Skip to main content

Advertisement

Log in

Exercise effects on bone mineral density in older adults: a meta-analysis of randomized controlled trials

  • Published:
AGE Aims and scope Submit manuscript

Abstract

The purpose of the study was to assess the effects of exercise interventions with different impact loading characteristics on lumbar spine (LS) and femoral neck (FN) bone mineral density (BMD) in older adults. We searched electronic databases and hand searched selected journals up to February 2011 for randomized controlled trials (RCTs) investigating the effects of impact exercise interventions on LS and FN BMD in older adults. Exercise protocols were categorized according to impact loading characteristics. Weighted mean difference (WMD) meta-analyses were undertaken. Heterogeneity amongst trials and publication bias was tested. Random-effects models were applied. Trial quality assessment was also undertaken. Nineteen RCTs, including 1577 subjects, met the inclusion criteria. Twenty-two study group comparisons reported BMD data at the LS. Meta-analysis showed a significant change in BMD at this site (WMD 0.011 g/cm2, 95% CI 0.003 to 0.020; p = 0.007), although results were moderately inconsistent (I 2 = 52.2%). BMD data at the FN were available from 19 study group comparisons among older adults. Results were inconsistent (I 2 = 63.6%) in showing a significant positive effect of exercise on BMD at this site (WMD 0.016 g/cm2, 95% CI 0.005 to 0.027; p = 0.004). Combined loading studies of impact activity mixed with high-magnitude joint reaction force loading through resistance training were effective at LS (WMD 0.016 g/cm2, 95% CI 0.002 to 0.036; p = 0.028), and no inconsistency existed among these trials. Odd-impact protocols were also effective in increasing BMD at LS (WMD 0.039 g/cm2, 95% CI 0.002 to 0.075; p = 0.038) and FN (WMD 0.036 g/cm2, 95% CI 0.012 to 0.061; p = 0.004), although heterogeneity was evident (I 2 = 87.5% and I 2 = 83.5%, respectively). We found consistency among results for low-impact and resistance exercise studies on LS and FN, although non-significant BMD changes were evident amongst these types of protocols at any site and amongst the RCTs that provided a combined loading impact exercise at FN. Funnel plots showed no evidence of publication bias. Trial quality was moderate to high. The findings from our meta-analysis of RCTs support the efficacy of exercise for increasing LS and FN BMD in older adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akobeng AK (2005) Understanding randomised controlled trials. Arch Dis Child 90(8):840–844. doi:10.1136/adc.2004.058222

    Article  PubMed  CAS  Google Scholar 

  • Bailey CA, Brooke-Wavell K (2008) Exercise for optimising peak bone mass in women. Proc Nutr Soc 67(1):9–18

    Article  PubMed  CAS  Google Scholar 

  • Berard A, Bravo G, Gauthier P (1997) Meta-analysis of the effectiveness of physical activity for the prevention of bone loss in postmenopausal women. Osteoporos Int 7(4):331–337

    Article  PubMed  CAS  Google Scholar 

  • Berlin JA (1997) Does blinding of readers affect the results of meta-analyses? Lancet 350:185

    Article  PubMed  CAS  Google Scholar 

  • Borenstein M, Hedges LV, Higgins JP, Rothstein HR (2009) Introduction to meta-analysis. Wiley, Chichester

    Book  Google Scholar 

  • Brooke-Wavell K, Jones PR, Hardman AE (1997) Brisk walking reduces calcaneal bone loss in post-menopausal women. Clin Sci (Lond) 92(1):75–80

    CAS  Google Scholar 

  • Chodzko-Zajko WJ, Proctor DN, Fiatarone Singh MA, Minson CT, Nigg CR, Salem GJ, Skinner JS (2009) American College of Sports Medicine position stand. Exercise and physical activity for older adults. Med Sci Sports Exerc 41(7):1510–1530. doi:10.1249/MSS.0b013e3181a0c95c

    Article  PubMed  Google Scholar 

  • Chuin A, Labonté M, Tessier D, Khalil A, Bobeuf F, Doyon CY, Rieth N, Dionne IJ (2009) Effect of antioxidants combined to resistance training on BMD in elderly women: a pilot study. Osteoporos Int 20(7):1253–1258

    Article  PubMed  CAS  Google Scholar 

  • Cooper C, Cole ZA, Holroyd CR, Earl SC, Harvey NC, Dennison EM, Melton LJ, Cummings SR, Kanis JA (2011) Secular trends in the incidence of hip and other osteoporotic fractures. Osteoporos Int. doi:10.1007/s00198-011-1601-6

  • Cummings SR, Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359(9319):1761–1767. doi:10.1016/S0140-6736(02)08657-9

