Skip to main content
Log in

Prevalence of myocardial bridging and correlation with coronary atherosclerosis studied with 64-slice CT coronary angiography

Prevalenza dei decorsi miocardici e relazione con l’aterosclerosi coronarica studiate mediante angiografia coronarica con TC a 64 strati

  • Cardiac Radiology/Cardioradiologia
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to assess the prevalence and characteristics of myocardial bridging in patients who underwent multislice computed tomography coronary angiography (MSCT-CA) and to evaluate the correlation between bridged coronary segments and atherosclerosis.

Materials and methods

A total of 277 patients (mean age 60±11 years) we consecutively examined with 64-slice MSCT-CA for suspected or known coronary atherosclerosis were retrospectively reviewed for myocardial bridging. Segments proximal and distal to the bridging were evaluated for atherosclerotic plaque, as were the remaining coronary segments.

Results

Myocardial bridging was present in 82 patients (30%, mean age 59±12). Bridges were of variable length (<1 cm 58%; 1-2 cm 32%; >2 cm 10%) and depth (superficial 69%, intramyocardial 31%) and frequently localised in the mid-distal segment of the left anterior descending artery (95%). Myocardial bridging cannot be considered a significant risk factor for coronary atherosclerosis (odds ratio 0.49) compared with traditional cardiovascular risk factors. Coronary segments proximal to the bridge showed no atherosclerotic disease (33%), positive remodelling (27%), <50% stenosis (20%) or >50% stenosis (20%). We identified 12 noncalcified, 32 mixed and 17 calcified plaques. The distal segments were significantly less affected (p<0.0001).

Conclusions

MSCT-CA is a reliable, noninvasive method that is able to depict myocardial bridging and associated atherosclerotic plaque in the proximal segments.

Riassunto

Obiettivo

Scopo del nostro lavoro è stimare la prevalenza e le caratteristiche dei ponti miocardici in una popolazione consecutiva di pazienti sottoposti ad angiografia coronarica mediante tomografia computerizzata multistrato (AC-TCMS), nonché valutare la relazione tra i decorsi miocardici e l’aterosclerosi coronarica.

Materiali e metodi

In una popolazione di 277 pazienti (età media 60±11), sottoposti consecutivamente ad AC-TCMS con scanner a 64-strati per malattia aterosclerotica coronarica sospetta o nota, è stata ricercata la presenza di decorsi miocardici. Sono state valutate le placche aterosclerotiche presenti nei segmenti prossimali e distali al decorso miocardico, nonché nei restanti segmenti coronarici.

Risultati

Ottantadue pazienti (30%, età media 59±12) presentano decorso miocardico superficiale (69%) o intramiocardico (31%), con lunghezza variabile (<1 cm: 58%; 1–2 cm: 32%; >2 cm: 10%), frequentemente localizzato nel tratto medio-distale dell’arteria coronaria discendente anteriore (95%). Il ponte miocardico non rappresenta un fattore di rischio significativo di aterosclerosi coronarica (odds ratio 0,49) rispetto ai tradizionali fattori di rischio cardiovascolare. I segmenti prossimali mostrano: assenza di malattia (33%), rimodellamento positivo (27%), stenosi <50% (20%) o >50% (20%). Sono state visualizzate 12 placche non calcifiche, 32 miste e 17 calcifiche. Nei segmenti distali l’aterosclerosi non è rilevante (p<0,0001).

Conclusioni

La AC-TCMS è una metodica non invasiva efficace nel dimostrare i ponti miocardici e le placche aterosclerotiche associate presenti nei segmenti prossimali.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References/Bibliografia

  1. Mohlenkamp S, Hort W, Ge J, Erbel R (2002) Update on myocardial bridging. Circulation 106: 2616–2622

    Article  PubMed  Google Scholar 

  2. Rossi L, Dander B, Nidasio GP et al (1980) Myocardial bridges and ischemic heart disease. Eur Heart J 1: 239–245

    CAS  PubMed  Google Scholar 

  3. Alegria JR, Herrmann J, Holmes DR Jr et al (2005) Myocardial bridging. Eur Heart J 26: 1159–1168

    Article  PubMed  Google Scholar 

  4. Ge J, Jeremias A, Rupp A et al (1999) New signs characteristic of myocardial bridging demonstrated by intracoronary ultrasound and Doppler. Eur Heart J 20: 1707–1716

    Article  CAS  PubMed  Google Scholar 

  5. Sanchez V, Zamorano J (1999) New approach to the diagnosis of myocardial bridging by intracoronary ultrasound and Doppler. Eur Heart J 20: 1687–1688

    Article  CAS  PubMed  Google Scholar 

  6. Goitein O, Lacomis JM (2005) Myocardial bridging: noninvasive diagnosis with multidetector CT. J Comput Assist Tomogr 29: 238–240

    Article  PubMed  Google Scholar 

  7. Kantarci M, Duran C, Durur I et al (2006) Detection of myocardial bridging with ECG-gated MDCT and multiplanar reconstruction. AJR Am J Roentgenol 186: S391–S394

    Article  PubMed  Google Scholar 

  8. Ko SM, Choi JS, Nam CW, Hur SH (2008) Incidence and clinical significance of myocardial bridging with ECG-gated 16-row MDCT coronary angiography. Int J Cardiovasc Imaging 24: 445–452

    Article  PubMed  Google Scholar 

  9. Zeina AR, Odeh M, Blinder J et al (2007) Myocardial bridge: evaluation on MDCT. AJR Am J Roentgenol 188: 1069–1073

    Article  PubMed  Google Scholar 

  10. Lubarsky L, Gupta MP, Hecht HS (2007) Evaluation of myocardial bridging of the left anterior descending coronary artery by 64-slice multidetector computed tomographic angiography. Am J Cardiol 100: 1081–1082

