Skip to main content

Advertisement

Log in

Generalized Network Psychometrics: Combining Network and Latent Variable Models

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

We introduce the network model as a formal psychometric model, conceptualizing the covariance between psychometric indicators as resulting from pairwise interactions between observable variables in a network structure. This contrasts with standard psychometric models, in which the covariance between test items arises from the influence of one or more common latent variables. Here, we present two generalizations of the network model that encompass latent variable structures, establishing network modeling as parts of the more general framework of structural equation modeling (SEM). In the first generalization, we model the covariance structure of latent variables as a network. We term this framework latent network modeling (LNM) and show that, with LNM, a unique structure of conditional independence relationships between latent variables can be obtained in an explorative manner. In the second generalization, the residual variance–covariance structure of indicators is modeled as a network. We term this generalization residual network modeling (RNM) and show that, within this framework, identifiable models can be obtained in which local independence is structurally violated. These generalizations allow for a general modeling framework that can be used to fit, and compare, SEM models, network models, and the RNM and LNM generalizations. This methodology has been implemented in the free-to-use software package lvnet, which contains confirmatory model testing as well as two exploratory search algorithms: stepwise search algorithms for low-dimensional datasets and penalized maximum likelihood estimation for larger datasets. We show in simulation studies that these search algorithms perform adequately in identifying the structure of the relevant residual or latent networks. We further demonstrate the utility of these generalizations in an empirical example on a personality inventory dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Throughout this paper, vectors will be represented with lowercase boldfaced letters and matrices will be denoted by capital boldfaced letters. Roman letters will be used to denote observed variables and parameters (such as the number of nodes), and Greek letters will be used to denote latent variables and parameters that need to be estimated. The subscript i will be used to denote the realized response vector of subject i, and omission of this subscript will be used to denote the response of a random subject.

  2. We make use here of the convenient all-y notation and do not distinguish between exogenous and endogenous latent variables (Hayduk, 1987).

  3. A saturated GGM is also called a partial correlation network because it contains the sample partial correlation coefficients as edge weights.

  4. To our knowledge, the GGM has not yet been framed in this form. We chose this form because it allows for clear modeling and interpretation of the network parameters.

  5. We use the CFA framework instead of the SEM framework here as the main application of this framework is in exploratively estimating relationships between latent variables.

  6. Developmental version: http://www.github.com/sachaepskamp/lvnet; stable version: https://cran.r-project.org/package=lvnet.

References

  • Arbuckle, J. L. (1996). Full information estimation in the presence of incomplete data. In G. A. Marcoulides & R. E. Schumacker (Eds.), Advanced structural equation modeling (pp. 243–277). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.

  • Benet-Martinez, V., & John, O. (1998). Los Cinco Grandes across cultures and ethnic groups: Multitrait multimethod analyses of the big five in Spanish and English. Journal of Personality and Social Psychology, 75, 729–750.

    Article  PubMed  Google Scholar 

  • Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107(2), 238–346.

    Article  PubMed  Google Scholar 

  • Borsboom, D. (2008). Psychometric perspectives on diagnostic systems. Journal of Clinical Psychology, 64(9), 1089–1108.

    Article  PubMed  Google Scholar 

  • Borsboom, D., & Cramer, A. O. J. (2013). Network analysis: An integrative approach to the structure of psychopathology. Annual Review of Clinical Psychology, 9, 91–121.

    Article  PubMed  Google Scholar 

  • Borsboom, D., Cramer, A. O. J., Schmittmann, V. D., Epskamp, S., & Waldorp, L. J. (2011). The small world of psychopathology. PloS ONE, 6(11), e27407.

    Article  PubMed  PubMed Central  Google Scholar 

  • Browne, M. W., & Cudeck, R. (1992). Alternative ways of assessing model fit. Sociological Methods & Research, 21(2), 230–258.

    Article  Google Scholar 

  • Chandrasekaran, V., Parrilo, P. A., & Willsky, A. S. (2012). Latent variable graphical model selection via convex optimization (with discussion). The Annals of Statistics, 40(4), 1935–1967.