    Article  PubMed  Google Scholar 

  • Dhanwal DK, Dennison EM, Harvey NC, Cooper C (2011) Epidemiology of hip fracture: worldwide geographic variation. Indian J Orthop 45(1):15–22. doi:10.4103/0019-5413.73656

    Article  PubMed  Google Scholar 

  • Duval S, Tweedie R (2000) Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56(2):455–463

    Article  PubMed  CAS  Google Scholar 

  • Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315(7109):629–634

    Article  PubMed  CAS  Google Scholar 

  • Englund U, Littbrand H, Sondell A, Pettersson U, Bucht G (2005) A 1-year combined weight-bearing training program is beneficial for bone mineral density and neuromuscular function in older women. Osteoporos Int 16(9):1117–1123

    Article  PubMed  Google Scholar 

  • Frost HM (1986) Intermediary organization of the skeleton. CRC, Boca Raton

    Google Scholar 

  • Gennari C (2001) Calcium and vitamin D nutrition and bone disease of the elderly. Public Health Nutr 4(2B):547–559

    Article  PubMed  CAS  Google Scholar 

  • Griffith JF, Genant HK (2008) Bone mass and architecture determination: state of the art. Best Pract Res Clin Endocrinol Metab 22(5):737–764. doi:10.1016/j.beem.2008.07.003

    Article  PubMed  Google Scholar 

  • Gullberg B, Johnell O, Kanis JA (1997) World-wide projections for hip fracture. Osteoporos Int 7(5):407–413

    Article  PubMed  CAS  Google Scholar 

  • Higgins JPT, Green S (eds) (2009) Cochrane handbook for systematic reviews of interventions version 5.0.2 [updated September 2009]. The Cochrane Collaboration, 2009. Available from http://www.cochrane-handbook.org.

  • Higgins J, Thompson S, Deeks J, Altman D (2002) Statistical heterogeneity in systematic reviews of clinical trials: a critical appraisal of guidelines and practice. J Health Serv Res Policy 7(1):51–61

    Article  PubMed  Google Scholar 

  • Hind K, Burrows M (2007) Weight-bearing exercise and bone mineral accrual in children and adolescents: a review of controlled trials. Bone 40(1):14–27. doi:10.1016/j.bone.2006.07.006

    Article  PubMed  CAS  Google Scholar 

  • Hsieh YF, Robling AG, Ambrosius WT, Burr DB, Turner CH (2001) Mechanical loading of diaphyseal bone in vivo: the strain threshold for an osteogenic response varies with location. J Bone Miner Res 16(12):2291–2297. doi:10.1359/jbmr.2001.16.12.2291

    Article  PubMed  CAS  Google Scholar 

  • Jessup JV, Horne C, Vishen RK, Wheeler D (2003) Effects of exercise on done density, balance, and self-efficacy in older women. Biol Res Nurs 4(3):171

    Article  PubMed  Google Scholar 

  • Johnell O, Kanis J (2005) Epidemiology of osteoporotic fractures. Osteoporos Int 16(Suppl 2):S3–S7. doi:10.1007/s00198-004-1702-6

    Article  PubMed  Google Scholar 

  • Johnell O, Kanis JA, Oden A, Johansson H, De Laet C, Delmas P, Eisman JA, Fujiwara S, Kroger H, Mellstrom D, Meunier PJ, Melton LJ 3rd, O’Neill T, Pols H, Reeve J, Silman A, Tenenhouse A (2005) Predictive value of BMD for hip and other fractures. J Bone Miner Res 20(7):1185–1194. doi:10.1359/JBMR.050304

    Article  PubMed  Google Scholar 

  • Kanis JA, McCloskey EV, Johansson H, Oden A, Melton LJ 3rd, Khaltaev N (2008) A reference standard for the description of osteoporosis. Bone 42(3):467–475. doi:10.1016/j.bone.2007.11.001

    Article  PubMed  CAS  Google Scholar 

  • Kelley GA, Kelley KS, Tran ZV (2001) Resistance training and bone mineral density in women: a meta-analysis of controlled trials. Am J Phys Med Rehabil 80(1):65–77

    Article  PubMed  CAS  Google Scholar 

  • Kemmler W, Von Stengel S, Engelke K, Häberle L, Kalender WA (2010) Exercise effects on bone mineral density, falls, coronary risk factors, and health care costs in older women: the randomized controlled senior fitness and prevention (SEFIP) study. Arch Intern Med 170(2):179–185

    Article  PubMed  Google Scholar 

  • Khosla S, Riggs BL (2005) Pathophysiology of age-related bone loss and osteoporosis. Endocrinol Metab Clin North Am 34(4):1015–1030. doi:10.1016/j.ecl.2005.07.009

    Article  PubMed  CAS  Google Scholar 

  • Kiebzak GM, Beinart GA, Perser K, Ambrose CG, Siff SJ, Heggeness MH (2002) Undertreatment of osteoporosis in men with hip fracture. Arch Intern Med 162(19):2217–2222