    Article  PubMed  Google Scholar 

  11. Konen E, Goitein O, Sternik L et al (2007) The prevalence and anatomical patterns of intramuscular coronary arteries. J Am Coll Cardiol 49: 587–593

    Article  PubMed  Google Scholar 

  12. Cademartiri F, La Grutta L, Malagò R et al (2008) Prevalence of anatomical variants and coronary anomalies in 543 consecutive patients studied with 64-slice CT coronary angiography. Eur Radiol 18: 781–791

    Article  PubMed  Google Scholar 

  13. Leschka S, Koepfli P, Husmann L et al (2008) Myocardial bridging: depiction rate and morphology at CT coronary angiography-comparison with conventional coronary angiography. Radiology 246: 754–762

    Article  PubMed  Google Scholar 

  14. Johansen C, Kirsch J, Araoz P, Williamson E (2008) Detection of myocardial bridging by 64-row computed tomography angiography of the coronaries. J Comput Assist Tomogr 32: 448–451

    Article  PubMed  Google Scholar 

  15. Budoff MJ, Cohen MC, Garcia MJ et al (2005) ACCF/AHA clinical competence statement on cardiac imaging with computed tomography and magnetic resonance. Circulation 112: 598–617

    Article  PubMed  Google Scholar 

  16. Achenbach S, Ropers D, Hoffmann U et al (2004) Assessment of coronary remodeling in stenotic and nonstenotic coronary atherosclerotic lesions by multidetector spiral computed tomography. J Am Coll Cardiol 43: 842–847

    Article  PubMed  Google Scholar 

  17. Ferreira AG Jr, Trotter SE, König B Jr et al (1991) Myocardial bridges: morphological and functional aspects. Br Heart J 66: 364–367

    Article  PubMed  Google Scholar 

  18. Achrafi H (1992) Hypertrophic cardiomyopathy and myocardial bridging. Int J Cardiol 37: 111–112

    Article  CAS  PubMed  Google Scholar 

  19. Noble J, Bourassa MG, Petitclerc R, Dyrda I (1976) Myocardial bridging and milking effect of the left anterior descending coronary artery: normal variant or obstruction? Am J Cardiol 37: 993–999

    Article  CAS  PubMed  Google Scholar 

  20. Haager PK, Schwarz ER, vom Dahl J et al (2000) Long term angiographic and clinical follow up in patients with stent implantation for symptomatic myocardial bridging. Heart 84: 403–408

    Article  CAS  PubMed  Google Scholar 

  21. DeWood MA, Spores J, Notske R et al (1980) Prevalence of total coronary occlusion during the early hours of transmural myocardial infarction. N Engl J Med 303: 897–902

    CAS  PubMed  Google Scholar 

  22. Ciampricotti R, el Gamal M (1988) Vasospastic coronary occlusion associated with a myocardial bridge. Cathet Cardiovasc Diagn 14: 118–120

    Article  CAS  PubMed  Google Scholar 

  23. Gertz SD, Uretsky G, Wajnberg RS et al (1981) Endothelial cell damage and thrombus formation after partial arterial constriction: relevance to the role of coronary artery spasm in the pathogenesis of myocardial infarction. Circulation 63: 476–486

    CAS  PubMed  Google Scholar 

  24. Ishikawa Y, Ishii T, Asuwa N, Masuda S (1997) Absence of atherosclerosis evolution in the coronary arterial segment covered by myocardial tissue in cholesterol-fed rabbits. Virchows Arch 430: 163–171

    Article  CAS  PubMed  Google Scholar 

  25. Masuda T, Ishikawa Y, Akasaka Y et al (2001) The effect of myocardial bridging of the coronary artery on vasoactive agents and atherosclerosis localization. J Pathol 193: 408–414

    Article  CAS  PubMed  Google Scholar 

  26. Malek AM, Alper SL, Izumo S (1999) Hemodynamic shear stress and its role in atherosclerosis. JAMA 282: 2035–2042

    Article  CAS  PubMed  Google Scholar 

  27. Klues HG, Schwarz ER, vom Dahl J et al (1997) Disturbed intracoronary hemodynamics in myocardial bridging: early normalization by intracoronary stent placement. Circulation 96: 2905–2913

    CAS  PubMed  Google Scholar 

  28. Schroeder S, Achenbach S, Bengel F et al (2008) Cardiac computed tomography: indications, applications, limitations, and training requirements: report of a Writing Group deployed by the Working Group Nuclear Cardiology and Cardiac CT of the European Society of Cardiology and the European Council of Nuclear Cardiology. Eur Heart J 29: 531–556

    Article  PubMed  Google Scholar 

  29. Scheffel H, Alkadhi H, Plass A et al (2006) Accuracy of dualsource CT coronary angiography: first experience in a high pre-test probability population without heart rate control. Eur Radiol 16: 2739–2747

    Article  PubMed  Google Scholar 

  30. Hendel RC, Patel MR, Kramer CM et al (2006) ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging: a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group, American College of Radiology, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, American Society of Nuclear Cardiology, North American Society for Cardiac Imaging, Society for Cardiovascular Angiography and Interventions, and Society of Interventional Radiology. J Am Coll Cardiol 48: 1475–1497

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. La Grutta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

La Grutta, L., Runza, G., Lo Re, G. et al. Prevalence of myocardial bridging and correlation with coronary atherosclerosis studied with 64-slice CT coronary angiography. Radiol med 114, 1024–1036 (2009). https://doi.org/10.1007/s11547-009-0446-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-009-0446-y

Keywords

Parole chiave

Navigation