    Article  Google Scholar 

  • Chen, J., & Chen, Z. (2008). Extended Bayesian information criteria for model selection with large model spaces. Biometrika, 95(3), 759–771.

    Article  Google Scholar 

  • Costantini, G., Epskamp, S., Borsboom, D., Perugini, M., Mõttus, R., Waldorp, L. J., et al. (2015). State of the aRt personality research: A tutorial on network analysis of personality data in R. Journal of Research in Personality, 54, 13–29.

    Article  Google Scholar 

  • Cramer, A. O. J., Sluis, S., Noordhof, A., Wichers, M., Geschwind, N., Aggen, S. H., et al. (2012). Dimensions of normal personality as networks in search of equilibrium: You can’t like parties if you don’t like people. European Journal of Personality, 26(4), 414–431.

    Article  Google Scholar 

  • Cramer, A. O. J., Waldorp, L., van der Maas, H., & Borsboom, D. (2010). Comorbidity: A network perspective. Behavioral and Brain Sciences, 33(2–3), 137–150.

    Article  PubMed  Google Scholar 

  • Dalege, J., Borsboom, D., van Harreveld, F., van den Berg, H., Conner, M., & van der Maas, H. L. J. (2016). Toward a formalized account of attitudes: The causal attitude network (CAN) model. Psychological Review, 123(1), 2–22.

    Article  PubMed  Google Scholar 

  • Dempster, A. P. (1972). Covariance selection. Biometrics, 28(1), 157–175.

    Article  Google Scholar 

  • Digman, J. (1989). Five robust trait dimensions: Development, stability, and utility. Journal of Personality, 57(2), 195–214.

    Article  PubMed  Google Scholar 

  • Dziak, J. J., Coffman, D. L., Lanza, S. T., & Li, R. (2012). Sensitivity and specificity of information criteria. The Methodology Center and Department of Statistics: Penn State, The Pennsylvania State University.

  • Ellis, J. L., & Junker, B. W. (1997). Tail-measurability in monotone latent variable models. Psychometrika, 62(4), 495–523.

    Article  Google Scholar 

  • Epskamp, S., Maris, G., Waldorp, L., & Borsboom, D. (in press). Network psychometrics. In Irwing, P., Hughes, D., and Booth, T., (Eds.), Handbook of psychometrics. Wiley, New York, NY.

  • Epskamp, S., Waldorp, L. J., Mõttus, R., & Borsboom, D. (2016). Discovering psychological dynamics in time-series data. arXiv preprintarXiv:1609.04156.

  • Foygel, R., & Drton, M. (2010). Extended Bayesian information criteria for Gaussian graphical models. Advances in Neural Information Processing Systems, 23, 2020–2028.

    Google Scholar 

  • Fried, E. I., Bockting, C., Arjadi, R., Borsboom, D., Amshoff, M., Cramer, O. J., et al. (2015). From loss to loneliness: The relationship between bereavement and depressive symptoms. Journal of Abnormal Psychology, 124(2), 256–265.

    Article  PubMed  Google Scholar 

  • Fried, E. I., & van Borkulo, C. (2016). Mental disorders as networks of problems: A review of recent insights.

  • Gates, K. M., & Molenaar, P. C. (2012). Group search algorithm recovers effective connectivity maps for individuals in homogeneous and heterogeneous samples. NeuroImage, 63(1), 310–319.

    Article  PubMed  Google Scholar 

  • Goldberg, L. (1993). The structure of phenotypic personality traits. American Psychologist, 48(1), 26–34.

    Article  PubMed  Google Scholar 

  • Goldberg, L. R. (1990). An alternative “description of personality”: The big-five factor structure. Journal of Personality and Social Psychology, 59(6), 1216–1229.

    Article  PubMed  Google Scholar 

  • Hayduk, L. A. (1987). Structural equation modeling with LISREL: Essentials and advances. Baltimore, MD: Johns Hopkins University Press.