    Article  PubMed  Google Scholar 

  • Kohrt WM, Bloomfield SA, Little KD, Nelson ME, Yingling VR (2004) American College of Sports Medicine position stand: physical activity and bone health. Med Sci Sports Exerc 36(11):1985–1996

    Article  PubMed  Google Scholar 

  • Korpelainen R, Keinanen-Kiukaanniemi S, Heikkinen J, Vaananen K, Korpelainen J (2006) Effect of impact exercise on bone mineral density in elderly women with low BMD: a population-based randomized controlled 30-month intervention. Osteoporos Int 17:109–118

    Article  PubMed  Google Scholar 

  • Lanyon LE (1996) Using functional loading to influence bone mass and architecture: objectives, mechanisms, and relationship with estrogen of the mechanically adaptive process in bone. Bone 18(1 Suppl):37S–43S

    Article  PubMed  CAS  Google Scholar 

  • Lanyon L, Skerry T (2001) Postmenopausal osteoporosis as a failure of bone’s adaptation to functional loading: a hypothesis. J Bone Miner Res 16(11):1937–1947. doi:10.1359/jbmr.2001.16.11.1937

    Article  PubMed  CAS  Google Scholar 

  • Lau EM, Woo J, Leung PC, Swaminathan R, Leung D (1992) The effects of calcium supplementation and exercise on bone density in elderly Chinese women. Osteoporos Int A 2(4):168–173

    Article  CAS  Google Scholar 

  • Lord SR, Ward JA, Williams P, Zivanovic E (1996) The effects of a community exercise program on fracture risk factors in older women. Osteoporos 6(5):361–367

    Article  CAS  Google Scholar 

  • MacKelvie KJ, Khan KM, McKay HA (2002) Is there a critical period for bone response to weight-bearing exercise in children and adolescents? A systematic review. Br J Sports Med 36(4):250–257

    Article  PubMed  CAS  Google Scholar 

  • Marques EA, Mota J, Machado L, Sousa F, Coelho M, Moreira P, Carvalho J (2011a) Multicomponent training program with weight-bearing exercises elicits favorable bone density, muscle strength, and balance adaptations in older women. Calcif Tissue Int 88(2):117–129. doi:10.1007/s00223-010-9437-1

    Article  PubMed  CAS  Google Scholar 

  • Marques EA, Wanderley F, Machado L, Sousa F, Viana JL, Moreira-Goncalves D, Moreira P, Mota J, Carvalho J (2011b) Effects of resistance and aerobic exercise on physical function, bone mineral density. OPG and RANKL in older women. Exp Gerontol 46(7):524–532. doi:10.1016/j.exger.2011.02.005

    CAS  Google Scholar 

  • Martyn-St James M, Carroll S (2006) High-intensity resistance training and postmenopausal bone loss: a meta-analysis. Osteoporos Int 17(8):1225–1240

    Article  PubMed  CAS  Google Scholar 

  • Martyn-St James M, Carroll S (2008) Meta-analysis of walking for preservation of bone mineral density in postmenopausal women. Bone 43(3):521–531. doi:10.1016/j.bone.2008.05.012

    Article  PubMed  Google Scholar 

  • Martyn-St James M, Carroll S (2009) A meta-analysis of impact exercise on postmenopausal bone loss: the case for mixed loading exercise programmes. Br J Sports Med 43(12):898–908. doi:10.1136/bjsm.2008.052704

    Article  PubMed  CAS  Google Scholar 

  • Moher D, Schulz KF, Altman D (2001) The CONSORT statement: revised recommendations for improving the quality of reports of parallel-group randomized trials. JAMA 285(15):1987–1991

    Article  PubMed  CAS  Google Scholar 

  • Nelson ME, Rejeski WJ, Blair SN, Duncan PW, Judge JO, King AC, Macera CA, Castaneda-Sceppa C (2007) Physical activity and public health in older adults: recommendation from the American College of Sports Medicine and the American Heart Association. Circulation 116(9):1094–1105

    Article  PubMed  Google Scholar 

  • Nichols JF, Nelson KP, Peterson KK, Sartoris DJ (1995) Bone mineral density responses to high-intensity strength training in active older women. J Aging Phys Act 3(1):26–38

    Google Scholar 

  • Nikander R, Sievanen H, Heinonen A, Kannus P (2005) Femoral neck structure in adult female athletes subjected to different loading modalities. J Bone Miner Res 20(3):520–528. doi:10.1359/JBMR.041119

    Article  PubMed  Google Scholar 

  • Park H, Kim KJ, Komatsu T, Park SK, Mutoh Y (2008) Effect of combined exercise training on bone, body balance, and gait ability: a randomized controlled study in community-dwelling elderly women. J Bone Miner Metabol 26(3):254–259

