network organization from early to late childhood. NeuroImage 118:237–247

    Article  PubMed  PubMed Central  Google Scholar 

  • Niedermeyer E, Lopes da Silva F (1999) Electroencephalography: basic principles, clinical applications, and related fields, 4th edn. Williams and Wilkins, Baltimore

    Google Scholar 

  • Orekhova EV, Stroganova TA, Posikera IN, Elam M (2006) EEG theta rhythm in infants and preschool children. Clin Neurophysiol 117:1047–1062

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Martínez EI, Barriga-Paulino CI, Zapata MI, Chinchilla C, López- Jiménez AM, Gómez CM (2012) Narrow band quantitative and multivariate electroencephalogram analysis of peri-adolescent period. BMC Neurosci 13:104. doi:10.1186/1471-2202-13-104

    Article  PubMed Central  Google Scholar 

  • Rodríguez-Martínez EI, Barriga-Paulino CI, Rojas-Benjumea MA, Gómez CM (2015) Co-maturation of theta and low-beta rhythms during child development. Brain Topogr 28:205–260. doi:10.1007/s10548-014-0369-3

    Article  Google Scholar 

  • Saby JN, Marshall PJ (2012) The utility of EEG band power analysis in the study of infancy and early childhood. Dev Neuropsychol 37:253–273

    Article  PubMed  PubMed Central  Google Scholar 

  • Salinsky MC, Oken BS, Morehead L (1991) Test–retest reliability in EEG frequency analysis. Electroencephalogr Clin Neurophysiol 79:383–392

    Article  Google Scholar 

  • Schäfer C, Morgan B, Ye A, Taylor MJ, Doesburg SM (2014) oscillations, networks, and their development: mEG connectivity changes with age. Hum Brain Mapp 35:5249–5261

    Article  PubMed  Google Scholar 

  • Segalowitz SJ, Santesso DL, Jetha MK (2010) Electrophysiological changes during adolescence: a review. Brain Cogn 72(1):86–100

    Article  PubMed  Google Scholar 

  • Shaw P, Greenstein D, Lerch J, Clasen L, Lenroot R, Gogtay N, Giedd J (2006) Intellectual ability and cortical development in children and adolescents. Nature 440:676–679

    Article  CAS  PubMed  Google Scholar 

  • Shaw P, Kabani NJ, Lerch JP, Eckstrand K, Lenroot R, Gogtay N, Wise SP (2008) Neuro developmental trajectories of the human cerebral cortex. J Neurosci 28:3586–3594

    Article  CAS  PubMed  Google Scholar 

  • Thorpe SG, Cannon EN, Fox NA (2016) Spectral and source structural development of mu and alpha rhythms from infancy through adulthood. Clin Neurophysiol 127:254–269

    Article  PubMed  Google Scholar 

  • Valdés P, Virués T, Szava S, Galán L, Biscay R (1990) High resolution spectral EEG norms topography. Brain Topogr 3:281–282

    Google Scholar 

  • Whitford TJ, Rennie CJ, Grieve SM, Clark CR, Gordon E, Williams LM (2007) brain maturation in adolescence: concurrent changes in neuroanatomy and neurophysiology. Hum Brain Mapp 28:228–237

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Spanish Ministry of Science and Innovation, grant number PSI2013-47506-R funded by the FEDER program of the UE, and Junta de Andalucía, grant number CTS-153.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Rodríguez-Martínez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

11571_2016_9402_MOESM2_ESM.tif

Supplemental Figure 1: Mean of the Logarithm of the spectral power in different age groups (1-children, 2-preadolescents, 3-adolscents, 4-youngsters, 5-young adults) for each frequency band: low delta (0-1 Hz); high delta (2-3 Hz); theta (4-7 Hz); low alpha (8-10 Hz); high alpha (11-14 Hz); low beta (15-20 Hz); high beta (21-35 Hz) and gamma (36-46 Hz). Each single point represents the mean SP value of the electrodes represented in Figure 1. The bars represent 2* Standard Error. (TIFF 4147 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Martínez, E.I., Ruiz-Martínez, F.J., Barriga Paulino, C.I. et al. Frequency shift in topography of spontaneous brain rhythms from childhood to adulthood. Cogn Neurodyn 11, 23–33 (2017). https://doi.org/10.1007/s11571-016-9402-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-016-9402-4

Keywords

Navigation