    Google Scholar 

  • Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1), 55–67.

    Article  Google Scholar 

  • Holland, P. W., & Rosenbaum, P. R. (1986). Conditional association and unidimensionality in monotone latent variable models. The Annals of Statistics, 14, 1523–1543.

    Article  Google Scholar 

  • Ising, E. (1925). Beitrag zur theorie des ferromagnetismus. Zeitschrift für Physik A Hadrons and Nuclei, 31(1), 253–258.

    Google Scholar 

  • Isvoranu, A. M., Borsboom, D., van Os, J., & Guloksuz, S. (2016a). A network approach to environmental impact in psychotic disorders: Brief theoretical framework. Schizophrenia Bulletin, 42(4), 870–873.

    Article  PubMed  PubMed Central  Google Scholar 

  • Isvoranu, A. M., van Borkulo, C. D., Boyette, L. L., Wigman, J. T., Vinkers, C. H., Borsboom, D., & Group Investigators. (2017). A network approach to psychosis: Pathways between childhood trauma and psychotic symptoms. Schizophrenia bulletin, 43(1), 187–196.

  • Jacobucci, R., Grimm, K. J., & McArdle, J. J. (2016). Regularized structural equation modeling. Structural Equation Modeling: A Multidisciplinary Journal, 23(4), 555–566.

    Article  Google Scholar 

  • Jöreskog, K. G. (1967). A general approach to confirmatory maximum likelihood factor analysis. ETS Research Bulletin Series, 1967(2), 183–202.

    Article  Google Scholar 

  • Kaplan, D. (2000). Structural equation modeling: Foundations and extensions. Thousand Oaks, CA: Sage.

    Google Scholar 

  • Kolaczyk, E. D. (2009). Statistical analysis of network data. New York, NY: Springer.

    Book  Google Scholar 

  • Koller, D., & Friedman, N. (2009). Probabilistic graphical models: Principles and techniques. Cambridge, MA: MIT Press.

    Google Scholar 

  • Kossakowski, J. J., Epskamp, S., Kieffer, J. M., van Borkulo, C. D., Rhemtulla, M., & Borsboom, D. (2015). The application of a network approach to health-related quality of life (HRQoL): Introducing a new method for assessing hrqol in healthy adults and cancer patient. Quality of Life Research, 25, 781–792.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lauritzen, S. L. (1996). Graphical models. Oxford: Clarendon Press.

    Google Scholar 

  • Lawley, D. N. (1940). VI.—the estimation of factor loadings by the method of maximum likelihood. Proceedings of the Royal Society of Edinburgh, 60(01), 64–82.

    Article  Google Scholar 

  • Lord, F. M., Novick, M. R., & Birnbaum, A. (1968). Statistical theories of mental test scores. Oxford: Addison-Wesley.

    Google Scholar 

  • MacCallum, R. C., Wegener, D. T., Uchino, B. N., & Fabrigar, L. R. (1993). The problem of equivalent models in applications of covariance structure analysis. Psychological Bulletin, 114(1), 185–199.

    Article  PubMed  Google Scholar 

  • Marsh, H. W., Morin, A. J., Parker, P. D., & Kaur, G. (2014). Exploratory structural equation modeling: An integration of the best features of exploratory and confirmatory factor analysis. Annual Review of Clinical Psychology, 10, 85–110.

    Article  PubMed  Google Scholar 

  • Marsman, M., Maris, G., Bechger, T., & Glas, C. (2015). Bayesian inference for low-rank ising networks. Scientific reports, 5(9050), 1–7.

    Google Scholar 

  • McCrae, R. R., & Costa, P. T. (1997). Personality trait structure as a human universal. American Psychologist, 52(5), 509–516.

    Article  PubMed  Google Scholar 

  • McGill, R., Tukey, J. W., & Larsen, W. A. (1978). Variations of box plots. The American Statistician, 32(1), 12–16.