    Article  Google Scholar 

  • Rhodes EC, Martin AD, Taunton JE, Donnelly M, Warren J, Elliot J (2000) Effects of one year of resistance training on the relation between muscular strength and bone density in elderly women. Br J Sports Med 34(1):18–22

    Article  PubMed  CAS  Google Scholar 

  • Schwab P, Scalapino K (2011) Exercise for bone health: rationale and prescription. Curr Opin Rheumatol 23(2):137–141. doi:10.1097/BOR.0b013e3283434501

    Article  PubMed  Google Scholar 

  • Sterne JA, Gavaghan D, Egger M (2000) Publication and related bias in meta-analysis: power of statistical tests and prevalence in the literature. J Clin Epidemiol 53(11):1119–1129. doi:10.1016/S0895-4356(00)00242-0

    Article  PubMed  CAS  Google Scholar 

  • Taaffe DR, Duret C, Wheeler S, Marcus R (1999) Once-weekly resistance exercise improves muscle strength and neuromuscular performance in older adults. J Am Geriatr Soc 47(10):1208–1214

    PubMed  CAS  Google Scholar 

  • Tanaka H, Seals DR (2003) Invited review: dynamic exercise performance in Masters athletes: insight into the effects of primary human aging on physiological functional capacity. J Appl Physiol 95(5):2152–2162. doi:10.1152/japplphysiol.00320.2003

    PubMed  Google Scholar 

  • Vainionpaa A, Korpelainen R, Vihriala E, Rinta-Paavola A, Leppaluoto J, Jamsa T (2006) Intensity of exercise is associated with bone density change in premenopausal women. Osteoporos Int 17(3):455–463

    Article  PubMed  CAS  Google Scholar 

  • Villareal DT, Steger-May K, Schechtman KB, Yarasheski KE, Brown M, Sinacore DR, Binder EF (2004) Effects of exercise training on bone mineral density in frail older women and men: a randomised controlled trial. Age Ageing 33(3):309–312

    Article  PubMed  Google Scholar 

  • Vincent KR, Braith RW (2002) Resistance exercise and bone turnover in elderly men and women. Med Sci Sports Exerc 34(1):17–23

    Article  PubMed  Google Scholar 

  • von Stengel S, Kemmler W, Engelke K, Kalender WA (2011a) Effects of whole body vibration on bone mineral density and falls: results of the randomized controlled ELVIS study with postmenopausal women. Osteoporos Int 22:317–325

    Article  Google Scholar 

  • von Stengel S, Kemmler W, Bebenek M, Engelke K, Kalender WA (2011b) Effects of whole body vibration training on different devices on bone mineral density. Med Sci Sports Exerc 43(6):1071–1079. doi:10.1249/MSS.0b013e318202f3d3

    Article  Google Scholar 

  • Wallace BA, Cumming RG (2000) Systematic review of randomized trials of the effect of exercise on bone mass in pre- and postmenopausal women. Calcif Tissue Int 67(1):10–18

    Article  PubMed  CAS  Google Scholar 

  • Watts NB (2004) Fundamentals and pitfalls of bone densitometry using dual-energy X-ray absorptiometry (DXA). Osteoporos Int 15(11):847–854. doi:10.1007/s00198-004-1681-7

    Article  PubMed  Google Scholar 

  • Wolff I, van Croonenborg JJ, Kemper HC, Kostense PJ, Twisk JW (1999) The effect of exercise training programs on bone mass: a meta-analysis of published controlled trials in pre- and postmenopausal women. Osteoporos Int 9(1):1–12

    Article  PubMed  CAS  Google Scholar 

  • Woo J, Hong A, Lau E, Lynn H (2007) A randomised controlled trial of Tai Chi and resistance exercise on bone health, muscle strength and balance in community-living elderly people. Age Ageing 36:262–268

    Article  PubMed  Google Scholar 

  • Wood L, Egger M, Gluud LL, Schulz KF, Juni P, Altman DG, Gluud C, Martin RM, Wood AJ, Sterne JA (2008) Empirical evidence of bias in treatment effect estimates in controlled trials with different interventions and outcomes: meta-epidemiological study. BMJ 336(7644):601–605. doi:10.1136/bmj.39465.451748.AD

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by the Portuguese Foundation of Science and Technology, grant FCOMP-01-0124-FEDER-009587 - PTDC/DES/102094/2008, and individual grants SFRH/BD/36319/2007 and SFRH/BSAB/1025/2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa A. Marques.

About this article

Cite this article

Marques, E.A., Mota, J. & Carvalho, J. Exercise effects on bone mineral density in older adults: a meta-analysis of randomized controlled trials. AGE 34, 1493–1515 (2012). https://doi.org/10.1007/s11357-011-9311-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-011-9311-8

Keywords

Navigation