    Google Scholar 

  • McNally, R. J., Robinaugh, D. J., Wu, G. W., Wang, L., Deserno, M. K., & Borsboom, D. (2015). Mental disorders as causal systems a network approach to posttraumatic stress disorder. Clinical Psychological Science, 3(6), 836–849.

    Article  Google Scholar 

  • Murphy, K. P. (2012). Machine learning: A probabilistic perspective. Cambridge, MA: MIT press.

    Google Scholar 

  • Neale, M. C., Hunter, M. D., Pritikin, J. N., Zahery, M., Brick, T. R., Kirkpatrick, R. M., et al. (2016). Openmx 2.0: Extended structural equation and statistical modeling. Psychometrika, 81(2), 535–549.

    Article  PubMed  Google Scholar 

  • Pan, J., Ip, E., & Dube, L. (in press). An alternative to post-hoc model modification in confirmatory factor analysis: The bayesian lasso. Psychological Methods.

  • Pearl, J. (2000). Causality: Models, reasoning, and inference. New York, NY: Cambridge University Press.

    Google Scholar 

  • Reckase, M. D. (2009). Multidimensional item response theory. New York, NY: Springer.

    Book  Google Scholar 

  • Revelle, W. (2010). psych: Procedures for Psychological, Psychometric, and Personality Research (R package version 1.0-93). Northwestern University, Evanston, IL.

  • Rosa, M., Friston, K., & Penny, W. (2012). Post-hoc selection of dynamic causal models. Journal of Neuroscience Methods, 208(1), 66–78.

    Article  PubMed  Google Scholar 

  • Schmittmann, V. D., Cramer, A. O. J., Waldorp, L. J., Epskamp, S., Kievit, R. A., & Borsboom, D. (2013). Deconstructing the construct: A network perspective on psychological phenomena. New Ideas in Psychology, 31(1), 43–53.

    Article  Google Scholar 

  • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B (Methodological), 58, 267–288.

    Google Scholar 

  • van Borkulo, C. D., Borsboom, D., Epskamp, S., Blanken, T. F., Boschloo, L., Schoevers, R. A., et al. (2014). A new method for constructing networks from binary data. Scientific Reports, 4(5918), 1–10.

    Google Scholar 

  • van Borkulo, C. D., Boschloo, L., Borsboom, D., Penninx, B. W. J. H., Waldorp, L. J., & Schoevers, R. A. (2015). Association of symptom network structure with the course of depression. JAMA Psychiatry, 72(12), 1219–1226.

    Article  PubMed  Google Scholar 

  • van der Maas, H. L., Dolan, C. V., Grasman, R. P., Wicherts, J. M., Huizenga, H. M., & Raijmakers, M. E. (2006). A dynamical model of general intelligence: The positive manifold of intelligence by mutualism. Psychological Review, 113(4), 842–861.

    Article  PubMed  Google Scholar 

  • Ware, J. E, Jr., & Sherbourne, C. D. (1992). The MOS 36-item short-form health survey (SF-36): I. Conceptual framework and item selection. Medical Care, 30, 473–483.

    Article  PubMed  Google Scholar 

  • Wright, S. (1921). Correlation and causation. Journal of Agricultural Research, 20(7), 557–585.

    Google Scholar 

  • Wright, S. (1934). The method of path coefficients. The Annals of Mathematical Statistics, 5(3), 161–215.

    Article  Google Scholar 

  • Yin, J., & Li, H. (2011). A sparse conditional gaussian graphical model for analysis of genetical genomics data. The Annals of Applied Statistics, 5(4), 2630–2650.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2), 301–320.

    Article  Google Scholar 

  • Zou, H., Hastie, T., Tibshirani, R., et al. (2007). On the degrees of freedom of the lasso. The Annals of Statistics, 35(5), 2173–2192.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sacha Epskamp.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 33 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Epskamp, S., Rhemtulla, M. & Borsboom, D. Generalized Network Psychometrics: Combining Network and Latent Variable Models. Psychometrika 82, 904–927 (2017). https://doi.org/10.1007/s11336-017-9557-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-017-9557-x

Keywords

Navigation